Evolution of mantle melts intruding the lowermost continental crust: constraints from the Monte Capio–Alpe Cevia mafic–ultramafic sequences (Ivrea–Verbano Zone, northern Italy)

  • D. Berno
  • R. TribuzioEmail author
  • A. Zanetti
  • C. Hémond
Original Paper


This study presents a new petrological–geochemical data set for the Monte Capio and Alpe Cevia mafic–ultramafic sequences, which are exposed in the deepest levels of the Ivrea–Verbano Zone. These sequences are composed of a peridotite core, with dunite in the center, mantled by minor orthopyroxene-dominated pyroxenites and subordinate hornblende gabbronorites. Amphibole is ubiquitous in the peridotites and the pyroxenites (≤ 15 vol % and 10–40 vol %, respectively), and the peridotite–pyroxenite associations are frequently crosscut by amphibole-rich (45–90 vol %) veins/dykes showing sinuous-to-sharp planar boundaries towards host rocks. The whole-rock Mg# [100 × Mg/(Mg + Fetot2+)] decreases from the peridotites to the pyroxenites and the crosscutting amphibole-rich dykes (84–81, 80–77, and 73–66, respectively), consistently with the Mg# variations shown by included orthopyroxene, clinopyroxene, and amphibole. Olivine has relatively low forsterite and NiO amounts (84–78 mol % and ≤ 0.14 wt%), and spinel is characterized by low Cr# [100 × Cr/(Cr + Al)] of 7–24. The anorthite content of plagioclase varies from 91 to 88 mol% in plagioclase-bearing pyroxenites to 91–75 mol% in amphibole-rich dykes. The chondrite-normalized REE patterns of amphibole from peridotites and pyroxenites show nearly flat MREE–HREE, no evident Eu anomaly, and LREE that are slightly depleted to slightly enriched with respect to MREE. Amphibole from the amphibole-rich veins/dykes exhibits slight LREE depletion. Whole-rock and amphibole separates show substantial variations in initial Nd–Sr isotopic compositions (e.g., whole-rock εNd calculated at 290 Ma ranges from − 0.3 to − 4.7), irrespective of the rock-type and of incompatible element amphibole compositions. We propose that the Monte Capio–Alpe Cevia dunites formed by cooling of magma lenses that intruded the lowermost continental crust of the Ivrea–Verbano Zone. The chemically evolved signature of the dunites documents earlier crystallization of chemically primitive dunites at lower levels, or olivine fractionation within the dunites during melt ascent. Associated pyroxene-bearing peridotites show a magmatic evolution ruled by reaction of a melt-poor crystal mush with migrating melts relatively rich in SiO2 and H2O, which developed orthopyroxene and amphibole at the expenses of olivine ± clinopyroxene. These migrating melts may be reconciled with those feeding the crosscutting amphibole-rich veins/dykes, whose compositions suggest formation by chemically evolved H2O-rich basalts with an arc-type incompatible trace-element fingerprint. Unraveling the origin of the Monte Capio–Alpe Cevia pyroxenites is hampered by the complex open-system magmatic evolution, which also included assimilation of material released by basement metasediments and/or involvement of primary melt batches with different compositions.


Melt–peridotite reaction Amphibole Dunite Pyroxenite Incompatible trace elements Nd–Sr isotopes 



We thank Oliver Jagoutz for his thorough review and stimulating comments. The ideas in this study benefitted from discussions with Giulio Borghini, Roberto Braga, Alessandra Montanini, and Elisabetta Rampone. Philippe Nonnotte is kindly acknowledged for his help in the clean chemical laboratory. This work was financially supported by Programma di Rilevante Interesse Nazionale (PRIN prot. 2015C5LN35) to R. Tribuzio.

Supplementary material

410_2019_1637_MOESM1_ESM.xlsx (15 kb)
Online resource 1 Location and main petrographic characteristics of selected samples. Mineral modes are visually estimated (vol%); § < 3 vol%, - mineral not present. Mineral abbreviations after Whitney and Evans (2010) and rock nomenclature after Streckeisen (1967). Dunite MC27/1A is physically associated (within the same thin section) to hornblendite vein MC27/1B (XLSX 15 kb)
410_2019_1637_MOESM2_ESM.xlsx (13 kb)
Online resource 2 Whole rock major element compositions of selected samples (XLSX 12 kb)
410_2019_1637_MOESM3_ESM.tif (31.9 mb)
Online resource 3 Diagrams showing the whole rock major element variations of selected samples. CaO, SiO2, Al2O3 and TiO2, calculated on anhydrous basis, versus Mg# \([{\text{molar}}\;{\text{Mg}}/({\text{Mg}}\, + \,{\text{Fe}}^{ 2+ }_{\text{tot}} )\, \times \, 100]\). The compositions of dunites and pyroxenites from Monte Capio body reported in Denyszyn et al. (2018) are also plotted (TIFF 32685 kb)
410_2019_1637_MOESM4_ESM.xlsx (46 kb)
Online resource 4 a) Major element olivine compositions. b) Major element orthopyroxene compositions. c) Major element clinopyroxene compositions. d) Major element amphibole compositions. e) Major element spinel compositions. f) Major element plagioclase compositions (XLSX 46 kb)
410_2019_1637_MOESM5_ESM.tif (9.4 mb)
Online resource 5 Plot of TiO2 (wt%) versus Cr# [molar Cr/(Cr + Al) × 100] of spinel. Data are averaged per sample; error bars represent the standard deviation of the mean value (TIFF 9609 kb)
410_2019_1637_MOESM6_ESM.xlsx (36 kb)
Online resource 6 a) Trace element amphibole compositions. b) Trace element clinopyroxene compositions. c) Ni and Co compositions of olivine from dunites and pyroxene-bearing peridotites (XLSX 36 kb)
410_2019_1637_MOESM7_ESM.tif (10.6 mb)
Online resource 7 Plot of Ni versus Co of olivine from dunites and pyroxene-bearing peridotites. Data are averaged per sample; error bars represent the standard deviation of the mean value (TIFF 10848 kb)
410_2019_1637_MOESM8_ESM.xlsx (15 kb)
Online resource 8 Nd and Sr isotopic ratios, and Sm–Nd isotopic and Rb–Sr dilution data of selected whole rocks and amphiboles (XLSX 14 kb)
410_2019_1637_MOESM9_ESM.xlsx (11 kb)
Online resource 9 Temperature estimates obtained through the following geothermometers: (i) Ca-in-Opx (B&K): Ca-in-orthopyroxene by Brey and Kohler (1990), (ii) Opx-Cpx (B&K): orthopyroxene-clinopyroxene by Brey and Kohler (1990), (iii) Opx-Cpx (We): orthopyroxene-clinopyroxene by Wells (1977), (iv) Amp-Pl (H&B): amphibole-plagioclase by Holland and Blundy (2009), and (v) Amp (Pu): amphibole by Putirka (2016, Eq. 6). A confining pressure of 9 kbar was assumed in the calculations, in agreement with pressure estimates obtained from granulite facies metasediments in the study area (Kunz and White, 2019) (XLSX 11 kb)
410_2019_1637_MOESM10_ESM.tif (8.7 mb)
Online resource 10 Plot of amphibole/clinopyroxene partition ratios for REE (TIFF 8882 kb)
410_2019_1637_MOESM11_ESM.xlsx (14 kb)
Online resource 11 Amphibole/melt REE partition coefficients calculated on the based on amphibole major element compositions and crystallization temperature conditions, following the method of Shimizu et al. (2017). For the crystallization temperatures, we assumed those calculated following Putirka (2016) (XLSX 14 kb)
410_2019_1637_MOESM12_ESM.xlsx (10 kb)
Online resource 12 REE compositions of initial melt and of assimilated material, and mineral/melt partition coefficients used in the AFC model (DePaolo, 1981). The initial melt compositions are the average REE compositions of melts in equilibrium with amphibole from hornblende-rich gabbros (see also Fig. 16). The REE compositions of assimilated material correspond to a hypothetical mineral assemblage of 80% olivine and 20% clinopyroxene. These REE compositions were calculated assuming that: (i) olivine included negligible REE, in agreement with unpublished laser ablation ICP mass spectrometry investigations, olivine/melt partition coefficients (e.g., Zanetti et al., 2004; Spandler and O’Neill, 2010), and compositions of olivines from the Ultramafic Pipes of the Ivrea–Verbano Zone (Locmelis et al., 2016), (ii) the average REE compositions of clinopyroxene from plagioclase-free pyroxenites MC8B and MC20/1 (Online resource 6). Amphibole/melt REE partition coefficients are the average of those calculated for peridotites and pyroxenites (Online resource 11), and orthopyroxene/melt REE partition coefficients are taken from Green et al. (2000). The two models depicted in Fig. 19 assume 1:1 crystallization of orthopyroxene and amphibole with decreasing melt mass (F = 0.9 to 0.1) (XLSX 10 kb)


  1. Allègre CJ, Turcotte DL (1986) Implications of a two-component marble-cake mantle. Nature 323(6084):123CrossRefGoogle Scholar
  2. Annen C, Blundy JD, Sparks RSJ (2005) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539CrossRefGoogle Scholar
  3. Barboza SA, Bergantz GW (2000) Metamorphism and anatexis in the mafic complex contact aureole, Ivrea Zone, Northern Italy. J Petrol 41(8):1307–1327CrossRefGoogle Scholar
  4. Barnes SJ (1986) The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contrib Miner Petrol 93(4):524–531CrossRefGoogle Scholar
  5. Bertolani M, Loschi Ghittoni AG (1979) La zone a ultrabasiti della Rocca D’Argimonia nelle Prealpi Biellesi. 1. La petrografia. Rend della Soc Ital di Miner e Petrol 35:791–813Google Scholar
  6. Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62(7):1175–1193CrossRefGoogle Scholar
  7. Bodinier JL, Garrido CJ, Chanefo I, Bruguier O, Gervilla F (2008) Origin of pyroxenite–peridotite veined mantle by refertilization reactions: evidence from the Ronda peridotite (Southern Spain). J Petrol 49(5):999–1025CrossRefGoogle Scholar
  8. Boriani A, Giobbi E (2004) Does the basement of western southern Alps display a tilted section through the continental crust? A review and discussion. Period di Mineral 73(2):5–22Google Scholar
  9. Boriani A, Burlini L, Sacchi R (1990) The Cossato-Mergozzo-Brissago Line and the Pogallo Line (Southern Alps, Northern Italy) and their relationships with the late-Hercynian magmatic and metamorphic events. Tectonophysics 182(1–2):91–102CrossRefGoogle Scholar
  10. Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31(6):1353–1378CrossRefGoogle Scholar
  11. Burg JP, Bodinier JL, Chaudhry S, Hussain S, Dawood H (1998) Infra-arc mantle-crust transition and intra-arc mantle diapirs in the Kohistan Complex (Pakistani Himalaya): petro-structural evidence. Terra Nova Oxf 10(2):74–80CrossRefGoogle Scholar
  12. Davidson J, Turner S, Plank T (2013) Dy/Dy*: variations arising from mantle sources and petrogenetic processes. J Petrol 54(3):525–537CrossRefGoogle Scholar
  13. Denyszyn SW, Fiorentini ML, Maas R, Dering G (2018) A bigger tent for CAMP. Geology 46(9):823–826CrossRefGoogle Scholar
  14. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53(2):189–202CrossRefGoogle Scholar
  15. Ewing TA, Hermann J, Rubatto D (2013) The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea–Verbano Zone, northern Italy). Contrib Miner Petrol 165(4):757–779CrossRefGoogle Scholar
  16. Ferrario A, Garuti G, Rossi A, Sighinolfi GP (1983) Petrographic and metallogenic outlines of the “La Balma-M. Capio” ultramafic-mafic body (Ivrea–Verbano basic complex, NW Italian Alps). Mineral deposits of the Alps and of the Alpine Epoch in Europe. Springer, Berlin, Heidelberg, pp 28–40CrossRefGoogle Scholar
  17. Fiorentini ML, LaFlamme C, Denyszyn S, Mole D, Maas R, Locmelis M, Caruso S, Bui T-H (2018) Post-collisional alkaline magmatism as gateway for metal and sulfur enrichment of the continental lower crust. Geochimica et Cosmochimica Acta 223:175–197CrossRefGoogle Scholar
  18. Gale A, Dalton CA, Langmuir CH, Su Y, Schilling JG (2012) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14(3):489–518CrossRefGoogle Scholar
  19. Galli A, Grassi D, Sartori G, Gianola O, Burg JP, Schmidt MW (2019) Jurassic carbonatite and alkaline magmatism in the Ivrea zone (European Alps) related to the breakup of Pangea. Geology 47(3):199–202CrossRefGoogle Scholar
  20. Garuti G, Bea F, Zaccarini F, Montero P (2001) Age, geochemistry and petrogenesis of the ultramafic pipes in the Ivrea Zone, NW Italy. JPetrol 42(2):433–457Google Scholar
  21. Grant TB, Harlov DE, Rhede D (2016) Experimental formation of pyroxenite veins by reactions between olivine and Si, Al, Ca, Na, and Cl-rich fluids at 800 °C and 800 MPa: implications for fluid metasomatism in the mantle wedge. Am Miner 101(4):808–818CrossRefGoogle Scholar
  22. Green T, Blundy J, Adam J, Yaxley G (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200 °C. Lithos 53:165–187CrossRefGoogle Scholar
  23. Gregoire M, Mattielli N, Nicollet C, Cottin JY, Leyrit H, Weis D, Shimizu N, Giret A (1994) Oceanic mafic granulite xenoliths from the Kerguelen archipelago. Nature 367(6461):360CrossRefGoogle Scholar
  24. Guergouz C, Martin L, Vanderhaeghe O, Thébaud N, Fiorentini M (2018) Zircon and monazite petrochronologic record of prolonged amphibolite to granulite facies metamorphism in the Ivrea–Verbano and Strona-Ceneri Zones, NW Italy. Lithos 308:1–18CrossRefGoogle Scholar
  25. Hacker BR, Mehl L, Kelemen PB, Rioux M, Behn MD, Luffi P (2008) Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry. J Geophys Res Solid Earth 113:B03204CrossRefGoogle Scholar
  26. Hamada M, Fujii T (2007) H2O-rich island arc low-K tholeiite magma inferred from Ca-rich plagioclase-melt inclusion equilibria. Geochem J 41(6):437–461CrossRefGoogle Scholar
  27. Hellebrand E, Snow JE, Mostefaoui S, Hoppe P (2005) Trace element distribution between orthopyroxene and clinopyroxene in peridotites from the Gakkel Ridge: a SIMS and NanoSIMS study. Contrib Miner Petrol 150(5):486–504CrossRefGoogle Scholar
  28. Helmy HM, El-Rahman YMA, Yoshikawa M, Shibata T, Arai S, Tamura A, Kagami H (2014) Petrology and Sm–Nd dating of the Genina Gharbia Alaskan-type complex (Egypt): insights into deep levels of Neoproterozoic island arcs. Lithos 198:263–280CrossRefGoogle Scholar
  29. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Miner Petrol 98(4):455–489CrossRefGoogle Scholar
  30. Himmelberg GR, Loney RA (1995) Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska, vol 56. US Government Printing Office, Washington, DCGoogle Scholar
  31. Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Miner Petrol 116(4):433–447CrossRefGoogle Scholar
  32. Irvine TN (1974) Petrology of the Duke Island ultramafic complex, southeastern Alaska, vol 138. Geological Society of America, BoulderGoogle Scholar
  33. Jackson MD, Blundy J, Sparks RSJ (2018) Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust. Nature 564(7736):405CrossRefGoogle Scholar
  34. Jagoutz O, Müntener O, Burg JP, Ulmer P, Jagoutz E (2006) Lower continental crust formation through focused flow in km-scale melt conduits: the zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan). Earth Planet Sci Lett 242(3–4):320–342CrossRefGoogle Scholar
  35. Jagoutz O, Müntener O, Ulmer P, Pettke T, Burg JP, Dawood H, Hussain S (2007) Petrology and mineral chemistry of lower crustal intrusions: the Chilas Complex, Kohistan (NW Pakistan). J Petrol 48(10):1895–1953CrossRefGoogle Scholar
  36. Jagoutz O, Müntener O, Schmidt MW, Burg JP (2011) The roles of flux-and decompression melting and their respective fractionation lines for continental crust formation: evidence from the Kohistan arc. Earth Planet Sci Lett 303(1–2):25–36CrossRefGoogle Scholar
  37. Jeffries TE, Jackson SE, Longerich HP (1998) Application of a frequency quintupled Nd: YAG source (λ = 213 nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals. J Anal At Spectrom 13(9):935–940CrossRefGoogle Scholar
  38. Jull M, Kelemen PÁ (2001) On the conditions for lower crustal convective instability. J Geophys Res Solid Earth 106(B4):6423–6446CrossRefGoogle Scholar
  39. Kelemen PB (1990) Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J Petrol 31(1):51–98CrossRefGoogle Scholar
  40. Kelemen PB, Shimizu N, Salters VJ (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375(6534):747CrossRefGoogle Scholar
  41. Kelemen PB, Hanghøj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treat Geochem 3:659Google Scholar
  42. Klötzli US, Sinigoi S, Quick JE, Demarchi G, Tassinari CC, Sato K, Günes Z (2014) Duration of igneous activity in the Sesia Magmatic System and implications for high-temperature metamorphism in the Ivrea–Verbano deep crust. Lithos 206:19–33CrossRefGoogle Scholar
  43. Kornprobst J, Piboule M, Roden M, Tabit A (1990) Corundum-bearing garnet clinopyroxenites at Beni Bousera (Morocco): original plagioclase-rich gabbros recrystallized at depth within the mantle? J Petrol 31(3):717–745CrossRefGoogle Scholar
  44. Kunz BE, White RW (2019) Phase equilibrium modelling of the amphibolite to granulite facies transition in metabasic rocks (Ivrea Zone, NW Italy). J Metamorph Geol 37:935–950CrossRefGoogle Scholar
  45. Kunz BE, Johnson TE, White RW, Redler C (2014) Partial melting of metabasic rocks in Val Strona di Omegna, Ivrea Zone, northern Italy. Lithos 190:1–12CrossRefGoogle Scholar
  46. Locmelis M, Fiorentini ML, Rushmer T, Arevalo R Jr, Adam J, Denyszyn SW (2016) Sulfur and metal fertilization of the lower continental crust. Lithos 244:74–93CrossRefGoogle Scholar
  47. Loucks RR (1996) A precise olivine-augite Mg–Fe-exchange geothermometer. Contrib Miner Petrol 125(2–3):140–150CrossRefGoogle Scholar
  48. Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J Geophys Res Solid Earth 112:B03211Google Scholar
  49. Mazzucchelli M, Zanetti A, Rivalenti G, Vannucci R, Correia CT, Tassinari CCG (2010) Age and geochemistry of mantle peridotites and diorite dykes from the Baldissero body: insights into the Paleozoic-Mesozoic evolution of the Southern Alps. Lithos 119(3–4):485–500CrossRefGoogle Scholar
  50. Montanini A, Tribuzio R (2001) Gabbro-derived granulites from the Northern Apennines (Italy): evidence for lower-crustal emplacement of tholeiitic liquids in post-Variscan times. J Petrol 42(12):2259–2277CrossRefGoogle Scholar
  51. Montanini A, Tribuzio R (2015) Evolution of recycled crust within the mantle: constraints from the garnet pyroxenites of the External Ligurian ophiolites (northern Apennines, Italy). Geology 43(10):911–914CrossRefGoogle Scholar
  52. Müntener O, Ulmer P (2006) Experimentally derived high‐pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust. Geophys Res Lett 33:L21308CrossRefGoogle Scholar
  53. Müntener O, Kelemen PB, Grove TJ (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Miner Petrol 141:643–658CrossRefGoogle Scholar
  54. Nandedkar RH, Ulmer P, Müntener O (2014) Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Miner Petrol 167(6):1015CrossRefGoogle Scholar
  55. Nandedkar RH, Hürlimann N, Ulmer P, Müntener O (2016) Amphibole–melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: an experimental study. Contrib Miner Petrol 171(8–9):71CrossRefGoogle Scholar
  56. Niida K (1997) Mineralogy of MARK peridotites: replacement through magma channeling examined from Hole 920D, MARK area. In: Karson JA, Cannat M, Miller DJ, Elthon D (eds) Proceedings of the ocean drilling program, scientific results, vol 153, pp 265–275Google Scholar
  57. Obata M, Banno S, Mori T (1974) The iron˗magnesium partitioning between naturally occurring coexisting olivine and Ca˗rich clinopyroxene: an application of the simple mixture model to olivine solid solution. Bulletin de Minéralogie 97(2):101–107Google Scholar
  58. Panjasawatwong Y, Danyushevsky LV, Crawford AJ, Harris KL (1995) An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase. Contrib Miner Petrol 118(4):420–432CrossRefGoogle Scholar
  59. Peressini G, Quick JE, Sinigoi S, Hofmann AW, Fanning M (2007) Duration of a large mafic intrusion and heat transfer in the lower crust: a SHRIMP U-Pb zircon study in the Ivrea–Verbano Zone (Western Alps, Italy). J Petrol 48(6):1185–1218CrossRefGoogle Scholar
  60. Pilet S, Ulmer P, Villiger S (2010) Liquid line of descent of a basanitic liquid at 1.5 GPa: constraints on the formation of metasomatic veins. Contrib Miner Petrol 159(5):621–643CrossRefGoogle Scholar
  61. Polat A, Fryer BJ, Samson IM, Weisener C, Appel PW, Frei R, Windley BF (2012) Geochemistry of ultramafic rocks and hornblendite veins in the Fiskenæsset layered anorthosite complex, SW Greenland: evidence for hydrous upper mantle in the Archean. Precambr Res 214:124–153CrossRefGoogle Scholar
  62. Putirka K (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am Miner 101(4):841–858CrossRefGoogle Scholar
  63. Quick JE, Sinigoi S, Mayer A (1994) Emplacement dynamics of a large mafic intrusion in the lower crust, Ivrea–Verbano Zone, northern Italy. J Geophys Res Solid Earth 99(B11):21559–21573CrossRefGoogle Scholar
  64. Quick JE, Sinigoi S, Mayer A (1995) Emplacement of mantle peridotite in the lower continental crust, Ivrea–Verbano zone, northwest Italy. Geology 23(8):739–742CrossRefGoogle Scholar
  65. Quick JE, Sinigoi S, Snoke AW, Kalakay TJ, Mayer A, Peressini G (2003) Geologic map of the Southern Ivrea Verbano Zone, Northwestern Italy. Pamphlet to accompany Geologic Investigations Series Map I–2776Google Scholar
  66. Rampone E, Piccardo GB, Vannucci R, Bottazzi P, Ottolini L (1993) Subsolidus reactions monitored by trace element partitioning: the spinel-to plagioclase-facies transition in mantle peridotites. Contrib Miner Petrol 115(1):1–17CrossRefGoogle Scholar
  67. Redler C, Johnson TE, White RW, Kunz BE (2012) Phase equilibrium constraints on a deep crustal metamorphic field gradient: metapelitic rocks from the Ivrea Zone (NW Italy). J Metamorph Geol 30(3):235–254CrossRefGoogle Scholar
  68. Redler C, White RW, Johnson TE (2013) Migmatites in the Ivrea Zone (NW Italy): constraints on partial melting and melt loss in metasedimentary rocks from Val Strona di Omegna. Lithos 175:40–53CrossRefGoogle Scholar
  69. Roeder PL, Emslie R (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 29(4):275–289CrossRefGoogle Scholar
  70. Rutter EH, Brodie KH, Evans PJ (1993) Structural geometry, lower crustal magmatic underplating and lithospheric stretching in the Ivrea–Verbano zone, northern Italy. J Struct Geol 15(3–5):647–662CrossRefGoogle Scholar
  71. Schaltegger U, Ulianov A, Müntener O, Ovtcharova M, Peytcheva I, Vonlanthen P, Vennemann T, Antognini M, Girlanda F (2015) Megacrystic zircon with planar fractures in miaskite-type nepheline pegmatites formed at high pressures in the lower crust (Ivrea Zone, southern Alps, Switzerland). Am Miner 100(1):83–94CrossRefGoogle Scholar
  72. Schmid SM, Kissling E, Diehl T, van Hinsbergen DJ, Molli G (2017) Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of the Alps-Apennines orogenic system. Swiss J Geosci 110(2):581–612CrossRefGoogle Scholar
  73. Schnetger B (1994) Partial melting during the evolution of the amphibolite-to granulite-facies gneisses of the Ivrea Zone, northern Italy. Chem Geol 113(1–2):71–101CrossRefGoogle Scholar
  74. Shimizu K, Liang Y, Sun C, Jackson CR, Saal AE (2017) Parameterized lattice strain models for REE partitioning between amphibole and silicate melt. Am Mineral J Earth Planet Mater 102(11):2254–2267Google Scholar
  75. Sinigoi S, Quick JE, Mayer A, Budahn J (1996) Influence of stretching and density contrasts on the chemical evolution of continental magmas: an example from the Ivrea–Verbano Zone. Contrib Miner Petrol 123(3):238–250CrossRefGoogle Scholar
  76. Sinigoi S, Quick JE, Demarchi G, Klötzli U (2011) The role of crustal fertility in the generation of large silicic magmatic systems triggered by intrusion of mantle magma in the deep crust. Contrib Miner Petrol 162(4):691–707CrossRefGoogle Scholar
  77. Sinigoi S, Quick JE, Demarchi G, Klötzli US (2016) Production of hybrid granitic magma at the advancing front of basaltic underplating: inferences from the Sesia Magmatic System (south-western Alps, Italy). Lithos 252:109–122CrossRefGoogle Scholar
  78. Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Miner Petrol 113(2):143–166CrossRefGoogle Scholar
  79. Spandler C, O’Neill HSC (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300 °C with some geochemical implications. Contrib Miner Petrol 159(6):791–818CrossRefGoogle Scholar
  80. Streckeisen AL (1967) Classification and nomenclature of igneous rockes. N Jb Miner 107:144–240Google Scholar
  81. Sun C, Liang Y (2012) Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: effects of major element composition, water, and temperature. Contrib Miner Petrol 163(5):807–823CrossRefGoogle Scholar
  82. Sun SS, McDonough WS (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345CrossRefGoogle Scholar
  83. Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melt. Rev Mineral Geochem 67(1):417–452CrossRefGoogle Scholar
  84. Tiepolo M, Langone A, Morishita T, Yuhara M (2012) On the recycling of amphibole-rich ultramafic intrusive rocks in the arc crust: evidence from Shikanoshima Island (Kyushu, Japan). J Petrol 53(6):1255–1285CrossRefGoogle Scholar
  85. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Miner Petrol 149(1):22–39CrossRefGoogle Scholar
  86. Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Miner Petrol 141(6):687–703CrossRefGoogle Scholar
  87. Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U–Th–Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Miner Petrol 134(4):380–404CrossRefGoogle Scholar
  88. Voshage H, Hofmann AW, Mazzucchelli M, Rivalenti G, Sinigoi S, Raczek I, Demarchi G (1990) Isotopic evidence from the Ivrea Zone for a hybrid lower crust formed by magmatic underplating. Nature 347(6295):731CrossRefGoogle Scholar
  89. Watson BE, Brenan JM, Baker DR (1990) Distribution of fluids in the continental mantle. In: Menzies MA (ed) Continental mantle. Clarendon Press, Oxford, pp 111–125Google Scholar
  90. Wells PR (1977) Pyroxene thermometry in simple and complex systems. Contrib Miner Petrol 62(2):129–139CrossRefGoogle Scholar
  91. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95(1):185–187CrossRefGoogle Scholar
  92. Witt-Eickschen G, O’Neill HSC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221(1–2):65–101CrossRefGoogle Scholar
  93. Zaccarini F, Garuti G, Fiorentini ML, Locmelis M, Kollegger P, Thalhammer OA (2014) Mineralogical hosts of platinum group elements (PGE) and rhenium in the magmatic Ni–Fe–Cu sulfide deposits of the Ivrea Verbano Zone (Italy): an electron microprobe study. Neues Jahrbuch für Mineral Abh J Mineral Geochem 191(2):169–187Google Scholar
  94. Zanetti A, Tiepolo M, Oberti R, Vannucci R (2004) Trace-element partitioning in olivine: modelling of a complete data set from a synthetic hydrous basanite melt. Lithos 75(1–2):39–54CrossRefGoogle Scholar
  95. Zanetti A, Mazzucchelli M, Sinigoi S, Giovanardi T, Peressini G, Fanning M (2013) SHRIMP U-Pb zircon Triassic intrusion age of the Finero mafic complex (Ivrea–Verbano Zone, Western Alps) and its geodynamic implications. J Petrol 54(11):2235–2265CrossRefGoogle Scholar
  96. Zanetti A, Giovanardi T, Langone A, Tiepolo M, Wu FY, Dallai L, Mazzucchelli M (2016) Origin and age of zircon-bearing chromitite layers from the Finero phlogopite peridotite (Ivrea–Verbano Zone, Western Alps) and geodynamic consequences. Lithos 262:58–74CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Terra e dell’AmbienteUniversità degli Studi di PaviaPaviaItaly
  2. 2.Istituto di Geoscienze e GeorisorseC.N.R.PaviaItaly
  3. 3.Institut Universitaire Européen de la MerUniversité de Bretagne OccidentaleBrestFrance

Personalised recommendations