Radiation and Environmental Biophysics

, Volume 48, Issue 3, pp 341–344 | Cite as

Overestimation of Chernobyl consequences: biophysical aspects

Letter to the Editor

References

  1. Balaram P, Mani KS (1994) Low dose radiation—a curse or a boon? Natl Med J India 7:169–172Google Scholar
  2. Borovikova NM, Burlak GF, Berezhnaya TI (1991) Composition of irradiation dose of the population of Kiev after the accident at the Chernobyl atomic power-station. In: Results of assessment of medical consequences of the accident at the Chernobyl atomic power-station. Proceedings of the Scientific and Practical Conference. Kiev, pp 33–34 (in Russian)Google Scholar
  3. Breckow J (2006) LNT is a radiation-protection standard rather than a mechanistic effect model. Radiat Environ Biophys 44:257–260CrossRefGoogle Scholar
  4. Brenner DJ, Sachs RK (2006) Estimating radiation-induced cancer risks at very low doses: rationale for using a linear no-threshold approach. Radiat Environ Biophys 44:253–256CrossRefGoogle Scholar
  5. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, Lubin JH, Preston DL, Preston RJ, Puskin JS, Ron E, Sachs RK, Samet JM, Setlow RB, Zaider M (2003) Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA 100:13761–13766CrossRefADSGoogle Scholar
  6. Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V, Drozdovitch V, Maceika E, Zvonova I, Vlassov O, Bouville A, Goulko G, Hoshi M, Abrosimov A, Anoshko J, Astakhova L, Chekin S, Demidchik E, Galanti R, Ito M, Korobova E, Lushnikov E, Maksioutov M, Masyakin V, Nerovnia A, Parshin V, Parshkov E, Piliptsevich N, Pinchera A, Polyakov S, Shabeka N, Suonio E, Tenet V, Tsyb A, Yamashita S, Williams D (2005) Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst 97:724–732Google Scholar
  7. Cohen BL (2006) Test of the linear-no threshold theory: rationale for procedures. Dose Response 3:369–390CrossRefGoogle Scholar
  8. Friedl AA, Rühm W (2006) LNT—a never ending story. Radiat Environ Biophys 44:241–244CrossRefGoogle Scholar
  9. Ghiassi-nejad M, Mortazavi SM, Cameron JR, Niroomand-rad A, Karam PA (2002) Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health Phys 82:87–93CrossRefGoogle Scholar
  10. IARC Ionizing radiation, Part 2. Some internally deposited radionuclides (2001) In: IARC monographies on the evaluation of carcinogenic risks to humans IARC Press, Lyon, vol 78, pp 342–343Google Scholar
  11. Ivanov VK, Gorski AI, Tsyb AF, Maksioutov MA, Tumanov KA, Vlasov OK (2006) Radiation-epidemiological studies of thyroid cancer incidence among children and adolescents in the Bryansk oblast of Russia after the Chernobyl accident (1991–2001 follow-up period). Radiat Environ Biophys 45:9–16CrossRefGoogle Scholar
  12. Ivanov VK, Chekin SY, Kashcheev VV, Maksioutov MA, Tumanov KA (2008) Risk of thyroid cancer among Chernobyl emergency workers of Russia. Radiat Environ Biophys 47:463–467CrossRefGoogle Scholar
  13. Ivanov VK, Gorsky AI, Kashcheev VV, Maksioutov MA, Tumanov KA (2009) Latent period in induction of radiogenic solid tumors in the cohort of emergency workers. Radiat Environ Biophys 49 (accepted)Google Scholar
  14. Jargin SV (2007a) Re: Involvement of ubiquitination and sumoylation in bladder lesions induced by persistent long-term low dose ionizing radiation in humans. Re: DNA damage repair in bladder urothelium after the Chernobyl accident in Ukraine. Letter to the Editor. J Urol 177:794CrossRefGoogle Scholar
  15. Jargin SV (2007b) Over-estimation of radiation-induced malignancy after the Chernobyl accident. Letter to the Editor. Reply by Authors. Virchows Arch 451:105–108CrossRefGoogle Scholar
  16. Jargin SV (2007c) On the overestimation of Chernobyl NPP accident consequences. Med Radiol Radiat Saf 52(1):73–74 (in Russian)Google Scholar
  17. Jargin SV (2007d) On the overestimation of Chernobyl NPP accident effects: urinary bladder tumors. Med Radiol Radiat Saf 52(4):83–84 (in Russian)Google Scholar
  18. Jargin SV (2008a) Overestimation of medical consequences of the elevated radiation background. Med Radiol Radiat Saf 53(3):17–22 (in Russian)Google Scholar
  19. Jargin SV (2008b) Reevaluation of medical consequences of radiation background transient increase. Abstracts of the Congress “Problems of radiation biology and human safety” (3 July 2008, St. Petersburg). Vestnik Rossiiskoi voenno-meditsinskoi akademii 23(3); Suppl 2 (Part 1):247–248 (in Russian)Google Scholar
  20. Kaiser JC, Jacob P, Blettner M, Vavilov S (2009) Screening effects in risk studies of thyroid cancer after the Chernobyl accident. Radiat Environ Biophys 48:169–179CrossRefGoogle Scholar
  21. Kreuzer M, Kreisheimer M, Kandel M, Schnelzer M, Tschense A, Grosche G (2006) Mortality from cardiovascular diseases in the German uranium miners cohort study, 1946–1998. Radiat Environ Biophys 45:159–166CrossRefGoogle Scholar
  22. Meyers RA (Ed) (1987) Encyclopedia of physical science and technology, vol 11. Academic Press Inc., Orlando, p 579Google Scholar
  23. Mould RF (2000) The Chernobyl record. The definitive history of Chernobyl catastrophe. Institute of Physics, Philadelphia, pp 104, 176–180, 210–221Google Scholar
  24. O’Reilly PH, Shields RA, Testa HJ (1979) Nuclear medicine in urology and nephrology. Butterworth & Co, London, pp 127–137Google Scholar
  25. Okeanov AE, Sosnovskaya EY, Priatkina OP (2004) National cancer registry to assess trends after the Chernobyl accident. Swiss Med Wkly 134:645–649Google Scholar
  26. Prekeges JL (2003) Radiation hormesis, or, could all that radiation be good for us? J Nucl Med Technol 31:11–17Google Scholar
  27. Reuter VE (2004) The urothelial tract: renal pelvis, ureter, urinary bladder, and urethra. In: Mills SE, Carter D, Greenson JK et al (eds) Sternberg’s diagnostic surgical pathology, vol 2, 4th edn. Lippincott, Philadelphia, pp 2035–2082Google Scholar
  28. Romanenko AM, Kinoshita A, Wanibuchi H, Wei M, Zaparin WK, Vinnichenko WI, Vozianov AF, Fukushima S (2006a) Involvement of ubiquitination and sumoylation in bladder lesions induced by persistent long-term low dose ionizing radiation in humans. J Urol 175:739–743CrossRefGoogle Scholar
  29. Romanenko AM, Morimura K, Kinoshita A, Wanibuchi H, Takahashi S, Zaparin WK, Vinnichenko WI, Vozianov AF, Fukushima S (2006b) Upregulation of fibroblast growth factor receptor 3 and epidermal growth factor receptors, in association with Raf-1, in urothelial dysplasia and carcinoma in situ after the Chernobyl accident. Cancer Sci 97:1168–1174CrossRefGoogle Scholar
  30. Romanenko AM, Kinoshita A, Wanibuchi H, Wei M, Zaparin WK, Vinnichenko WI, Vozianov AF, Fukushima S (2007a) Reply by Authors Re: Involvement of ubiquitination and sumoylation in bladder lesions induced by persistent long-term low dose ionizing radiation in humans. Re: DNA damage repair in bladder urothelium after the Chernobyl accident in Ukraine. J Urol 177:794–795Google Scholar
  31. Romanenko A, Morell-Quadreny L, Ramos D, Nepomnyaschiy V, Vozianov A, Llombart-Bosch A (2007b) Response from the authors of “Extracellular matrix alterations in conventional renal cell carcinomas by tissue microarray profiling influenced by the persistent, long-term, low-dose ionizing radiation exposure in humans”. Virchows Arch 451(1):107–108CrossRefGoogle Scholar
  32. Sanders CL, Scott BR (2006) Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis. Dose Response 6(1):53–79CrossRefGoogle Scholar
  33. Shirley VD, Baglin CM, Frank Chu SY, Zipkin J (eds) (1996) Tables of isotopes, 8th edn, vol 2. Wiley, New York, pp A151–A272Google Scholar
  34. Taeger D, Fritsch A, Wiethege T, Johnen G, Eisenmenger A, Wesch H, Ko Y, Stier S, Michael Muller K, Bruning T, Pesch B (2006) Role of exposure to radon and silicosis on the cell type of lung carcinoma in German uranium miners. Cancer 106:881–889CrossRefGoogle Scholar
  35. Tronko MD, Howe GR, Bogdanova TI, Bouville AC, Epstein OV, Brill AB, Likhtarev IA, Fink DJ, Markov VV, Greenebaum E, Olijnyk VA, Masnyk IJ, Shpak VM, McConnell RJ, Tereshchenko VP, Robbins J, Zvinchuk OV, Zablotska LB, Hatch M, Luckyanov NK, Ron E, Thomas TL, Voillequé PG, Beebe GW (2006) A cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: thyroid cancer in Ukraine detected during first screening. J Natl Cancer Inst 98:897–903CrossRefGoogle Scholar
  36. Tubiana M, Aurengo A, Averbeck D, Masse R (2006) Recent reports on the effect of low doses of ionizing radiation and its dose-effect relationship. Radiat Environ Biophys 44:245–251CrossRefGoogle Scholar
  37. UNSCEAR 2000 Report to the General Assembly. Sources and effects of ionizing radiation. UN, New YorkGoogle Scholar
  38. Villeneuve PJ, Lane RSD, Morrison HI (2007) Coronary heart disease mortality and radon exposure in the Newfoundland fluorspar miners’ cohort, 1950–2001. Radiat Environ Biophys 46:291–296CrossRefGoogle Scholar
  39. Wesch H, Eisenmenger A, Müller KM, Wiethege T (2005) Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten-Gesundheitliche Bewertung-Teilprojekt Pathologie. Bonn, Germany: Bundesministerium für Umwelt (serial online). http://www.bmu.de. Accessed 15 Mar 2009
  40. World Health Organization (2006) Guidelines for drinking-water quality, 3rd edn, vol 1. Recommendations. Radiation aspects, World Health Organization. Electronic version for the Web, pp 197–209. http://www.who.int/water_sanitation_health/dwq/gdwq0506_9.pdf. Accessed 18 Mar 2009

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.People’s Friendship University of Russia (Moscow)MoscowRussia

Personalised recommendations