Time- and space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation

  • Maximilian S. Kreipl
  • Werner FriedlandEmail author
  • Herwig G. Paretzke
Original Paper


Time-dependent yields of the most important products of water radiolysis \( {\text{e}}_{\rm {aq}}^-\), OH, H, H3O+, H2, OH and H2O2 have been calculated for 60Co-photons, electrons, protons, helium- and carbon-ions incident onto water. G values have been evaluated for the interval from 1 ps to 1 μs after initial energy deposition as a function of time, as well as after 1 ns and at the end of the chemical stage as a function of linear energy transfer (LET), covering an interval from approximately 0.2 up to 750 keV/μm by means of different particle types. In this work, the modules of the biophysical Monte Carlo track structure code PARTRAC dealing with the simulation of prechemical and chemical stages have been improved to extend interaction data sets for heavier ions. Among other newly selected parameter values, the thermalisation distance between the point of generation and hydration of subexcitation electrons has been adopted from recent data in the literature. As far as data from the literature are available, good agreement has been found with the calculated time- and LET-dependent yields in this work, supporting the selection of the revised parameter values.


Linear Energy Transfer Radiolytic Product Track Structure Hydrated Electron Inverse Laplace Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has partially been supported by the EU (RISC-RAD, Contract no. FI6R-CT-2003-508842). This work also contributes to problems dealt within the excellence cluster ‘Munich-Centre for Advanced Photonics’ (MAP).


  1. 1.
    Paretzke HG (1987) Radiation track structure theory. In: Freeman GR (ed) Kinetics of nonhomogeneous processes. Wiley, New York, pp 89—170Google Scholar
  2. 2.
    Friedland W, Jacob P, Paretzke HG, Merzagora M, Ottolenghi A (1999) Simulation of DNA fragment distributions after irradiation with photons. Radiat Environ Biophys 38:39–47CrossRefGoogle Scholar
  3. 3.
    Dingfelder M, Hantke D, Inokuti M, Paretzke HG (1998) Electron inelastic-scattering cross sections in liquid water. Radiat Phys Chem 53:1–18CrossRefGoogle Scholar
  4. 4.
    Dingfelder M, Ritchie RH, Turner JE, Friedland W, Paretzke HG, Hamm RN (2008) Comparisons of calculations with PARTRAC and NOREC: transport of electrons in liquid water. Radiat Res 169:584–594CrossRefGoogle Scholar
  5. 5.
    Dingfelder M, Inokuti M, Paretzke HG (2000) Inelastic-collision cross sections of liquid water for interaction of energetic protons. Radiat Phys Chem 59:255–275CrossRefADSGoogle Scholar
  6. 6.
    Dingfelder M, Jorjishvili IG, Gersh JA, Toburen LH (2006) Heavy ion track structure simulations in liquid water at relativistic energies. Radiat Prot Dosimetry 122:26–27CrossRefGoogle Scholar
  7. 7.
    Friedland W, Jacob P, Bernhardt P, Paretzke HG, Dingfelder M (2003) Simulation of DNA damage after proton irradiation. Radiat Res 159: 401–410CrossRefGoogle Scholar
  8. 8.
    Friedland W, Dingfelder M, Jacob P, Paretzke HG (2005) Calculated DNA double-strand break and fragmentation yields after irradiation with He ions. Radiat Phys Chem 72:279–286CrossRefADSGoogle Scholar
  9. 9.
    Friedland W, Jacob P, Paretzke HG, Ottolenghi A, Ballarini F, Liotta M (2006) Simulation of light ion induced DNA damage patterns. Radiat Prot Dosimetry 122:116–120CrossRefGoogle Scholar
  10. 10.
    Ballarini F, Biaggi M, Merzagora M, Ottolenghi A, Dingfelder M, Friedland W, Jacob P, Paretzke HG (2000) Stochastic aspects and uncertainties in the prechemical and chemical stages of electron tracks in liquid water: a quantitative analysis based on Monte Carlo simulations. Radiat Environ Biophys 39:179–188CrossRefGoogle Scholar
  11. 11.
    Valota A, Ballarini F, Friedland W, Jacob P, Ottolenghi A, Paretzke HG (2003) Modelling study on the protective role of OH radical scavengers and DNA higher-order structures in induction of single- and double-strand breaks by gamma-radiation. Int J Radiat Biol 79:643–653CrossRefGoogle Scholar
  12. 12.
    Friedland W, Paretzke HG, Ballarini F, Ottolenghi A, Kreth G, Cremer C (2008) First steps towards systems radiation biology studies concerned with DNA and chromosome structure within living cells. Radiat Environ Biophys 47:49–61CrossRefGoogle Scholar
  13. 13.
    Cullen DE, Hubbell JH, Kissel L (1997) EPDL97: the evaluated photon data library, ’97 version. Lawrence Livermore National Laboratory UCRL-50400, vol 6, Rev. 5Google Scholar
  14. 14.
    Ogura H, Hamill WH (1973) Positive hole migration in pulse-irradiated water and heavy water. J Phys Chem 77:2952–2954CrossRefGoogle Scholar
  15. 15.
    Tomita H, Kai M, Kusama T, Ito A (1997) Monte Carlo simulation of physicochemical processes of liquid water radiolysis. The effects of dissolved oxygen and OH scavenger. Radiat Environ Biophys 36:105–116CrossRefGoogle Scholar
  16. 16.
    Cobut V, Frongillo Y, Patau JP, Goulet T, Fraser MJ, Jay-Gerin JP (1998) Monte Carlo simulation of fast electron and proton tracks in liquid water. I. Physical and physicochemical aspects. Radiat Phys Chem 51:229–243CrossRefADSGoogle Scholar
  17. 17.
    Hill A, Smith FA (1994) Calculation of initial and primary yields in the radiolysis of water. Radiat Phys Chem 43:265–280CrossRefADSGoogle Scholar
  18. 18.
    Turner JE, Hamm RN, Wright HA, Ritchie RH, Magee JL, Chatterjee A, Bolch WE (1988) Studies to link the basic radiation physics and chemistry of liquid water. Radiat Phys Chem 32:503–510Google Scholar
  19. 19.
    Dayashankar, Prasad MA (1995) Effect ion migration on recombination of subexcitation electrons in solid water. Radiat Phys Chem 45:147–149Google Scholar
  20. 20.
    Burns WG, Marsh WR (1981) Radiation chemistry of high-temperature (300–410°C) water. Part 1. Reducing products from gamma radiolysis. J Chem Soc Faraday Trans 1 77:197–215CrossRefGoogle Scholar
  21. 21.
    Michaud M, Sanche L (1987) Total cross sections for slow-electron (1–20 eV) scattering in solid H2O. Phys Rev A 36:4672–4683CrossRefADSGoogle Scholar
  22. 22.
    Michaud M, Sanche L (1987) Absolute vibrational excitation cross sections for slow-electron (1–18 eV) scattering in solid H2O. Phys Rev A 36:4684–4699CrossRefADSGoogle Scholar
  23. 23.
    Goulet T, Jay-Gerin JP (1988) Thermalization distances and times for subexcitation electrons in solid water. J Phys Chem 92:6871–6874CrossRefGoogle Scholar
  24. 24.
    Kevan L (1981) Geometrical structure of solvated electrons. Radiat Phys Chem 17:413–423ADSGoogle Scholar
  25. 25.
    Meesungnoen J, Jay-Gerin JP, Filali-Mouhim A, Mankhetkorn S (2002) Low-energy electron penetration range in liquid water. Radiat Res 158:657–660CrossRefGoogle Scholar
  26. 26.
    Terrissol M, Beaudre A (1990) Simulation of space and time evolution of radiolytic species induced by electrons in water. Radiat Prot Dosimetry 31:171–175Google Scholar
  27. 27.
    Goulet T, Patau JP, Jay-Gerin JP (1990) Influence of the parent cation on the thermalization of subexcitation electrons in solid water. J Phys Chem 94:7312–7316CrossRefGoogle Scholar
  28. 28.
    Berg HC (1992) Random walks in biology. Princeton University Press, PrincetonGoogle Scholar
  29. 29.
    Frongillo Y, Goulet T, Fraser MJ, Cobut V, Patau JP, Jay-Gerin JP (1998) Monte Carlo simulation of fast electron and proton tracks in liquid water. II. Nonhomogeneous chemistry. Radiat Phys Chem 51:245–254CrossRefADSGoogle Scholar
  30. 30.
    Noyes RM (1961) Effects of diffusion rate on chemical kinetics. In: Porter G, Stevens B (eds) Progress in reaction kinetics, vol 1. Pergamon, New York, pp 129–160Google Scholar
  31. 31.
    Buxton GV, Greenstock CL, Helman WP , Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data 17:513–886ADSGoogle Scholar
  32. 32.
    Hamm RN, Turner JE, Stabin MG (1998) Monte Carlo simulation of diffusion and reaction in water radiolysis—a study of reactant ‘jump through’ and jump distances. Radiat Environ Biophys 36:229–234CrossRefGoogle Scholar
  33. 33.
    Bisby RH, Cundall RB, Sims HE, Burns WG (1977) Linear energy transfer (LET) effects in the radiation-induced inactivation of papain. Faraday Discuss Chem Soc 63:237–247CrossRefGoogle Scholar
  34. 34.
    Trumbore CN, Short DR, Fanning JE, Olson JH (1978) Effects of pulse dose on hydrated electron decay kinetics in the pulse radiolysis of water. A computer modeling study. J Phys Chem 82:2762–2767CrossRefGoogle Scholar
  35. 35.
    Naleway CA, Sauer MC Jr, Jonah CD, Schmidt KH (1979) Theoretical analysis of the LET dependence of transient yields observed in pulse radiolysis with ion beams. Radiat Res 77:47–61CrossRefGoogle Scholar
  36. 36.
    Turner JE, Magee JL, Wright HA, Chatterjee A, Hamm RN, Ritchie RH (1983) Physical and chemical development of electron tracks in liquid water. Radiat Res 96:437–449CrossRefGoogle Scholar
  37. 37.
    Kaplan IG, Miterev AM, Sukhonosov VYA (1990) Simulation of the primary stage of liquid water radiolysis. Radiat Phys Chem 36:493–498Google Scholar
  38. 38.
    Pimblott SM, LaVerne JA (1994) Diffusion-kinetic theories for LET effects on the radiolysis of water. J Phys Chem 98:6136–6143CrossRefGoogle Scholar
  39. 39.
    Pimblott SM, LaVerne JA (1997) Stochastic simulation of the electron radiolysis of water and aqueous solutions. J Phys Chem 101:5828–5838Google Scholar
  40. 40.
    LaVerne JA (2000) OH radicals and oxidizing products in the gamma radiolysis of water. Radiat Res 153:196–200CrossRefGoogle Scholar
  41. 41.
    Jonah CD, Hart EJ, Matheson MS (1973) Yields and decay of the hydrated electron at times greater than 200 picoseconds. J Phys Chem 77: 1838–1843CrossRefGoogle Scholar
  42. 42.
    Jonah CD, Matheson MS, Miller JR, Hart EJ (1976) Yield and decay of the hydrated electron from 100 ps to 3 ns. J Phys Chem 80:1267–1270CrossRefGoogle Scholar
  43. 43.
    Jonah CD, Miller JR (1977) Yield and decay of the OH radical from 200 ps to 3 ns. J Phys Chem 81:1974–1976CrossRefGoogle Scholar
  44. 44.
    Buxton GV (1972) Nanosecond pulse radiolysis of aqueous solutions containing proton and hydroxyl radical scavengers. Proc R Soc Lond A Math Phys Sci 328:9–21ADSCrossRefGoogle Scholar
  45. 45.
    Shiraishi H, Katsumura Y, Hiroishi D, Ishigure K, Washio M (1988) Pulse-radiolysis study on the yield of hydrated electron at elevated temperatures. J Phys Chem 92:3011–3017CrossRefGoogle Scholar
  46. 46.
    LaVerne JA, Pimblott SM (1991) Scavenger and time dependences of radicals and molecular products in the electron radiolysis of water: examination of experiments and models. J Phys Chem 95:3196–3206CrossRefGoogle Scholar
  47. 47.
    Stabin MG, Hamm RN, Turner JE, Bolch WE (1994) Track structure simulation and determination of product yields in the electron radiolysis of water containing various solutes. Radiat Prot Dosimetry 52: 255–258Google Scholar
  48. 48.
    Elliot AJ, Chenier MP, Ouellette DC (1993) Temperature dependence of g values for H2O and D2O irradiated with low linear energy transfer radiation. J Chem Soc Faraday Trans 89:1193–1197CrossRefGoogle Scholar
  49. 49.
    Appleby A, Schwarz HA (1969) Radical and molecular yields in water irradiated by γ rays and heavy ions. J Phys Chem 73:1937–1941CrossRefGoogle Scholar
  50. 50.
    Meesungnoen J, Benrahmoune M, Filali-Mouhim A, Mankhetkorn S, Jay-Gerin JP (2001) Monte Carlo calculation of the primary radical and molecular yields of liquid water radiolysis in the linear energy transfer range 0.3–6.5 keV/μm: application to 137Cs gamma rays. Radiat Res 155:269–278CrossRefGoogle Scholar
  51. 51.
    McCracken DR, Tsang KT, Laughton PJ (1998) Aspects of the physics and chemistry of water radiolysis by fast neutrons and fast electrons in nuclear reactors, Report AECL-11895. Atomic Energy of Canada Ltd, Chalk RiverGoogle Scholar
  52. 52.
    Katz R (1970) RBE, LET and z/βα. Health Phys 18:170Google Scholar
  53. 53.
    Burns WG, Sims HE (1981) Effect of radiation type in water radiolysis. J Chem Soc Faraday Trans 77:2803–2813CrossRefGoogle Scholar
  54. 54.
    Wasselin-Trupin V, Baldacchino G, Bouffard S, Hickel B (2002) Hydrogen peroxide yields in water radiolysis by high-energy ion beams at constant LET. Radiat Phys Chem 65:53–61CrossRefADSGoogle Scholar
  55. 55.
    Pastina B, LaVerne JA (1999) Hydrogen peroxide production in the radiolysis of water with heavy ions. J Phys Chem A 103:1592–1597CrossRefGoogle Scholar
  56. 56.
    Meesungnoen J, Jay-Gerin JP (2005) High-LET radiolysis of liquid water with 1H+, 4He2+, 12C6+, and 20Ne9+ ions: effects of multiple ionization. J Phys Chem A 109: 6406–6419CrossRefGoogle Scholar
  57. 57.
    Liljequist D (2008) A study of errors in trajectory simulation with relevance for 0.2–50 eV electrons in liquid water. Radiat Phys Chem 77:835–853CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Maximilian S. Kreipl
    • 1
  • Werner Friedland
    • 1
    Email author
  • Herwig G. Paretzke
    • 1
  1. 1.Institute of Radiation ProtectionHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany

Personalised recommendations