Radiation and Environmental Biophysics

, Volume 49, Issue 4, pp 509–530 | Cite as

Radionuclide transfer to reptiles

  • Michael D. Wood
  • Nicholas A. Beresford
  • Dmitry V. Semenov
  • Tamara L. Yankovich
  • David Copplestone


Reptiles are an important, and often protected, component of many ecosystems but have rarely been fully considered within ecological risk assessments (ERA) due to a paucity of data on contaminant uptake and effects. This paper presents a meta-analysis of literature-derived environmental media (soil and water) to whole-body concentration ratios (CRs) for predicting the transfer of 35 elements (Am, As, B, Ba, Ca, Cd, Ce, Cm, Co, Cr, Cs, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Po, Pu, Ra, Rb, Sb, Se, Sr, Th, U, V, Y, Zn, Zr) to reptiles in freshwater ecosystems and 15 elements (Am, C, Cs, Cu, K, Mn, Ni, Pb, Po, Pu, Sr, Tc, Th, U, Zn) to reptiles in terrestrial ecosystems. These reptile CRs are compared with CRs for other vertebrate groups. Tissue distribution data are also presented along with data on the fractional mass of bone, kidney, liver and muscle in reptiles. Although the data were originally collected for use in radiation dose assessments, many of the CR data presented in this paper will also be useful for chemical ERA and for the assessments of dietary transfer in humans for whom reptiles constitute an important component of the diet, such as in Australian aboriginal communities.


  1. Albrecht J, Abalos M, Rice TM (2007) Heavy metal levels in ribbon snakes (Thamnophis sauritus) and anuran larvae from the Mobile-Tensaw River Delta, Alabama, USA. Arch Environ Contam Toxicol 53(4):647–654CrossRefGoogle Scholar
  2. Anan Y, Kunito T, Watanabe I, Sakai H, Tanabe S (2001) Trace element accumulation in hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) from Yaeyama Islands, Japan. Environ Toxicol Chem 20(12):2802–2814Google Scholar
  3. Andreani G, Santoro M, Cottignoli S, Fabbri M, Carpene E, Isani G (2008) Metal distribution and metallothionein in loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtles. Sci Total Environ 390(1):287–294CrossRefGoogle Scholar
  4. Antweiler RC, Taylor HE (2008) Evaluation of statistical treatments of left-censored environmental data using coincident uncensored data sets: I. Summary statistics. Environ Sci Tech 42(10):3732–3738CrossRefGoogle Scholar
  5. Avery RA, White AS, Martin MH, Hopkin SP (1983) Concentrations of heavy metals in common lizards (Lacerta vivipara) and their food and environment. Amphibia-Reptilia 4(4):205–213CrossRefGoogle Scholar
  6. Baccarelli A, Pfeiffer R, Consonni D, Pesatori AC, Bonzini M, Patterson DG, Bertazzi PA, Landi MT (2005) Handling of dioxin measurement data in the presence of non-detectable values: overview of available methods and their application in the Seveso chloracne study. Chemosphere 60(7):898–906CrossRefGoogle Scholar
  7. Bagshaw C, Brisbin IL (1985) Long-term declines in radiocesium of two sympatric snake populations. J Appl Ecol 22(2):407–413CrossRefGoogle Scholar
  8. Barnett CL, Gaschak S, Beresford NA, Howard BJ (2009) Radionuclide activity concentrations in two species of reptiles from the Chernobyl exclusion zone. Radioprotection 44(5):537–542CrossRefGoogle Scholar
  9. Beresford NA, Wright SM, Barnett CL, Wood MD, Gaschak S, Arkhipov A, Sazykina TG, Howard BJ (2005) Predicting radionuclide transfer to wild animals: an application of a proposed environmental impact assessment framework to the Chernobyl exclusion zone. Radiat Environ Biophys 44(3):161–168CrossRefGoogle Scholar
  10. Beresford NA, Appleton JD, Barnett CL, Bescoby MW, Breward N, Jones DG, MacKenzie AC, Scheib C, Thørring H, Wood MD (2007) Assessment of naturally occurring radionuclides in England and Wales. Project SC030283. Environment Agency, Bristol. Available from: http://www.ceh.ac.uk/protect/pages/documents/AssessmentofnaturallyoccuringradionuclidesinEnglandandWales.pdf
  11. Beresford NA, Balonov M, Beaugelin-Seiller K, Brown J, Copplestone D, Hingston JL, Horyna J, Hosseini A, Howard BJ, Kamboj S, Nedveckaite T, Olyslaegers G, Sazykina T, Batlle JVI, Yankovich TL, Yu C (2008a) An international comparison of models and approaches for the estimation of the radiological exposure of non-human biota. Appl Radiat Isot 66(11):1745–1749CrossRefGoogle Scholar
  12. Beresford NA, Hosseini A, Brown JE, Cailes C, Copplestone D, Barnett CL, Beaugelin-Seiller K (2008b) Evaluation of approaches for protecting the environment from ionising radiation in a regulatory context. Deliverable 4. Report for the PROTECT project. EC Contract Number:036425 (FI6R). Centre for Ecology and Hydrology, Lancaster. Available from: http://www.ceh.ac.uk/PROTECT/outputs/
  13. Beresford NA, Barnett CL, Howard BJ, Scott WA, Brown JE, Copplestone D (2008c) Derivation of transfer parameters for use within the ERICA Tool and the default concentration ratios for terrestrial biota. J Environ Radioact 99(9):1393–1407CrossRefGoogle Scholar
  14. Beresford NA, Barnett CL, Beaugelin-Seiller K, Brown JE, Cheng J-J, Copplestone D, Gaschak S, Hingston JL, Horyna J, Hosseini A, Howard BJ, Kamboj S, Kryshev A, Nedveckaite T, Olyslaegers G, Sazykina T, Smith JT, Telleria D, Vives i Batlle J, Yankovich TL, Heling R, Wood MD, Yu C (2009a) Findings and recommendations from an international comparison of models and approaches for the estimation of radiological exposure to non-human biota. Radioprotection 44(5):565–570CrossRefGoogle Scholar
  15. Beresford NA, Copplestone D, Brown JE (2009b) Wildlife transfer database: user guidance version 1. pp. 23 Available from: http://www.wildlifetransferdatabase.org
  16. Beresford NA, Barnett CL, Brown JE, Cheng J-J, Copplestone D, Gaschak S, Hosseini A, Howard BJ, Kamboj S, Nedveckaite T, Olyslaegers G, Smith JT, Vives i Batlle J, Vives-Lynch S, Yu C (2010) An international comparison of approaches to assess the radiation exposure of wildlife to radioactivity: terrestrial species in the Chernobyl exclusion zone. J Radiol Prot 30(2):341–373CrossRefGoogle Scholar
  17. Brady D, Pratt GC (2007) Volatile organic compound emissions from dry mill fuel ethanol production. J Air Waste Manag Assoc 57(9):1091–1102CrossRefGoogle Scholar
  18. Brisbin IL (1989) Radiocesium levels in a population of American alligators: a model for the study of environmental contaminants in free-living crocodilians. In: Proceedings of the 8th working meeting of the crocodile specialist group of the species survival committee of the international union for conservation of nature and natural resources. Quito: IUCNGoogle Scholar
  19. Brisbin IL, Beyers RJ, Dapson RW, Geiger RA, Gentry JB, Gibbons JW, Smith MH, Woods SK (1974a) Patterns of radiocesium in sediments of a stream channel contaminated by production reactor effluents. Health Phys 27(1):19–27CrossRefGoogle Scholar
  20. Brisbin IL, Staton MA, Pinder JE, Geiger RA (1974b) Radiocesium concentrations of snakes from contaminated and non-contaminated habitats of AEC Savannah River Plant. Copeia 2:501–506CrossRefGoogle Scholar
  21. Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Prohl G, Ulanovsky A (2008) The ERICA tool. J Environ Radioact 99(9):1371–1383CrossRefGoogle Scholar
  22. Burger J (2002) Metals in tissues of diamondback terrapin from New Jersey. Environ Monit Assess 77(3):255–263CrossRefGoogle Scholar
  23. Burger J, Gibbons JW (1998) Trace elements in egg contents and egg shells of slider turtles (Trachemys scripta) from the Savannah River Site. Arch Environ Contam Toxicol 34(4):382–386CrossRefGoogle Scholar
  24. Burger J, Gochfeld M, Rooney AA, Orlando EF, Woodward AR, Guillette LJ (2000) Metals and metalloids in tissues of American alligators in three Florida lakes. Arch Environ Contam Toxicol 38(4):501–508CrossRefGoogle Scholar
  25. Burger J, Campbell KR, Campbell TS, Shukla T, Jeitner C, Gochfeld M (2005) Use of skin and blood as nonlethal indicators of heavy metal contamination in northern water snakes (Nerodia sipedon). Arch Environ Contam Toxicol 49(2):232–238CrossRefGoogle Scholar
  26. Burger J, Campbell KR, Murray S, Campbell TS, Gaines KF, Jeitner C, Shukla T, Burke S, Gochfeld M (2007) Metal levels in blood, muscle and liver of water snakes (Nerodia spp.) from New Jersey, Tennessee and South Carolina. Sci Total Environ 373(2–3):556–563Google Scholar
  27. Burns PA, Cooper MB, Lokan KH, Wilks MJ, Williams GA (1995) Characteristics of plutonium and americium contamination at the former U.K. atomic weapons test ranges at Maralinga and Emu. Appl Radiat Isot 46(11):1099–1107CrossRefGoogle Scholar
  28. Campbell KR, Campbell TS (2000) Lizard contaminant data for ecological risk assessment. Rev Environ Contam Toxicol 165:39–116Google Scholar
  29. Campbell KR, Campbell TS (2001) The accumulation and effects of environmental contaminants on snakes: a review. Environ Monit Assess 70(3):253–301CrossRefGoogle Scholar
  30. Campbell KR, Campbell TS (2002) A logical starting point for developing priorities for lizard and snake ecotoxicology: a review of available data. Environ Toxicol Chem 21(5):894–898CrossRefGoogle Scholar
  31. Campbell KR, Ford CJ, Levine DA (1998) Mercury distribution in Poplar Creek, Oak Ridge, Tennessee, USA. Environ Toxicol Chem 17(7):1191–1198CrossRefGoogle Scholar
  32. Campbell KR, Campbell TS, Burger J (2005) Heavy metal concentrations in northern water snakes (Nerodia sipedon) from East Fork Poplar Creek and the Little River, East Tennessee, USA. Arch Environ Contam Toxicol 49(2):239–248CrossRefGoogle Scholar
  33. Carrington R (2003) The effect of chronic radiation dose on individuals and populations of small mammals in the Chernobyl exclusion zone. School of Biological Sciences, University of Liverpool, LiverpoolGoogle Scholar
  34. Copplestone D, Wood MD, Bielby S, Jones SR, Vives i Batlle J, Beresford NA (2003) Habitat regulations for Stage 3 assessments: radioactive substances authorisations. R&D Technical Report P3-101/Sp1a. Environment Agency, Bristol. pp. 100 Available from: http://www.ceh.ac.uk/PROTECT/pages/documents/Habitatsregulationsforstage3assessment.pdf
  35. Copplestone D, Koulikov AO, Semenov DV (2005) Radionuclide concentrations in reptiles on some polluted territories of Russia. Russ J Herpetol 12(2):83–86Google Scholar
  36. Coughtrey PJ, Jackson D, Jones CH, Thorne MC (1984) Radionuclide distribution and transport in terrestrial and aquatic ecosystems, a critical review of data. A.A. Balkema, RotterdamGoogle Scholar
  37. Davenport J, Wrench J (1990) Metal levels in a leatherback turtle. Mar Pollut Bull 21(1):40–41CrossRefGoogle Scholar
  38. Davic RD (2003) Linking keystone species and functional groups: a new operational definition of the keystone species concept—Response. Conserv Ecol 7(1):r11Google Scholar
  39. Day RD, Christopher SJ, Becker PR, Whitaker DW (2005) Monitoring mercury in the loggerhead sea turtle, Caretta caretta. Environ Sci Tech 39(2):437–446CrossRefGoogle Scholar
  40. Delany MF, Bell JU, Sundlof SF (1988) Concentrations of contaminants in muscle of the American alligator in Florida. J Wildl Dis 24(1):62–66Google Scholar
  41. Fievet B, Della Vedova C (2010) Dealing with non-detect values in time-series measurements of radionuclide concentration in the marine environment. J Environ Radioact 101(1):1–7CrossRefGoogle Scholar
  42. Franzellitti S, Locatelli C, Gerosa G, Vallini C, Fabbri E (2004) Heavy metals in tissues of loggerhead turtles (Caretta caretta) from the northwestern Adriatic Sea. Comp Biochem Physiol C Toxicol Pharmacol 138(2):187–194CrossRefGoogle Scholar
  43. Frias-Espericueta MG, Osuna-Lopez JI, Ruiz-Telles A, Quintero-Alvarez JM, Lopez-Lopez G, Izaguirre-Fierro G, Voltolina D (2006) Heavy metals in the tissues of the sea turtle Lepidochelys olivacea from a nesting site of the northwest coast of Mexico. Bull Environ Contam Toxicol 77(2):179–185CrossRefGoogle Scholar
  44. Garcia F, Ortega A, Domingo JL, Corbella J (2001) Accumulation of metals in autopsy tissues of subjects living in Tarragona County, Spain. J Environ Sci Health Part A Toxichazard Subst Environ Eng 36(9):1767–1786Google Scholar
  45. Garcia-Fernandez AJ, Gomez-Ramirez P, Martinez-Lopez E, Hernandez-Garcia A, Maria-Mojica P, Romero D, Jimenez P, Castillo JJ, Bellido JJ (2009) Heavy metals in tissues from loggerhead turtles (Caretta caretta) from the southwestern Mediterranean (Spain). Ecotoxicol Environ Saf 72(2):557–563CrossRefGoogle Scholar
  46. Gardner SC, Fitzgerald SL, Vargas BA, Rodriguez LM (2006) Heavy metal accumulation in four species of sea turtles from the Baja California Peninsula, Mexico. Biometals 19(1):91–99CrossRefGoogle Scholar
  47. Garten CT, Gentry JB, Pinder JE, Sharitz RR, Smith MH (1975) Radiocesium dynamics in a contaminated floodplain ecosystem in the southeastern United States. In: International symposium on radiological impacts of releases from nuclear facilities into aquatic environments, IAEA, Otaniemi, Finland. International Atomic Energy Agency 331–347Google Scholar
  48. Geiger RA, Winsor TF (1977) Pu-239 contamination in snakes inhabiting Rocky Flats Plant site. Health Phys 33(2):145–148Google Scholar
  49. Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville TD, Metts BS, Greene JL, Mills T, Leiden Y, Poppy S, Winne CT (2000) The global decline of reptiles, Deja Vu amphibians. Bioscience 50(8):653–666CrossRefGoogle Scholar
  50. Gjelsvik R, Brown J (2009) Po-210 and other radionuclides in terrestrial and freshwater environments. NKS-181. Nordisk kernesikkerhedsforskning, Roskilde, p 41Google Scholar
  51. Gochfeld M, Burger J (1987) Factors affecting the distribution of heavy metals—age effects and the metal concentration patterns in common terns, Sterna hirundo. Biol Trace Elem Res 12:389–399CrossRefGoogle Scholar
  52. Godley BJ, Gaywood MJ, Law RJ, McCarthy CJ, McKenzie C, Patterson IAP, Penrose RS, Reid RJ, Ross HM (1998) Patterns of marine turtle mortality in British waters (1992–1996) with reference to tissue contaminant levels. J Mar Biol Assoc UK 78(3):973–984CrossRefGoogle Scholar
  53. Godley BJ, Thompson DR, Furness RW (1999) Do heavy metal concentrations pose a threat to marine turtles from the Mediterranean sea? Mar Pollut Bull 38(6):497–502CrossRefGoogle Scholar
  54. Gordon AN, Pople AR, Ng J (1998) Trace metal concentrations in livers and kidneys of sea turtles from south-eastern Queensland, Australia. Mar Freshwat Res 49(5):409–414CrossRefGoogle Scholar
  55. Heaton Jones TG, Homer BL, Heaton Jones DL, Sundlof SF (1997) Mercury distribution in American alligators (Alligator mississippiensis) in Florida. J Zoo Wildl Med 28(1):62–70Google Scholar
  56. Helsel DR (1990) Less than obvious: statistical treatment of data below the detection limit. Environ Sci Tech 24(12):1766–1774CrossRefGoogle Scholar
  57. Helsel DR (2005a) More than obvious: better methods for interpreting nondetect data. Environ Sci Tech 39(20):419A–423ACrossRefGoogle Scholar
  58. Helsel DR (2005b) Nondetects and data analysis: statistics for censored environmental data. Wiley, New JerseyMATHGoogle Scholar
  59. Helsel DR (2006) Fabricating data: how substituting values for nondetects can ruin results, and what can be done about it. Chemosphere 65(11):2434–2439CrossRefGoogle Scholar
  60. Hinton TG, Scott DE (1990) Radioecological techniques for herpetology, with an emphasis on freshwater turtles. In: Gibbons JW (ed) Life history and ecology of the slider turtle. Smithsonian Institute Press, Washington, pp 267–287Google Scholar
  61. Hinton TG, Whicker FW (1985) The kinetics of radium and strontium in pond sliders Pseudemys scripta as a function of two temperature extremes. Savannah River Ecology Laboratory, Aiken, p 21Google Scholar
  62. Hopkins WA (2000) Reptile toxicology: challenges and opportunities on the last frontier in vertebrate ecotoxicology. Environ Toxicol Chem 19(10):2391–2393CrossRefGoogle Scholar
  63. Hopkins WA, Mendonca MT, Rowe CL, Congdon JD (1998) Elevated trace element concentrations in southern toads, Bufo terrestris, exposed to coal combustion waste. Arch Environ Contam Toxicol 35(2):325–329CrossRefGoogle Scholar
  64. Hopkins WA, Rowe CL, Congdon JD (1999) Elevated trace element concentrations and standard metabolic rate in banded water snakes (Nerodia fasciata) exposed to coal combustion wastes. Environ Toxicol Chem 18(6):1258–1263Google Scholar
  65. Hornung RW, Reed LD (1990) Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg 5:46–51Google Scholar
  66. Hosseini A, Thorring H, Brown JE, Saxen R, Ilus E (2008) Transfer of radionuclides in aquatic ecosystems—default concentration ratios for aquatic biota in the Erica Tool. J Environ Radioact 99(9):1408–1429CrossRefGoogle Scholar
  67. IAEA (2009) Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments. IAEA-TECDOC-1616. International Atomic Energy Agency, Vienna. p 622Google Scholar
  68. ICRP (1979) Limits for intakes of radionuclides by workers, Publication 30Google Scholar
  69. ICRP (2007) Recommendations of the international commission on radiological protection, Publication 103. Ann ICRP 37(2–4):133–135CrossRefGoogle Scholar
  70. ICRP (2009) Environmental protection: the concept and use of Reference Animals and Plants, Publication 108. Ann ICRP 38(4–6)Google Scholar
  71. Iljenko AI (1970) Regularities of 90Sr and 137Cs in different links of food chains in zoocenosis. J Gen Biol 31(6):698–709Google Scholar
  72. Irwin L, Irwin K (2006) Global threats affecting the status of reptile populations. In: Gardner SC, Oberdorster E (eds) Toxicology of reptiles. Taylor & Francis Group, Boca Raton, pp 9–34Google Scholar
  73. Jagoe CH, Arnold-Hill B, Yanochko GM, Winger PV, Brisbin IL (1998) Mercury in alligators (Alligator mississippiensis) in the southeastern United States. Sci Total Environ 213(1–3):255–262CrossRefGoogle Scholar
  74. Jefferies DJ, French MC (1976) Mercury, cadmium, zinc, copper and organochlorine insecticide levels in small mammals trapped in a wheat field. Environ Pollut 10(3):175–182CrossRefGoogle Scholar
  75. Jeffree RA (1991) An experimental-study of 226Ra and 45Ca accumulation from the aquatic medium by fresh-water turtles (Family—Chelidae) under varying Ca and Mg water concentrations. Hydrobiologia 218(3):205–231Google Scholar
  76. Jeffree RA, Markich SJ, Twining JR (2001) Element concentrations in the flesh and osteoderms of estuarine crocodiles (Crocodylus porosus) from the Alligator Rivers Region, northern Australia: biotic and geographic effects. Arch Environ Contam Toxicol 40(2):236–245CrossRefGoogle Scholar
  77. Johansen MP, Twining JR (2010) Radionuclide concentration ratios in Australian terrestrial wildlife and livestock: data compilation and analysis. Radiat Environ Biophys. doi:10.1007/s00411-010-0318-9
  78. Kaplan EL, Meier P (1958) Nonparametric-estimation from incomplete observations. J Am Stat Assoc 53(282):457–481MATHMathSciNetCrossRefGoogle Scholar
  79. Kaska Y, Celik A, Bag H, Aureggi M, Ozel K, Elci A, Kaska A, Elca L (2004) Heavy metal monitoring in stranded sea turtles along the Mediterranean coast of Turkey. Fresenius Environ Bull 13(8):769–776Google Scholar
  80. Lam JCW, Tanabe S, Chan SKF, Yuen EKW, Lam MHW, Lam PKS (2004) Trace element residues in tissues of green turtles (Chelonia mydas) from South China Waters. Mar Pollut Bull 48(1–2):174–182CrossRefGoogle Scholar
  81. Lam JCW, Tanabe S, Chan SKF, Lam MHW, Martin M, Lam PKS (2006) Levels of trace elements in green turtle eggs collected from Hong Kong: evidence of risks due to selenium and nickel. Environ Pollut 144(3):790–801CrossRefGoogle Scholar
  82. Liat LB (1999) Reptiles as potential biocontrol agents of pest rodents in plantation areas. Biol Control Trop 82–84Google Scholar
  83. Maffucci F, Caurant F, Bustamante P, Bentivegna F (2005) Trace element (Cd, Cu, Hg, Se, Zn) accumulation and tissue distribution in loggerhead turtles (Caretta caretta) from the Western Mediterranean Sea (southern Italy). Chemosphere 58(5):535–542CrossRefGoogle Scholar
  84. Mann RM, Serra EA, Soares A (2006) Assimilation of cadmium in a European lacertid lizard: is trophic transfer important? Environ Toxicol Chem 25(12):3199–3203CrossRefGoogle Scholar
  85. Mann RM, Sanchez-Hernandez JC, Serra EA, Soares A (2007) Bioaccumulation of Cd by a European lacertid lizard after chronic exposure to Cd-contaminated food. Chemosphere 68(8):1525–1534CrossRefGoogle Scholar
  86. Markich SJ, Jeffree RA, Harch BD (2002) Catchment-specific element signatures in estuarine crocodiles (Crocodylus porosus) from the Alligator Rivers Region, northern Australia. Sci Total Environ 287(1–2):83–95CrossRefGoogle Scholar
  87. Martin P, Hancock GJ, Johnston A, Murray AS (1998) Natural-series radionuclides in traditional North Australian aboriginal foods. J Environ Radioact 40(1):37–58CrossRefGoogle Scholar
  88. Martjushov VZ, Krivoluzky DA, Smirnov EG, Tarasov OV (1999) Ecological consequences of radioactive pollution on South Ural. In: Krivoluzky DA (ed) Bioindication of radioactive pollution. Nauka, Moscow, pp 49–85Google Scholar
  89. Meyersschone L, Walton BT (1990) Comparison of two freshwater turtle species as monitors of environmental contamination. ORNL/TM-11460. Oak Ridge National Laboratory, Oak Ridge, p 179Google Scholar
  90. Meyersschone L, Walton BT (1994) Turtles as monitors of chemical contaminants in the environment. Rev Environ Contam Toxicol 135:93–153Google Scholar
  91. Meyersschone L, Shugart LR, Beauchamp JJ, Walton BT (1993) Comparison of two freshwater turtle species as monitors of radionuclide and chemical contamination: DNA-damage and residue analysis. Environ Toxicol Chem 12(8):1487–1496CrossRefGoogle Scholar
  92. Millard SP, Deverel SJ (1988) Nonparametric statistical methods for comparing two sites based on data with multiple nondetect limits. Water Resour Res 24(12):2087–2098ADSCrossRefGoogle Scholar
  93. Narayanan N, Eapen J (1971) Caesium-137 in tissues of the lizard Hemidactylus leschenaulti. J Anim Morphol Physiol 18(2):171–175Google Scholar
  94. Niethammer KR, Atkinson RD, Baskett TS, Samson FB (1985) Metals in riparian wildlife of the lead mining district of southeastern Missouri. Arch Environ Contam Toxicol 14(2):213–223CrossRefGoogle Scholar
  95. Oaks TW, Kimborough CW, Pritz PM, Goodpasture ST, Huang SF, Gist GS, Weber CW, O’Hara FM (1987) Environmental surveillance of the U.S. Department of Energy Oak Ridge reservation and surrounding environs during 1986. ES/ESH-1/V2. Oak Ridge National Laboratory, Oak Ridge. p 559Google Scholar
  96. Ohira Y, Ito A, Ikawa S (1977) Correction of water-content and solute concentration in blood during hemoconcentration. J Appl Physiol 42(5):739–743Google Scholar
  97. Ohlendorf HM, Hothem RL, Aldrich TW (1988) Bioaccumulation of selenium by snakes and frogs in the San-Joaquin Valley, California. Copeia 3:704–710CrossRefGoogle Scholar
  98. Paine RT (1969) A note on trophic complexity and community stability. Am Nat 103(929):91–93CrossRefGoogle Scholar
  99. Peters EL, Brisbin IL (1996) Environmental influences on the 137Cs kinetics of the yellow-bellied turtle (Trachemys scripta). Ecol Monogr 66(1):115–136CrossRefGoogle Scholar
  100. Pough FH, Andrews RM, Cadle JE, Crump ML, Savitzky AH, Wells KD (2004) Herpetology, 3rd edn. Pearson Prentice Hall, New JerseyGoogle Scholar
  101. Presser TS, Ohlendorf HM (1987) Biogeochemical cycling of selenium in the San-Joaquin Valley, California, USA. Environ Manag 11(6):805–821ADSCrossRefGoogle Scholar
  102. Pritchard PCH, Bloodwell JM (1986) Multidisciplinary study of radionuclides and heavy metal concentrations in wildlife on phosphate mined and reclaimed sites. Publication No. 05-017-042. Florida Audubon Society, Bartow. p 72Google Scholar
  103. Read J, Pickering R (1999) Ecological and toxicological effects of exposure to an acidic, radioactive tailings storage. Environ Monit Assess 54(1):69–85CrossRefGoogle Scholar
  104. Rie MT, Lendas KA, Callard IP (2001) Cadmium: tissue distribution and binding protein induction in the painted turtle, Chrysemys picta. Comp Biochem Physiol C Toxicol Pharmacol 130(1):41–51CrossRefGoogle Scholar
  105. Risk Assessment Corporation (2001) Savannah River site environmental dose reconstruction project: phase II: source term calculation and ingestion pathway data retrieval—evaluation of materials released from the Savannah River Site. 200-95-0904. Available from: http://www.cdc.gov/nceh/radiation/Savannah/
  106. Rudge SA, Johnson MS, Leah RT, Jones SR (1993) Biological transport of radiocesium in a seminatural grassland ecosystem 2. Small mammals. J Environ Radioact 19(3):199–212CrossRefGoogle Scholar
  107. Saeki K, Nakajima M, Loughlin TR, Calkins DC, Baba N, Kiyota M, Tatsukawa R (2001) Accumulation of silver in the liver of three species of pinnipeds. Environ Pollut 112(1):19–25CrossRefGoogle Scholar
  108. Saiki MK, Lowe TP (1987) Selenium in aquatic organisms from subsurface agricultural drainage water, San-Joaquin Valley, California. Arch Environ Contam Toxicol 16(6):657–670CrossRefGoogle Scholar
  109. Sakai H, Ichihashi H, Suganuma H, Tatsukawa R (1995) Heavy-metal monitoring in sea-turtles using eggs. Mar Pollut Bull 30(5):347–353CrossRefGoogle Scholar
  110. Sakai H, Saeki K, Ichihashi H, Kamezaki N, Tanabe S, Tatsukawa R (2000) Growth-related changes in heavy metal accumulation in green turtle (Chelonia mydas) from Yaeyama Islands, Okinawa, Japan. Arch Environ Contam Toxicol 39(3):378–385CrossRefGoogle Scholar
  111. Sanchez-Chardi A, Lopez-Fuster MJ, Nadal J (2007) Bioaccumulation of lead, mercury, and cadmium in the greater white-toothed shrew, Crocidura russula, from the Ebro Delta (NE Spain): sex- and age-dependent variation. Environ Pollut 145(1):7–14CrossRefGoogle Scholar
  112. Santos X, Arenas C, Llorente GA, Ruiz X (2007) Exploring the origin of egg protein in an oviparous water snake (Natrix maura). Comp Biochem Physiol Mol Integr Physiol 147(1):165–172CrossRefGoogle Scholar
  113. Schmitt C, Finger S (1982) The dynamics of metals from past and present mining activities in the Big and Black river watersheds, southeastern Missouri. Final Report to US Army Corps of Engineers. National Fisheries Research Laboratory US Fish and Wildlife Service, Columbia, p 153Google Scholar
  114. Scott DE, Whicker FW, Gibbons JW (1986) Effect of season on the retention of 137Cs and 90Sr by the yellow-bellied slider turtle (Pseudemys scripta). Can J Zool 64(12):2850–2853CrossRefGoogle Scholar
  115. Sharygin SA, Korzhenevskii VV, Firsov SL (1979) Geochemical ecology of the Crimean lizard. Sov J Ecol 10(5):437–438Google Scholar
  116. She N (1997) Analyzing censored water quality data using a non-parametric approach. J Am Water Resour Assoc 33(3):615–624MathSciNetADSCrossRefGoogle Scholar
  117. Shea G (2002) Reptiles and amphibians. Fog City Press, San FranciscoGoogle Scholar
  118. Sheppard SC (2005) Transfer parameters: are on-site date really better? Hum Ecol Risk Assess 11(5):939–949CrossRefGoogle Scholar
  119. Sokolov VE, Krivoluzky DA, Usachev VL (1989) Wild animals in the global radioecological monitoring. Nauka, MoscowGoogle Scholar
  120. Starck JM, Beese K (2002) Structural flexibility of the small intestine and liver of garter snakes in response to feeding and fasting. J Exp Biol 205(10):1377–1388Google Scholar
  121. Staton MA, Brisbin IL, Geiger RA (1974) Some aspects of radiocesium retention in naturally contaminated captive snakes. Herpetologica 30:204–211Google Scholar
  122. Stone WB, Kiviat E, Butkas SA (1980) Toxicants in snapping turtles. N Y Fish Game J 27(1):39–50Google Scholar
  123. Stoneburner DL, Kushlan JA (1984) Heavy-metal burdens in American crocodile eggs from Florida Bay, Florida, USA. J Herpetol 18(2):192–193CrossRefGoogle Scholar
  124. Storelli MM, Ceci E, Marcotrigiano GO (1998) Distribution of heavy metal residues in some tissues of Caretta caretta (Linnaeus) specimen beached along the Adriatic Sea (Italy). Bull Environ Contam Toxicol 60(4):546–552CrossRefGoogle Scholar
  125. Storelli MM, Storelli A, D’Addabbo R, Marano C, Bruno R, Marcotrigiano GO (2005) Trace elements in loggerhead turtles (Caretta caretta) from the eastern Mediterranean Sea: overview and evaluation. Environ Pollut 135(1):163–170CrossRefGoogle Scholar
  126. Swanepoel D, Boomker J, Kriek NPJ (2000) Selected chemical parameters in the blood and metals in the organs of the Nile crocodile, Crocodylus niloticus, in the Kruger National Park. Onderstepoort J Vet Res 67(2):141–148Google Scholar
  127. Tajimi M, Uehara R, Watanabe M, Oki I, Ojima T, Nakamura Y (2005) Correlation coefficients between the dioxin levels in mother’s milk and the distances to the nearest waste incinerator which was the largest source of dioxins from each mother’s place of residence in Tokyo, Japan. Chemosphere 61(9):1256–1262CrossRefGoogle Scholar
  128. Thompson SD (2001) Environmental monitoring on the Oak Ridge reservation: 2001 results. DOE/ORO/2135. Oak Ridge National Laboratory, Oak Ridge, p 180Google Scholar
  129. Toop CM (1988) The alligator: monarch of the marsh. Florida National Parks and Monuments Association Inc., HomesteadGoogle Scholar
  130. Torrent A, Gonzalez-Diaz OM, Monagas P, Oros J (2004) Tissue distribution of metals in loggerhead turtles (Caretta caretta) stranded in the Canary Islands, Spain. Mar Pollut Bull 49(9–10):854–860CrossRefGoogle Scholar
  131. Towns AL (1987) 137Cs and 90Sr in turtles: a whole-body measurement technique and tissue distribution. Department of Radiology and Radiation Biology, Colorado State University, Fort CollinsGoogle Scholar
  132. Whicker FW, Pinder JE, Bowling JW, Alberts JJ, Brisbin IL (1990) Distribution of long-lived radionuclides in an abandoned reactor cooling reservoir. Ecol Monogr 60(4):471–496CrossRefGoogle Scholar
  133. Withers PC (1992) Comparative animal physiology. Saunders College Publishing, Fort WorthGoogle Scholar
  134. Wood MD (2010) Assessing the impact of ionising radiation in temperate coastal sand dune ecosystems. School of Biological Sciences, University of Liverpool, LiverpoolGoogle Scholar
  135. Wood MD, Marshall WA, Beresford NA, Jones SR, Howard BJ, Copplestone D, Leah RT (2008) Application of the ERICA integrated approach to the Drigg coastal sand dunes. J Environ Radioact 99(9):1484–1495CrossRefGoogle Scholar
  136. Wood MD, Beresford NA, Barnett CL, Copplestone D, Leah RT (2009a) Assessing radiation impact at a protected coastal sand dune site: an intercomparison of models for estimating the radiological exposure of non-human biota. J Environ Radioact 100(12):1034–1052CrossRefGoogle Scholar
  137. Wood MD, Leah RT, Jones SR, Copplestone D (2009b) Radionuclide transfer to invertebrates and small mammals in a coastal sand dune ecosystem. Sci Total Environ 407(13):4062–4074CrossRefGoogle Scholar
  138. Xu QH, Fang SG, Wang ZW, Wang ZP (2006) Heavy metal distribution in tissues and eggs of Chinese alligator (Alligator sinensis). Arch Environ Contam Toxicol 50(4):580–586CrossRefGoogle Scholar
  139. Yankovich T (2009a) Transfers to freshwater biota. In: Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments. International Atomic Energy Agency, pp 473–545Google Scholar
  140. Yankovich TL (2009b) Mass balance approach to estimating radionuclide loads and concentrations in edible fish tissues using stable analogues. J Environ Radioact 100(9):795–801CrossRefGoogle Scholar
  141. Yankovich T, Beaton D (2000) Concentration ratios of stable elements measured in organs of terrestrial, freshwater and marine non-human biota for input into internal dose assessment: a literature review. COG-99–106-I. Atomic Energy Canada Ltd, Ontario, p 119Google Scholar
  142. Yankovich TL, Sharp KJ, Benz ML, Carr J, Killey RWD (2007) Validation of the carbon-14 specific activity model in a wetland environment for application in biota dose assessment. In: American nuclear society (ANS) topical meeting on decommissioning, decontamination and reutilization (DD&R), Chattanooga, 16–19 September 2007Google Scholar
  143. Yankovich TL, Beresford NA, Aono T, Andersson P, Barnett CL, Brown JE, Fesenko S, Johansen M, Tagami K, Takata H, Twining JR, Uchida S, Wood MD (2010a) Development of reference animals and plants for use in biota dose assessments. Radiat Environ Biophys. doi:10.1007/s00411-010-0323-z
  144. Yankovich TL, Vives i Batlle J, Vives-Lynch S, Beresford NA, Barnett CL, Beaugelin-Seffler K, Brown JE, Cheng J, Copplestone D, Heling R, Hosseini A, Howard BJ, Kamboj S, Kryshev AI, Nedveckaite T, Smith JT, Wood MD (2010b) International model validation exercise on radionuclide transfer and doses to freshwater biota. J Radiol Prot 30(2):299–340CrossRefGoogle Scholar
  145. Yanochko GM, Jagoe CH, Brisbin IL (1997) Tissue mercury concentrations in alligators (Alligator mississippiensis) from the Florida Everglades and the Savannah River site, South Carolina. Arch Environ Contam Toxicol 32(3):323–328CrossRefGoogle Scholar
  146. Zhang DH, Fan CP, Zhang J, Zhang CH (2009) Nonparametric methods for measurements below detection limit. Stat Med 28(4):700–715CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Michael D. Wood
    • 1
  • Nicholas A. Beresford
    • 2
  • Dmitry V. Semenov
    • 3
  • Tamara L. Yankovich
    • 4
  • David Copplestone
    • 5
  1. 1.School of Environmental Sciences, Nicholson BuildingUniversity of LiverpoolLiverpool, MerseysideUK
  2. 2.Centre for Ecology & HydrologyLancaster Environment Centre, Library AvenueBailrigg, Lancaster, LancashireUK
  3. 3.A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  4. 4.AREVA Resources Canada IncSaskatoonCanada
  5. 5.Environment AgencyLatchford, Warrington, CheshireUK

Personalised recommendations