Advertisement

Radiation and Environmental Biophysics

, Volume 48, Issue 2, pp 227–235 | Cite as

Temperature-controlled exposure systems for investigating possible changes of retinal ganglion cell activity in response to high-frequency electromagnetic fields

  • Malte T. Ahlers
  • Thomas Bolz
  • Achim Bahr
  • Josef Ammermüller
Original Paper

Abstract

Two exposure systems were developed for the measurement of retinal ganglion cell responses to light under the influence of pulsed high-frequency electromagnetic fields. Exposure characteristics were determined numerically for the GSM standards (900/1,800 MHz) and the UMTS standard (1,966 MHz) with specific absorption rates, averaged over the region of interest, of 0.02, 0.2, 2 und 20 W kg−1. Extracellular multi- and single unit recordings of light responses from several retinal ganglion cells per retina could be obtained in these exposure systems on a regular basis, using two recording electrodes simultaneously. With appropriate temperature control adjustment, maximal temperature deviations at exposure onset and offset were well below the range of ±0.1°C for all SAR values.

Keywords

Retina Ganglion Cell Retinal Ganglion Cell Ganglion Cell Layer Mouse Retina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Federal Office for Radiation Protection, Germany (StSch 4429) and the Deutsche Forschungsgemeinschaft (FOR 701). We thank Jennifer Trümpler for critically reading the manuscript. M. T. A. would like to thank E. D. Ahlers for the technical support.

References

  1. 1.
    Foster KR, Glaser R (2007) Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines. Health Phys 92:609–620CrossRefGoogle Scholar
  2. 2.
    Leszczynski D, Joenvaara S, Reivinen J, Kuokka R (2002) Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer and blood–brain barrier- related effects. Differentiation 70:120–129CrossRefGoogle Scholar
  3. 3.
    Peinnequin A, Piriou A, Mathieu J, Dabouis V, Sebbah C, Malabiau R, Debouzy JC (2000) Non-thermal effects of continuous 2.45 GHz microwaves on Fas-induced apoptosis in human Jurkat T-cell line. Bioelectrochem Bioenerg 51:157–161Google Scholar
  4. 4.
    Krause MC, Pesonen M, Björnberg CH, Hämäläinen H (2007) Effects of pulsed and continuous wave 902 MHz mobile phone exposure on brain oscillatory activity during cognitive processing. Bioelectromagnetics 28:296–308CrossRefGoogle Scholar
  5. 5.
    Nittby H, Grafström G, Tian DP, Malmgren L, Brun A, Persson PRR, Salford LG, Eberhardt J (2008) Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics 29:219–232CrossRefGoogle Scholar
  6. 6.
    Tattersall JEH, Scott IR, Wood SJ, Nettell JJ, Bevir MK, Wang Z, Somasiri NP, Chen X (2001) Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices. Brain Res 904:43–53CrossRefGoogle Scholar
  7. 7.
    Attwell D (2003) Interaction of low frequency electric fields with the nervous system: The retina as a model system. Radiation Protection Dosimetry 106:341–348Google Scholar
  8. 8.
    Dowling J (1987) The retina: an approachable part of the brain. The Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  9. 9.
    Rodieck RW (1998) The first steps in seeing. Sinauer Associates, SunderlandGoogle Scholar
  10. 10.
    Greschner M, Thiel A, Kretzberg J, Ammermüller J (2006) Complex spike-event pattern of transient ON–OFF retinal ganglion cells. J Neurophysiol 96:2845–2856CrossRefGoogle Scholar
  11. 11.
    Schuderer J, Samaras T, Oesch W, Spät D, Kuster N (2004) High peak SAR exposure unit with tight exposure and environmental control for in vitro experiments at 1,800 MHz. IEEE Trans Microw Theory Tech 52:2057–2066CrossRefGoogle Scholar
  12. 12.
    Schuderer J, Samaras T, Oesch W, Spät D, Kuster N (2004) In vitro exposure system for RF exposure at 900 MHz. IEEE Trans Microw Theory Tech 52:2067–2075CrossRefGoogle Scholar
  13. 13.
    Streckert J (1998) Anwendung feldtheoretischer Verfahren auf Untersuchungen zur Wirkung hochfrequenter elektromagnetischer Felder auf Mensch und Umwelt. Dissertation, Bergische Universität WuppertalGoogle Scholar
  14. 14.
    Bitz A (2003) Numerische Feldberechnung im biologischen Gewebe: Exposition von Personen, Tieren und isolierten biologischen Systemen in elektromagnetischen Feldern. Dissertation, Bergische Universität WuppertalGoogle Scholar
  15. 15.
    Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. Trans ASME 64:759–768Google Scholar
  16. 16.
    Liptak B (1995) Instrument Engineers’ Handbook: Process Control. Radnor (Penn) Chilton Book Company, PennsylvaniaGoogle Scholar
  17. 17.
    Völgyi B, Deans MR, Paul DL, Bloomfield SA (2004) Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 24:11182–11192CrossRefGoogle Scholar
  18. 18.
    Lyubarsky AL, Falsini B, Pennesi ME, Valentini P, Pugh EN Jr (1999) UV- and midwave-sensitive cone-driven retinal responses of the mouse: a possible phenotype for coexpression of cone photopigments. J Neurosci 19:442–455Google Scholar
  19. 19.
    Mbonjo HNM, Streckert J, Bitz A, Hansen V, Glasmachers A, Gencol S, Rozic D (2004) Generic UMTS test signal for RF bioelectromagnetic studies. Bioelectromagnetics 25:415–425CrossRefGoogle Scholar
  20. 20.
    EMPIRE™ user and reference manual. IMST GmbH, 2004Google Scholar
  21. 21.
    Kunz KS, Luebbers RJ (1993) The finite difference time domain method for electromagnetics. CRC Press, Boca RatonGoogle Scholar
  22. 22.
    Taflove A (1995) Computational electrodynamics: the finite difference time domain method. Artech House, BostonzbMATHGoogle Scholar
  23. 23.
    Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propagat AP 14:302–307zbMATHCrossRefADSGoogle Scholar
  24. 24.
    Berenger J-P (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293CrossRefGoogle Scholar
  26. 26.
    Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9:R53–R78zbMATHCrossRefGoogle Scholar
  27. 27.
    Heldmaier G, Neuweiler G (2004) Vergleichende Tierphysiologie, Band 2. Springer, BerlinGoogle Scholar
  28. 28.
    Geiser MH, Bonvin M, Quibel O (2004) Corneal and retinal temperatures under various ambient conditions: a model and experimental approach. Klin Monatsbl Augenheilkd 221:311–314CrossRefGoogle Scholar
  29. 29.
    Schellart NA, Spekreijse H, van den Berg TJ (1974) Influence of temperature on retinal ganglion cell response and ERG of goldfish. J Physiol 238:251–267Google Scholar
  30. 30.
    Dhingra NK, Kao YH, Sterling P, Smith RG (2003) Contrast threshold of a brisk-transient ganglion cell in vitro. J Neurophysiol 89:2360–2369CrossRefGoogle Scholar
  31. 31.
    Aho AC, Donner K, Reuter T (1993) Retinal origins of the temperature effect on absolute visual sensitivity in frogs. J Physiol 463:501–521Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Malte T. Ahlers
    • 1
  • Thomas Bolz
    • 2
  • Achim Bahr
    • 2
  • Josef Ammermüller
    • 1
  1. 1.Department of Mathematics and Natural SciencesCarl-von-Ossietzky University OldenburgOldenburgGermany
  2. 2.IMST GmbHKamp-LintfortGermany

Personalised recommendations