Radiation and Environmental Biophysics

, Volume 47, Issue 4, pp 491–514 | Cite as

Inter-comparison of models to estimate radionuclide activity concentrations in non-human biota

  • N. A. BeresfordEmail author
  • C. L. Barnett
  • J. E. Brown
  • J. J. Cheng
  • D. Copplestone
  • V. Filistovic
  • A. Hosseini
  • B. J. Howard
  • S. R. Jones
  • S. Kamboj
  • A. Kryshev
  • T. Nedveckaite
  • G. Olyslaegers
  • R. Saxén
  • T. Sazykina
  • J. Vives i Batlle
  • S. Vives-Lynch
  • T. Yankovich
  • C. Yu
Original Paper


A number of models have recently been, or are currently being, developed to enable the assessment of radiation doses from ionising radiation to non-human species. A key component of these models is the ability to predict whole-organism activity concentrations in a wide range of wildlife. In this paper, we compare the whole-organism activity concentrations predicted by eight models participating within the IAEA Environmental Modelling for Radiation Safety programme for a range of radionuclides to terrestrial and freshwater organisms. In many instances, there was considerable variation, ranging over orders of magnitude, between the predictions of the different models. Reasons for this variability (including methodology, data source and data availability) are identified and discussed. The active participation of groups responsible for the development of key models within this exercise is a useful step forward in providing the transparency in methodology and data provenance required for models which are either currently being used for regulatory purposes or which may be used in the future. The work reported in this paper, and supported by other findings, demonstrates that the largest contribution to variability between model predictions is the parameterisation of their transfer components. There is a clear need to focus efforts and provide authoritative compilations of those data which are available.


Activity Concentration International Atomic Energy Agency High Prediction Herbivorous Mammal Freshwater Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ICRP (2003) A framework for assessing the impact of ionising radiation on non-human species. ICRP Publication 91, Annals of the ICRP 33 (3). Pergamon Press, OxfordGoogle Scholar
  2. 2.
    ICRP (2007) Recommendations of the International Commission on Radiological Protection. ICRP Publication 103 Annals of the ICRP 37 (2–3). Pergamon Press, OxfordGoogle Scholar
  3. 3.
    IAEA (2005) Protection of the environment from the effects of ionizing radiation.In: Proceedings of an international conference. Stockholm, 6–10 October 2003. International Atomic Energy Authority, ViennaGoogle Scholar
  4. 4.
    USDOE (2002) A graded approach for evaluating radiation doses to aquatic and terrestrial biota. Technical Standard DOE-STD-1153-2002. United States Department of the Environment, Washington DCGoogle Scholar
  5. 5.
    Environment Canada and Health Canada (2003) Canadian Environmental Protection Act 1999. Priority substances list assessment report. Releases of radionuclides from nuclear facilities (Impact on non-human biota). Environment Canada and Health Canada, OttawaGoogle Scholar
  6. 6.
    Copplestone D, Bielby S, Jones SR, Patton D, Daniel P, Gize I (2001) Impact assessment of ionising radiation on wildlife. R&D Publication 128. Environment Agency, BristolGoogle Scholar
  7. 7.
    Brown J, Thørring H, Hosseini A (Eds) (2003) The ‘EPIC’ impact assessment framework. Deliverable for the EPIC Project (ICA2-CT-2000-10032). Norwegian Radiation Protection Authority, Østerås.
  8. 8.
    Larsson C-M, Jones C, Gomez-Ros JM, Zinger I (eds) (2004) Framework for assessment of environmental impact of ionising radiation in major European ecosystems. Deliverable 6 for the FASSET Project (FIGE-CT-2000-00102).
  9. 9.
    Beresford NA, Brown J, Copplestone D, Garnier-Laplace J, Howard BJ, Larsson C-M, Oughton D, Pröhl G, Zinger I (2007) D-ERICA: An Integrated Approach to the assessment and management of environmental risks from ionising radiation. Deliverable of the ERICA project (FI6R-CT-2004-508847). Swedish Scientific Institute, Stockholm.
  10. 10.
    Copplestone D, Wood MD, Merrill PC, Allott R, Jones SR, Vives J, Beresford NA, Zinger I (2005) Impact assessment of ionising radiation on wildlife: meeting the requirements of the EU birds and habitat directives. Radioprotection 40:S893–S898CrossRefGoogle Scholar
  11. 11.
    Beresford NA, Balonov M, Beaugelin-Seiller K, Brown J, Copplestone D, Hingston JL, Horyna, J, Hosseini A, Howard BJ, Kamboj S, Nedveckaite T, Olyslaegers G, Sazykina T, Vives i Batlle J, Yankovich TL, Yu C (2008) An international comparison of models and approaches for the estimation of the radiological exposure of non-human biota. Appl Radiat Isot. doi: 10.1016/j.apradiso.2008.04.009
  12. 12.
    Beresford NA, Howard BJ, Barnett CL (2007) Application of ERICA Integrated Approach at case study sites. Deliverable 10 of the ERICA project (FI6R-CT-2004-508847). SSI, Stockholm.
  13. 13.
    Vives i Batlle J, Balonov M, Beaugelin-Seiller K, Beresford NA, Brown J, Cheng J-J, Copplestone D, Doi M, Filistovic V, Golikov V, Horyna J, Hosseini A, Howard BJ, Jones SR, Kamboj S, Kryshev A, Nedveckaite T, Olyslaegers G, Pröhl G, Sazykina T, Ulanovsky A, Vives Lynch S, Yankovich T, Yu C (2007) Inter-comparison of unweighted absorbed dose rates for non-human biota. Rad Environ Biophys 46:349–373CrossRefGoogle Scholar
  14. 14.
    Sazykina TG (2000) ECOMOD - An ecological approach to radioecological modelling. J Environ Radioact 50:207–220CrossRefGoogle Scholar
  15. 15.
    Copplestone D, Wood MD, Bielby S, Jones SR, Vives J, Beresford NA (2003) Habitat regulations for Stage 3 assessments: radioactive substances authorisations. R&D Technical Report P3-101/SP1a. Environment Agency, BristolGoogle Scholar
  16. 16.
    Brown J, Strand P, Hosseini A, Borretzen P (Eds) (2003) Handbook for assessment of the exposure of biota to ionising radiation from radionuclides in the Environment. Deliverable 5 for the FASSET Project (FIGE-CT-2000-00102). Norwegian Radiation Protection Authority, Østerås.
  17. 17.
    Avila R, Beresford NA, Agüero A, Broed R, Brown J, Iospje M, Robles B, Suañez A (2004) Study of the uncertainty in estimation of the exposure of non-human biota to ionizing radiation. J Radiol Prot 24:A105–A122CrossRefGoogle Scholar
  18. 18.
    Nedveckaite T, Filistovic V, Marciulioniene D, Kiponas D, Remeikis V, Beresford NA (2007) Exposure of biota in the cooling pond of Ignalina NPP: hydrophytes. J Environ Radioact 97:137–147CrossRefGoogle Scholar
  19. 19.
    Higley KA, Domotor SL, Antonio EJ (2003) A kinetic–allometric approach to predicting tissue radionuclide concentrations for biota. J Environ Radioact 66:61–74CrossRefGoogle Scholar
  20. 20.
    Garten CT Jr, Dahlman RC (1978) Plutonium in biota from an east Tennessee floodplain forest. Health Phys 34:705–712CrossRefGoogle Scholar
  21. 21.
    IAEA (1994) Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Technical Report Series 364. International Atomic Energy Authority, ViennaGoogle Scholar
  22. 22.
    Linsalata P, Morse R, Ford H, Eisenbud M, Franca EP, de Castro MB, Lobao N, Sachett I, Carlos M (1989) Transport pathways of Th, U, Ra and La from soil to cattle tissue. J Environ Radioact 10:15–140CrossRefGoogle Scholar
  23. 23.
    Martínez-Aguirre A, García-Orellana I, Gracia-León M (1997) Transfer of natural radionuclides from soils to plant in a marsh enhanced by the operation of non-nuclear industries. J Environ Radioact 35:149–171CrossRefGoogle Scholar
  24. 24.
    Radhakrishna AP, Somasekharappa HM, Narayana Y, Siddappa K (1996) Distribution of some natural and artificial radionuclides in Mangalore environment of south India. J Environ Radioact 30:31–54CrossRefGoogle Scholar
  25. 25.
    Sample BE, Aplin MS, Efroymson RA, Suter GW II, Welsh CJE (1997) Methods and tools for estimation of the exposure of terrestrial wildlife to contaminants. TN. ORNL/TM-13391. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  26. 26.
    Santchi PH, Honeyman BD (1989) Radionuclides in aquatic environments. Rad Phys Chem 34:213–240Google Scholar
  27. 27.
    Sweeck L, Zeevaert Th, Volckaert G, Vandecasteele C (1998) Geologische berging van geconditioneerd langlevend hoog radioactief afval—Biosfeerparameters in performantie- en veiligheidsanalyse Deel II. Report R-3194. SCK·CEN, BelgiumGoogle Scholar
  28. 28.
    Nagy KA (1987) Field metabolic rate and food requirement scaling in mammals and birds. Ecol Monogr 57:111–112CrossRefGoogle Scholar
  29. 29.
    ANL (2005) Polonium human health fact sheet. The Environmental Assessment Division of Argonne National Laboratory.
  30. 30.
    ANL (2005) Radium human health fact sheet. The Environmental Assessment Division of Argonne National Laboratory.
  31. 31.
    ANL (2005) Technetium human health fact sheet. The Environmental Assessment Division of Argonne National Laboratory.
  32. 32.
    Beresford NA, Mayes RW, Cooke AI, Barnett CL, Howard BJ, Lamb CS, Naylor GPL (2000) The importance of source-dependent bioavailability in determining the transfer of ingested radionuclides to ruminant-derived food products. Environ Sci Technol 34:4455–4462CrossRefGoogle Scholar
  33. 33.
    Coughtrey PJ, Thorne MC (1983) Radionuclide distribution and transport in terrestrial and aquatic ecosystems, vol 1. A.A. Balkema, RotterdamGoogle Scholar
  34. 34.
    Coughtrey PJ, Thorne MC (1983) Radionuclide distribution and transport in terrestrial and aquatic environments, vol 2. A.A. Balkema, RotterdamGoogle Scholar
  35. 35.
    Coughtrey PJ, Jackson D, Jones CH, Kane P, Thorne MC (1984) Radionuclide distribution and transport in terrestrial and aquatic ecosystems, vol 4. A.A. Balkema, RotterdamGoogle Scholar
  36. 36.
    ICRP (1979) Limits for intakes of radionuclides by workers. ICRP Publication 30, Part 1. Annals of the ICRP 2 (3/4). Pergamon Press, OxfordGoogle Scholar
  37. 37.
    ICRP (1995) Age-dependent doses to members of the public from intake of radionuclides, Part 3. Ingestion dose coefficients. ICRP Publication 69, Annals of the ICRP 25. Pergamon Press, OxfordGoogle Scholar
  38. 38.
    Taylor DM (1981) The absorption of plutonium and related elements from the gastrointestinal tract: a re-appraisal. Institute for Genetics and Toxicology, KarlsruheGoogle Scholar
  39. 39.
    ICRP (1973) Alkaline earth metabolism in adult man. ICRP Publication 20. Pergamon Press, OxfordGoogle Scholar
  40. 40.
    Beresford NA, Barnett CL, Howard BJ, Scott WA, Brown J Copplestone D (2008) Derivation of transfer parameters for use within the ERICA Tool and the default concentration ratios for terrestrial biota. J Environ Radioact. doi: 10.1016/j.jenvrad.2008.01.020
  41. 41.
    Beresford NA, Howard BJ (2005) Application of the FASSET framework at case study sites. Deliverable 9 of the ERICA project (FI6R-CT-2004-508847). Swedish Scientific Institute, Stockholm.
  42. 42.
    Thompson M, Wood R (1993) International harmonized protocol for proficiency testing of (chemical) analytical laboratories. J Pure Appl Chem 65:2123–2144CrossRefGoogle Scholar
  43. 43.
    Lawn RE, Thompson M, Walker RF (1997) Proficiency testing in analytical chemistry. The Royal Society of Chemistry, London, p 110Google Scholar
  44. 44.
    ISO (1997) Proficiency testing by inter-laboratory comparisons, part 1. Development and operation of proficiency testing schemes. ISO/IEC Guide 43-1. International Organisation for Standardization, GenevaGoogle Scholar
  45. 45.
    Copplestone D (1996) The food chain transfer of radionuclides through semi-natural habitats. PhD thesis. University of Liverpool, p 369Google Scholar
  46. 46.
    Beresford NA, Barnett CL, Beaugelin-Seiller K, Brown JE, Cheng J-J, Copplestone D, Gaschak S, Hingston JL, Horyna J, Hosseini A, Howard BJ, Kamboj S, Kryshev A, Nedveckaite T, Olyslaegers G, Sazykina T, Smith JT, Telleria D, Vives i Batlle J, Yankovich TL, Heling R, Wood MD, Yu C (2008) Findings and recommendations from an international comparison of models and approaches for the estimation of radiological exposure to non-human biota. Radioprotection, (submitted)Google Scholar
  47. 47.
    Higley KA, Domotor SL, Antonio EJ, Kocher DC (2003) Derivation of a screening methodology for evaluating radiation dose to aquatic and terrestrial biota. J Environ Radioact 66:41–59CrossRefGoogle Scholar
  48. 48.
    Beresford NA, Broadley MR, Howard BJ, Barnett CL, White PJ (2004) Estimating radionuclide transfer to wild species—data requirements and availability for terrestrial ecosystems. J Radiol Prot 24:A89–A103CrossRefGoogle Scholar
  49. 49.
    Strand P, Brown J, Jølle T (eds) (2008) Proceedings of the international conference on radioecology & environmental radioactivity (in four volumes), 15–20 June 2008, Bergen Norway. NRPA, ØsteråsGoogle Scholar
  50. 50.
    Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Pröhl G, Ulanovsky AJ (2008) The ERICA assessment tool. J Environ Radioact. doi: 10.1016/j.jenvrad.2008.01.008
  51. 51.
    Hosseini A, Thørring H, Brown JE Saxen R, Ilus E (2008) Transfer of radionuclides in aquatic ecosystems—default concentration ratios for aquatic biota in the Erica Tool. J Environ Radioact. doi: 10.1016/j.jenvrad.2008.01.012

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • N. A. Beresford
    • 1
    Email author
  • C. L. Barnett
    • 1
  • J. E. Brown
    • 2
  • J. J. Cheng
    • 3
  • D. Copplestone
    • 4
  • V. Filistovic
    • 5
  • A. Hosseini
    • 2
  • B. J. Howard
    • 1
  • S. R. Jones
    • 6
  • S. Kamboj
    • 3
  • A. Kryshev
    • 7
  • T. Nedveckaite
    • 5
  • G. Olyslaegers
    • 8
  • R. Saxén
    • 9
  • T. Sazykina
    • 7
  • J. Vives i Batlle
    • 6
  • S. Vives-Lynch
    • 6
  • T. Yankovich
    • 10
    • 11
  • C. Yu
    • 3
  1. 1.Centre for Ecology and Hydrology Lancaster, Lancaster Environment CentreLancasterUK
  2. 2.Norwegian Radiation Protection AuthorityØsteråsNorway
  3. 3.Argonne National LaboratoryArgonneUSA
  4. 4.England and Wales Environment AgencyWarringtonUK
  5. 5.Institute of PhysicsVilniusLithuania
  6. 6.Westlakes Research InstituteMoor RowUK
  7. 7.SPA TyphoonObninskRussia
  8. 8.SCK·CENMolBelgium
  9. 9.Radiation and Nuclear Safety Authority (STUK)HelsinkiFinland
  10. 10.Atomic Energy Canada LimitedChalk RiverCanada
  11. 11.EcoMetrix IncorporatedMissisaugaCanada

Personalised recommendations