Advertisement

Radiation and Environmental Biophysics

, Volume 49, Issue 2, pp 249–259 | Cite as

Deposition of radon progeny on skin surfaces and resulting radiation doses in radon therapy

  • H. Tempfer
  • W. Hofmann
  • A. Schober
  • H. Lettner
  • A. L. Dinu
Original Paper

Abstract

In the Gastein valley, Austria, radon-rich thermal water and air have been used for decades for the treatment of various diseases. To explore the exposure pathway of radon progeny adsorbed to the skin, progeny activities on the skin of patients exposed to thermal water (in a bathtub) and hot vapour (in a vapour chamber) were measured by alpha spectrometry. Average total alpha activities on the patients’ skin varied from 1.2 to 4.1 Bq/cm2 in the bathtub, and from 1.1 to 2.6 Bq/cm2 in the vapour bath. Water pH-value and ion concentration did affect radon progeny adsorption on the skin, whereas skin greasiness and blood circulation did not. Measurements of the penetration of deposited radon progeny into the skin revealed a roughly exponential activity distribution in the upper layers of the skin. Based on the radon progeny surface activity concentrations and their depth distributions, equivalent doses to different layers of the skin, in particular to the Langerhans cells located in the epidermis, ranged from 0.12 mSv in the thermal bath to 0.33 mSv in the vapour bath, exceeding equivalent doses to the inner organs (kidneys) by inhaled radon and progeny by about a factor 3, except for the lung, which receives the highest doses via inhalation. These results suggest that radon progeny attachment on skin surfaces may play a major role in the dosimetry for both thermal water and hot vapour treatment schemes.

Keywords

Radon Radon Concentration Thermal Water Test Person Thermal Bath 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported in part by the Research Institute Gastein through projects FPK 109 and 110, by a project of the FOI Gastein 2009, the Austrian Research Center Seibersdorf (HT, AS) and the Socrates exchange program between the University of Salzburg and Babes-Bolyai University, Cluj-Napoca (AD). The authors further thank Dr. W. Foisner (Bad Hofgastein) and Dr. J. Untner (Bad Gastein) for providing the patients and medical advice, and Dr. Ferdinand Steger from the Austrian Research Center Seibersdorf for providing PhD scholarships (HT, AS).

References

  1. Andrejew SV (1990) Über einen möglichen Wirkungsmechanismus der Thermalstollenbehandlung in Böckstein (Österreich). Z Phys Med Baln Med Klim 19(Sonderheft 2):54–58Google Scholar
  2. Andrejew SV, Semjonow BN, Tauchert B (1990) Zum Wirkungsmechanismus von Radonbädern. Z Phys Med Baln Med Klim 19(Sonderheft 2):83–89Google Scholar
  3. Bernatzky G, Graf AH, Saria A, Hofmann W, Lettner H, Adam H, Leiner G (1994) Schmerzhemmende Wirkung einer Kurbehandlung bei Patienten mit Spondylarthritis ankylopoetica. ÖZPM 4:85–94Google Scholar
  4. Bogoljubow WM, Davydowa OB, Andrejew SV (1990) Radon-Luftbäder in der UdSSR: Forschung und Einsatz. Z Phys Med Baln Med Klim 19(Sonderheft 2):90–98Google Scholar
  5. Charles MW (2007a) Radon exposure to the skin: I. Biological effects. J Radiol Prot 27:231–252CrossRefGoogle Scholar
  6. Charles MW (2007b) Radon exposure to the skin: II. Estimation of the attributable risk for skin cancer incidence. J Radiol Prot 27:253–274CrossRefGoogle Scholar
  7. Eatough JP (1997) Alpha-particle dosimetry for the basal layer of the skin and the radon progeny 218Po and 214Po. Phys Med Biol 42:1899–1911CrossRefGoogle Scholar
  8. Eatough JP, Henshaw DL (1992) Radon and thoron associated dose to the basal layer of the skin. Phys Med Biol 37:955–967CrossRefGoogle Scholar
  9. Fakir H, Hofmann W, Tan WY, Sachs RK (2009) Triggering-response model for radiation-induced bystander effects. Radiat Res 171:320–331CrossRefGoogle Scholar
  10. Falkenbach A (2000) Speleotherpeutic radon exposure to a child suffering from juvenile chronic arthritis. J Alternative Compl Med 6:551–552CrossRefGoogle Scholar
  11. Falkenbach A, Just G, Soto J (2000) Radon progeny activity in sweat following radon exposure in a warm and humid environment. Radiat Environ Biophys 39:137–139CrossRefGoogle Scholar
  12. Falkenbach A, Kleinschmidt J, Soto J, Just G (2002) Radon progeny activity on skin and hair after speleotherapeutic radon exposure. J Environ Radiact 62:217–223CrossRefGoogle Scholar
  13. Falkenbach A, Kovacs J, Franke A, Jörgens K, Ammer K (2005) Radon therapy for the treatment of rheumatic diseases–review and meta-analysis of controlled clinical trials. Rheumatol Int 25:205–210CrossRefGoogle Scholar
  14. Flatscher K (2006) Einfluss von Alpha-Strahlung auf funktionelle Eigenschaften von Langerhans-Zellen. In: Wirkungsmechanismen niedriger Strahlendosen—Forschung für Radon-Balneotherapie und Strahlenschutz, Tagungsband zur 4. Biophysikalischen Arbeitstagung 2006, Bad Schlema. RADIZ, Schlema, pp 90–96Google Scholar
  15. Franke A, Reiner L, Pratzel HG, Franke T, Resch KL (2000) Long-term efficacy of radon spa therapy in rheumatoid arthritis–a randomized, sham-controlled study and follow-up. Rheumatology 39:894–902CrossRefGoogle Scholar
  16. Friedmann H (2005) Final results of the Austrian radon project. Health Phys 89:339–348CrossRefGoogle Scholar
  17. Gaston JS, Jarvis LB, Goodall JC (2009) Dendritic cell: T-cell interactions in spondyloarthritis. Adv Exp Med Biol 649:263–276CrossRefGoogle Scholar
  18. Grom AA (2004) Natural killer cells dysfunction: a common pathway in systemic-onset of juvenile rheumatoid arthritis, macrophage activation syndrome, and hemaphagocytic lymphohistiocytosis? Arthritis Rheum 50:689–698CrossRefGoogle Scholar
  19. Grunewald WA, von Philipsborn H, Just G (1999) Radon-Transfer Haut-Blut-Expirationsluft. In: Deetjen P, Falkenbach A (eds) Radon und Gesundheit–radon and health. Peter Lang, Frankfurt, pp 93–101Google Scholar
  20. Hofmann W (1992) Radon in der physikalischen Therapie—eine Bestandsaufnahme. In: Reiners C, Streffer C, Messerschmidt O (eds) Strahlenrisiko durch Radon. Strahlenschutz in Forschung und Praxis, Bd. 33, Gustav Fischer Verlag, pp 25–34Google Scholar
  21. Hofmann W, Lettner H, Winkler R, Foisner F (1999) Perkutaner Radon-Transfer und Strahlenexposition durch Radonzerfallsprodukte beim Radon-Thermalwasserbad. In: Deetjen P, Falkenbach A (eds) Radon und Gesundheit—radon and health. Peter Lang, Frankfurt, pp 83–91Google Scholar
  22. International Commission on Radiological Protection (ICRP) (2007) The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103, Ann ICRP 37, Nos 2–4Google Scholar
  23. International Commission on Radiological Units (ICRU) (1993) Stopping powers and ranges for protons and alpha particles. ICRU Report 49. ICRU, BethesdaGoogle Scholar
  24. Köstinger C (2006) Beruflicher Strahlenschutz im Gasteiner Heilstollen. In: Wirkungsmechanismen niedriger Strahlendosen—Forschung für Radon-Balneotherapie und Strahlenschutz, Tagungsband zur 4. Biophysikalischen Arbeitstagung 2006, Bad Schlema. RADIZ, Schlema, pp 178–180Google Scholar
  25. Lettner H, Hubmer AK, Rolle R, Steinhäusler F (1996) Occupational exposure to radon in treatment facilities of the radon-spa Badgastein, Austria. Environ Int 22(Suppl. 1):S399–S407CrossRefGoogle Scholar
  26. Lettner H, Hofmann W, Tempfer H, Schober A (2005) Quantification of radon progen deposition on the skin in underwater radon-therapy. In: McLaughlin JPM, Simopoulos SE, Steinhäusler F (eds) The Natural Radiation Environment VII. Elsevier, Amsterdam, pp 1116–1122CrossRefGoogle Scholar
  27. Lettner H, Hofmann W, Tempfer H, Hubmer AK (2006) Nachweiswahrscheinlichkeiten für die Messung der Radonzerfallsprodukte auf der Haut in der Radontherapie. In: Wirkungsmechanismen niedriger Strahlendosen—Forschung für Radon-Balneotherapie und Strahlenschutz, Tagungsband zur 4. Biophysikalischen Arbeitstagung 2006, Bad Schlema. RADIZ, Schlema, pp 66–71Google Scholar
  28. Mitchell SA, Randers-Pehrson G, Brenner DJ, Hall EJ (2004) The bystander response in C3H 10T1/2 cells: the influence of cell-to-cell contact. Radiat Res 161:397–401CrossRefGoogle Scholar
  29. Morawska L, Jamriska M (1996) Deposition of radon progeny on indoor surfaces. J Aerosol Sci 27:305–312CrossRefGoogle Scholar
  30. Nagy K, Berhés I, Kovács T, Kávási N, Somloi J, Bender T (2009) Does balneotherapy with low radon concentration in water influence the endocrine system? A controlled non-randomized pilot study. Radiat Environ Biophys 48:311–315CrossRefGoogle Scholar
  31. Paatero J (2000) Wet deposition of radon-222 progeny in Northern Finland measured with an automatic precipitation gamma analyser. Radiat Prot Dosim 87:273–280Google Scholar
  32. Pohl E (1979) Physikalische Grundlagen der Radontherapie: Organ- und Gewebedosen und ihre Bedeutung für Patient und Personal. Z angew Bäder- und Klimaheilk 26:370–379Google Scholar
  33. Pohl E, Pohl-Rüling J (1977) Dose calculations due to the inhalation of 222Rn, 220Rn and their daughters. Health Phys 32:552–555Google Scholar
  34. Pohl-Rüling J, Pohl E (1969) The radon-222 concentration in the atmospheres of mines as a function of the barometric pressure. Health Phys 16:579–584CrossRefGoogle Scholar
  35. Pratzel H (1985) Grundlagen des perkutanen Stofftransportes in der Pharmako-Physiko-Therapie und Balneotherapie. Habilitationsschrift. Ludwig-Maximilian University, MunichGoogle Scholar
  36. Pratzel HG, Legler B, Heisig S, Klien G (1999) Schmerzstillender Langzeiteffekt durch Radonbäder bei nicht entzündlichen rheumatischen Erkrankungen. In: Deetjen P, Falkenbach A (eds) Radon und Gesundheit—radon and health. Peter Lang, Frankfurt, pp 163–182Google Scholar
  37. Schwarzmeier J, Shehata M (2006) Einfluss einer Heilstollen-Behandlung auf die Zytokin-Konzentration im Blut von Morbus-Bechterew-Patienten. In: Wirkungsmechanismen niedriger Strahlendosen—Forschung für Radon-Balneotherapie und Strahlenschutz, Tagungsband zur 4. Biophysikalischen Arbeitstagung 2006, Bad Schlema. RADIZ, Schlema, pp 88–89Google Scholar
  38. Shehata M, Schwarzmeier JD, Hilgart M, Demirta D, Richter D, Hubmann R, Boeck P, Leiner G, Falkenbach A (2006) Effect of combined spa-exercise therapy on circulating TGF-β1 levels in patients with ankylosing spondylitis. Wien Klin Wochenschr 118:226–272CrossRefGoogle Scholar
  39. Surbeck H (2000) Alpha spectrometry sample preparation using selectively adsorbing thin films. Appl Radiat Isot 53:97–100CrossRefGoogle Scholar
  40. Surbeck H, Andrey JL (1999) Radon in water measurements based on thin film adsorption. In: Hunyadi I, Csige I, Hakl J (eds) Proceedings of the 5th International Conference on Rare Gas Chemistry, Debrecen, Hungary, pp 329–334Google Scholar
  41. Talreja PS, Kasting GB, Kleene N, Pickens WL, Wang TS (2001) Visualization of the lipid barrier and measurement of lipid pathlength in human stratum corneum. AAPS Pharm Sci 3: Article 13. (http://www.pharmsci.org)
  42. Tempfer H, Schober A, Hofmann W, Lettner H, Steger F (2005) Biophysical mechanisms and radiation doses in radon therapy. In: McLaughlin JPM, Simopoulos SE, Steinhäusles F (eds) The Natural Radiation Environment VII. Elsevier, Amsterdam, pp 640–648Google Scholar
  43. Tiepolt C, Grüning T, Franke WG (2002) Renaissance of 224Ra for the treatment of ankylosing spondylitis: clinical experiences. Nucl Med Commun 23:61–66CrossRefGoogle Scholar
  44. van Tubergen A, Landewé R, van der Heijde D, Hidding A, Wolter N, Ascher M, Falkenbach A, Genth E, Goei Thè H, van der Linden S (2001) Combined spa-exercise therapy is effective in patients with ankylosing spondylitis: a randomized controlled trial. Arthritis Care Res 45:430–438CrossRefGoogle Scholar
  45. von Philipsborn H (1997) Efficient adsorption of waterborne short-lived radon decay products by glass fibre filters. Health Phys 72:277–281Google Scholar
  46. von Philipsborn H (2006) Aktivitätsmessungen der auf der Haut deponierten Radonzerfallsprodukte bei der Radonwannentherapie. In: Wirkungsmechanismen niedriger Strahlendosen—Forschung für Radon-Balneotherapie und Strahlenschutz, Tagungsband zur 4. Biophysikalischen Arbeitstagung 2006, Bad Schlema. RADIZ, Schlema, pp 72–77Google Scholar
  47. Zhen YX, Suetake T, Tagami H (1999) Number of cell layers of the stratum corneum in normal skin. Relationship to the anatomical location on the body, age, sex and physical parameters. Arch Dermatol Res 291:555–559CrossRefGoogle Scholar
  48. Ziechmann W (1990) Bodenchemie. Bibliographisches Institut Brockhaus, MannheimGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • H. Tempfer
    • 1
    • 2
  • W. Hofmann
    • 1
  • A. Schober
    • 1
  • H. Lettner
    • 1
  • A. L. Dinu
    • 1
    • 3
  1. 1.Division of Physics and Biophysics, Department of Materials Research and PhysicsUniversity of SalzburgSalzburgAustria
  2. 2.Applied Cell Biology and Developmental Biology UnitParacelsus Private Medical UniversitySalzburgAustria
  3. 3.Faculty of PhysicsBabes-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations