Advertisement

Timescales of magmatic processes during the eruptive cycle 2014–2015 at Piton de la Fournaise, La Réunion, obtained from Mg–Fe diffusion modelling in olivine

  • Caren SundermeyerEmail author
  • Andrea Di Muro
  • Boris Gordeychik
  • Gerhard Wörner
Original Paper
  • 146 Downloads

Abstract

Piton de la Fournaise started a new eruptive cycle in June 2014 after 41 months of quiescence. The small eruptions in June, February 2015, May, and July produced evolved basalts, whereas magmas of the large August–November eruption became increasingly mafic. Compositional zoning of olivine crystals was analysed to model diffusion times representing residence times between magma mixing and eruption. These correlate to the geophysical and geochemical records. Olivine crystals of various core compositions (Fo73.2–85.1) were periodically reactivated days to 7 months prior to June 2014 and February 2015 eruptions and during July and August–November by different magmas (in equilibrium with Fo77.7–84.5). June 2014, February, and May eruptions were fed from the top of the reservoir as shown by the eruption of evolved magmas and olivine crystals with short diffusion times. At the same time, olivine crystals were reactivated probably from mush by recharging basalt during the formation of hybrid magmas (in equilibrium with Fo80.1–84.5) in the central reservoir. These hybrids remained unerupted (> 235 days) until October 2015. However, products of July 2015 eruption bear already olivine crystals with long diffusion times, which is a strong similarity to those of the August–November eruption 2015. This eruption marks the transition between earlier small eruptions fed from shallow levels to those fed from the central reservoir. Such linking of magma mixing and activation processes and geophysical signals helps for a better understanding of the process and timescale of eruption at Piton de la Fournaise and basaltic hotspot-related magma systems in general.

Keywords

Olivine Zonation Diffusion Timescales Magma mixing 

Notes

Acknowledgements

This research was funded by RFBR grant # 16-55-12040 to B.G. and partially supported by DFG grant No Wo 362/51-1 to G.W. A.D. was funded by ANR project “STRAP” ANR-14-CE03-0004-STRAP. The fieldwork was supported by the Geo-Gender-Chancenfonds of the Georg-August-University Göttingen. We thank A. Kronz for the support at the electron microprobe and K. Techmer for the assistance at the scanning electron microscope. The team of the OVPF collected the samples analysed in this study. Many thanks to R. Abart, and an anonymous reviewer, as well as editor C. Ballhaus for the reviews and constructive comments, which helped to improve the manuscript.

Supplementary material

410_2019_1642_MOESM1_ESM.xlsx (641 kb)
Supplementary material 1 (XLSX 641 kb)
410_2019_1642_MOESM2_ESM.xlsx (54 kb)
Supplementary material 2 (XLSX 54 kb)
410_2019_1642_MOESM3_ESM.xlsx (31 kb)
Supplementary material 3 (XLSX 30 kb)

References

  1. Albarède F, Luais B, Fitton G, Semet M, Kaminski E, Upton BGJ, Bachèlery P, Cheminée JL (1997) The geochemical regimes of Piton de la Fournaise volcano (Réunion) during the last 530 000 years. J Petrol 38(2):171–201.  https://doi.org/10.1093/petroj/38.2.171 CrossRefGoogle Scholar
  2. Albert H, Costa F, DiMuro A, Herrin J, Métrich N, Deloule E (2019) Magma interactions, crystal mush formation, timescales, and unrest during caldera collapse and lateral eruption at ocean island basaltic volcanoes (Piton de la Fournaise, La Réunion). Earth Planet Sci Lett 515:187–199.  https://doi.org/10.1016/j.epsl.2019.02.035 CrossRefGoogle Scholar
  3. Boivin P, Bachèlery P (2009) Petrology of 1977 to 1998 eruptions of Piton de la Fournaise, La Réunion Island. J Volcanol Geotherm Res 184(1):109–125.  https://doi.org/10.1016/j.jvolgeores.2009.01.012 CrossRefGoogle Scholar
  4. Boudoire G, Di Muro A, Liuzzo M, Ferrazzini V, Peltier A, Gurrieri S, Michon L, Giudice G, Kowalski P, Boissier P (2017) New perspectives on volcano monitoring in a tropical environment: continuous measurements of soil CO2 flux at Piton de la Fournaise (La Réunion Island, France). Geophys Res Lett 44(16):8244–8253.  https://doi.org/10.1002/2017GL074237 CrossRefGoogle Scholar
  5. Boudoire G, Brugier Y-A, Di Muro A, Wörner G, Arienzo I, Metrich M, Zanon V, Braukmüller N, Kronz A, Le Moigne Y, Michon L (2019) Eruptive activity on the western flank of Piton de la Fournaise (La Réunion Island, Indian Ocean): insights on magma transfer, storage and evolution at an oceanic volcanic island. J Petrol.  https://doi.org/10.1093/petrology/egz045 CrossRefGoogle Scholar
  6. Bradshaw RW, Kent AJR (2017) The analytical limits of modeling short diffusion times. Chem Geol 406:667–677.  https://doi.org/10.1016/j.chemgeo.2017.07.018 CrossRefGoogle Scholar
  7. Bureau H, Métrich N, Pineau F, Semet MP (1998a) Magma–conduit interaction at Piton de la Fournaise volcano (Réunion Island): a melt and fluid inclusion study. J Volcanol Geotherm Res 84(1):39–60.  https://doi.org/10.1016/S0377-0273(98)00029-8 CrossRefGoogle Scholar
  8. Bureau H, Pineau F, Métrich N, Semet MP, Javoy M (1998b) A melt and fluid inclusion study of the gas phase at Piton de la Fournaise volcano (Réunion Island). Chem Geol 147(1):115–130.  https://doi.org/10.1016/S0009-2541(97)00176-9 CrossRefGoogle Scholar
  9. Bureau H, Métrich N, Semet MP, Staudacher T (1999) Fluid-magma decoupling in a hot-spot volcano. Geophys Res Lett 26(23):3501–3504.  https://doi.org/10.1029/1999GL005422 CrossRefGoogle Scholar
  10. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford, p 510Google Scholar
  11. Cashman KV, Giordano G (2014) Calderas and magma reservoirs. J Volcanol Geotherm Res 288:28–45.  https://doi.org/10.1016/j.jvolgeores.2014.09.007 CrossRefGoogle Scholar
  12. Chakraborty S (2010) Diffusion coefficients in olivine, wadsleyite and ringwoodite. Rev Mineral Geochem 72(1):603–639.  https://doi.org/10.2138/rmg.2010.72.13 CrossRefGoogle Scholar
  13. Cooper KM, Kent AJR (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature 506(7489):480–483.  https://doi.org/10.1038/nature12991 CrossRefGoogle Scholar
  14. Cooper KM, Sims KWW, Eiler JM, Banerjee N (2016) Timescales of storage and recycling of crystal mush at Krafla Volcano, Iceland. Contrib Mineral Petrol 171(6):54.  https://doi.org/10.1007/s00410-016-1267-3 CrossRefGoogle Scholar
  15. Coppola D, Di Muro A, Peltier A, Villeneuve N, Ferrazzini V, Favalli M, Bachèlery P, Gurioli L, Harris AJL, Moune S, Vlastélic I, Galle B, Arellano S, Aiuppa A (2017) Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island). Earth Planet Sci Lett 463:13–24.  https://doi.org/10.1016/j.epsl.2017.01.024 CrossRefGoogle Scholar
  16. Costa F, Chakraborty S (2004) Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine. Earth Planet Sci Lett 227(3):517–530.  https://doi.org/10.1016/j.epsl.2004.08.011 CrossRefGoogle Scholar
  17. Costa F, Dungan M (2005) Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33(10):837–840.  https://doi.org/10.1130/g21675.1 CrossRefGoogle Scholar
  18. Costa F, Chakraborty S, Dohmen R (2003) Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase. Geochim Cosmochim Acta 67(12):2189–2200.  https://doi.org/10.1016/S0016-7037(02)01345-5 CrossRefGoogle Scholar
  19. Costa F, Coogan LA, Chakraborty S (2010) The time scales of magma mixing and mingling involving primitive melts and melt–mush interaction at mid-ocean ridges. Contrib Mineral Petrol 159(3):371–387.  https://doi.org/10.1007/s00410-009-0432-3 CrossRefGoogle Scholar
  20. Di Muro A, Métrich N, Vergani D, Rosi M, Armienti P, Fougeroux T, Deloule E, Arienzo I, Civetta L (2014a) The shallow plumbing system of Piton de la Fournaise volcano (la Réunion island, Indian ocean) revealed by the major 2007 caldera-forming eruption. J Petrol 55(7):1287–1315.  https://doi.org/10.1093/petrology/egu025 CrossRefGoogle Scholar
  21. Di Muro A, Staudacher T, Ferrazzini V, Métrich N, Besson P, Garofalo C, Villemant B (2014b) Shallow magma storage at Piton de la Fournaise volcano after 2007 summit caldera collapse tracked in Pele’s hairs. In: Carey R, Cayol V, Poland M, Weis D (eds) Hawaiian volcanoes: from source to surface. Geophysical Monograph Series, AGU, Washington, D.C., pp 189–212.  https://doi.org/10.1002/9781118872079.ch1 Google Scholar
  22. Di Muro A, Métrich N, Allard P, Aiuppa A, Burton M, Galle B, Staudacher T (2016) Magma degassing at Piton de la Fournaise volcano. In: Bachelery P, Lenat J-F, Di Muro A, Michon L (eds) Active volcanoes of the southwest Indian Ocean: Piton de la Fournaise and Karthala. Springer-Verlag, Berlin, pp 203–222.  https://doi.org/10.1007/978-3-642-31395-0_12 CrossRefGoogle Scholar
  23. Girona T, Costa F (2013) DIPRA: a user-friendly program to model multi-element diffusion in olivine with applications to timescales of magmatic processes. Geochem Geophys Geosyst 14(2):422–431.  https://doi.org/10.1029/2012GC004427 CrossRefGoogle Scholar
  24. Gordeychik B, Churikova T, Kronz A, Sundermeyer C, Simakin A, Wörner G (2018) Growth of, and diffusion in, olivine in ultra-fast ascending basalt magmas from Shiveluch volcano. Sci Rep 8(11775):1–15.  https://doi.org/10.1038/s41598-018-30133-1 CrossRefGoogle Scholar
  25. Gurioli L, Di Muro A, Vlastélic I, Moune S, Thivet S, Valer M, Villeneuve N, Boudoire G, Peltier A, Bachèlery P, Ferrazzini V, Métrich N, Benbakkar M, Cluzel N, Constantin C, Devidal JL, Fonquernie C, Hénot JM (2018) Integrating field, textural, and geochemical monitoring to track eruption triggers and dynamics: a case study from Piton de la Fournaise. Solid Earth 9(2):431–455.  https://doi.org/10.5194/se-9-431-2018 CrossRefGoogle Scholar
  26. Hartley ME, Morgan DJ, Maclennan J, Edmonds M, Thordarson T (2016) Tracking timescales of short-term precursors to large basaltic fissure eruptions through Fe–Mg diffusion in olivine. Earth Planet Sci Lett 439:58–70.  https://doi.org/10.1016/j.epsl.2016.01.018 CrossRefGoogle Scholar
  27. Helz RT, Thornber CR (1987) Geothermometry of Kilauea Iki lava lake, Hawaii. Bull Volcanol 49(5):651–668.  https://doi.org/10.1007/bf01080357 CrossRefGoogle Scholar
  28. Kahl M, Chakraborty S, Costa F, Pompilio M (2011) Dynamic plumbing system beneath volcanoes revealed by kinetic modeling, and the connection to monitoring data: an example from Mt. Etna. Earth Planet Sci Lett 308(1):11–22.  https://doi.org/10.1016/j.epsl.2011.05.008 CrossRefGoogle Scholar
  29. Kahl M, Chakraborty S, Costa F, Pompilio M, Liuzzo M, Viccaro M (2013) Compositionally zoned crystals and real-time degassing data reveal changes in magma transfer dynamics during the 2006 summit eruptive episodes of Mt. Etna. Bull Volcanol 75(2):692.  https://doi.org/10.1007/s00445-013-0692-7 CrossRefGoogle Scholar
  30. Kahl M, Chakraborty S, Pompilio M, Costa F (2015) Constraints on the nature and evolution of the magma plumbing system of Mt Etna volcano (1991–2008) from a combined thermodynamic and kinetic modelling of the compositional record of minerals. J Petrol 56(10):2025–2068.  https://doi.org/10.1093/petrology/egv063 CrossRefGoogle Scholar
  31. Lénat JF, Bachèlery P (1990) Structure et fonctionnement de la zone centrale du Piton de la Fournaise. In: Lénat JF (ed) Le Volcanisme de la Réunion. Centre de Recherches Volcanologiques, Clermont-Ferrand, pp 257–296. https://www.researchgate.net/publication/260289059
  32. Lengliné O, Duputel Z, Ferrazzini V (2016) Uncovering the hidden signature of a magmatic recharge at Piton de la Fournaise volcano using small earthquakes. Geophys Res Lett 43(9):4255–4262.  https://doi.org/10.1002/2016GL068383 CrossRefGoogle Scholar
  33. Liuzzo M, Di Muro A, Giudice G, Michon L, Ferrazzini V, Gurrieri S (2015) New evidence of CO2 soil degassing anomalies on Piton de la Fournaise volcano and the link with volcano tectonic structures. Geochem Geophys Geosyst 16(12):4388–4404.  https://doi.org/10.1002/2015GC006032 CrossRefGoogle Scholar
  34. Magee C, Stevenson CTE, Ebmeier SK, Keir D, Hammond JOS, Gottsmann JH, Whaler KA, Schofield N, Jackson CAL, Petronis MS, O’Driscoll B, Morgan J, Cruden A, Vollgger SA, Dering G, Micklethwaite S, Jackson MD (2018) Magma plumbing systems: a geophysical perspective. J Petrol 59(6):1217–1251.  https://doi.org/10.1093/petrology/egy064 CrossRefGoogle Scholar
  35. Marsh BD (2006) Dynamics of magmatic systems. Elements 2:287–292.  https://doi.org/10.2113/gselements.2.5.287 CrossRefGoogle Scholar
  36. Morgan DJ, Blake S, Rogers NW, DeVivo B, Rolandi G, Macdonald R, Hawkesworth CJ (2004) Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth Planet Sci Lett 222(3):933–946.  https://doi.org/10.1016/j.epsl.2004.03.030 CrossRefGoogle Scholar
  37. Nercessian A, Hirn A, Lépine J-C, Sapin M (1996) Internal structure of Piton de la Fournaise volcano from seismic wave propagation and earthquake distribution. J Volcanol Geotherm Res 70(3):123–143.  https://doi.org/10.1016/0377-0273(95)00042-9 CrossRefGoogle Scholar
  38. Oeser M, Dohmen R, Horn I, Schuth S, Weyer S (2015) Processes and time scales of magmatic evolution as revealed by Fe–Mg chemical and isotopic zoning in natural olivines. Geochim Cosmochim Acta 154:130–150.  https://doi.org/10.1016/j.gca.2015.01.025 CrossRefGoogle Scholar
  39. Oeser M, Ruprecht P, Weyer S (2018) Combined Fe–Mg chemical and isotopic zoning in olivine constraining magma mixing-to-eruption timescales for the continental arc volcano Irazú (Costa Rica) and Cr diffusion in olivine. Am Mineral 103(4):582–599.  https://doi.org/10.2138/am-2018-6258 CrossRefGoogle Scholar
  40. Peltier A, Bachèlery P, Staudacher T (2009) Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: a review of geophysical and geochemical data. J Volcanol Geotherm Res 184(1):93–108.  https://doi.org/10.1016/j.jvolgeores.2008.12.008 CrossRefGoogle Scholar
  41. Peltier A, Beauducel F, Villeneuve N, Ferrazzini V, Di Muro A, Aiuppa A, Derrien A, Jourde K, Taisne B (2016) Deep fluid transfer evidenced by surface deformation during the 2014–2015 unrest at Piton de la Fournaise volcano. J Volcanol Geotherm Res 321:140–148.  https://doi.org/10.1016/j.jvolgeores.2016.04.031 CrossRefGoogle Scholar
  42. Pichavant M, Brugier Y, Di Muro A (2016) Petrological and experimental constraints on the evolution of Piton de la Fournaise magmas. In: Bachelery P, Lenat J-F, Di Muro A, Michon L (eds) Active volcanoes of the southwest Indian Ocean: Piton de la Fournaise and Karthala. Springer-Verlag, Berlin, pp 171–184.  https://doi.org/10.1007/978-3-642-31395-0_10 CrossRefGoogle Scholar
  43. Prior DJ, Boyle AP, Brenker F, Cheadle MC, Day A, Lopez G, Peruzzi L, Potts G, Reddy S, Spiess R, Timms NE, Trimby P, Wheeler J, Zetterstrom L (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Mineral 84(11–12):1741–1759.  https://doi.org/10.2138/am-1999-11-1204 CrossRefGoogle Scholar
  44. Prôno E, Battaglia J, Monteiller V, Got J-L, Ferrazzini V (2009) P-wave velocity structure of Piton de la Fournaise volcano deduced from seismic data recorded between 1996 and 1999. J Volcanol Geotherm Res 184(1):49–62.  https://doi.org/10.1016/j.jvolgeores.2008.12.009 CrossRefGoogle Scholar
  45. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120.  https://doi.org/10.2138/rmg.2008.69.3 CrossRefGoogle Scholar
  46. Rae ASP, Edmonds M, Maclennan J, Morgan D, Houghton B, Hartley ME, Sides I (2016) Time scales of magma transport and mixing at Kīlauea Volcano, Hawai’i. Geology 44(6):463–466.  https://doi.org/10.1130/G37800.1 CrossRefGoogle Scholar
  47. Roult G, Peltier A, Taisne B, Staudacher T, Ferrazzini V, Di Muro A, the OVPF team (2012) A new comprehensive classification of the Piton de la Fournaise activity spanning the 1985–2010 period. Search and analysis of short-term precursors from a broad-band seismological station. J Volcanol Geotherm Res 241–242:78–104.  https://doi.org/10.1016/j.jvolgeores.2012.06.012 CrossRefGoogle Scholar
  48. Ruth DCS, Costa F, Bouvet de Maisonneuve C, Franco L, Cortés JA, Calder ES (2018) Crystal and melt inclusion timescales reveal the evolution of magma migration before eruption. Nat Commun 9(2657):1–9.  https://doi.org/10.1038/s41467-018-05086-8 CrossRefGoogle Scholar
  49. Salaün A, Villemant B, Semet MP, Staudacher T (2010) Cannibalism of olivine-rich cumulate xenoliths during the 1998 eruption of Piton de la Fournaise (La Réunion hotspot): implications for the generation of magma diversity. J Volcanol Geotherm Res 198(1):187–204.  https://doi.org/10.1016/j.jvolgeores.2010.08.022 CrossRefGoogle Scholar
  50. Saunders K, Blundy J, Dohmen R, Cashman K (2012) Linking petrology and seismology at an active volcano. Science 336(6084):1023–1027.  https://doi.org/10.1126/science.1220066 CrossRefGoogle Scholar
  51. Staudacher T, Peltier A (2016) Ground deformation at Piton de la Fournaise, a review from 20 years of GNSS monitoring. In: Bachelery P, Lenat J-F, Di Muro A, Michon L (eds) Active volcanoes of the southwest Indian Ocean: Piton de la Fournaise and Karthala. Springer-Verlag, Berlin, pp 251–269.  https://doi.org/10.1007/978-3-642-31395-0_15 CrossRefGoogle Scholar
  52. Ubide T, Kamber BS (2018) Volcanic crystals as time capsules of eruption history. Nat Commun 9(326):1–12.  https://doi.org/10.1038/s41467-017-02274-w CrossRefGoogle Scholar
  53. Viccaro M, Giuffrida M, Nicotra E, Cristofolini R (2016) Timescales of magma storage and migration recorded by olivine crystals in basalts of the March–April 2010 eruption at Eyjafjallajökull volcano, Iceland. Am Mineral 101(1):222–230.  https://doi.org/10.2138/am-2016-5365 CrossRefGoogle Scholar
  54. Vlastélic I, Di Muro A, Bachèlery P, Gurioli L, Auclair D, Gannoun A (2018) Control of source fertility on the eruptive activity of Piton de la Fournaise volcano, La Réunion. Sci Rep 8(14478):1–7.  https://doi.org/10.1038/s41598-018-32809-0 CrossRefGoogle Scholar
  55. Wand MP, Jones MC (1995) Kernel smoothing. Chapman & Hall/CRC, UK, pp 3–7CrossRefGoogle Scholar
  56. Zellmer GF, Blake S, Vance D, Hawkesworth C, Turner S (1999) Plagioclase residence times at two island arc volcanoes (Kameni Islands, Santorini, and Soufriere, St. Vincent) determined by Sr diffusion systematics. Contrib Mineral Petrol 136(4):345–357.  https://doi.org/10.1007/s004100050543 CrossRefGoogle Scholar
  57. Zellmer GF, Sparks RSJ, Hawkesworth CJ, Wiedenbeck M (2003) Magma emplacement and remobilization timescales beneath Montserrat: insights from Sr and Ba zonation in plagioclase phenocrysts. J Petrol 44(8):1413–1431.  https://doi.org/10.1093/petrology/44.8.1413 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Geowissenschaftliches Zentrum, Georg-August UniversitätGöttingenGermany
  2. 2.Institut de Physique du Globe de Paris, CNRSUniversité de ParisParisFrance
  3. 3.Institute of Experimental Mineralogy RASChernogolovkaRussia
  4. 4.Observatoire Volcanologique du Piton de la Fournaise, Institute de Physique du Globe de ParisLa Plaine des CafresFrance

Personalised recommendations