Advertisement

Phonolitic melt production by carbonatite Mantle metasomatism: evidence from Eger Graben xenoliths

  • Anselm LogesEmail author
  • Dina Schultze
  • Andreas Klügel
  • Friedrich Lucassen
Original Paper
  • 224 Downloads

Abstract

Ultramafic xenoliths and green-core clinopyroxene xenocrysts from a basanite from Spitzberg, Cotta, Germany were investigated. The Spitzberg volcano on the northern shoulder of the Eger (Ohře) Graben is part of the Central European Cenozoic Volcanic suite. Inclusions of (tephri-)phonolitic, carbonatitic and sulfidic melt and associated reaction textures in the ultramafic xenoliths show evidence for metasomatic alteration of lherzolite to wehrlite by carbonatitic melt, which produced the (tephri-)phonolitic melt as a reaction byproduct. The investigated xenoliths and xenocrysts were sampled and brought to the surface by a basanitic eruption. Green-core clinopyroxene (gc-Cpx) xenocrysts found abundantly in the samples have similar inclusions as the wehrlite and are interpreted to have crystallized from the aforementioned (tephri-)phonolitic melt during a later interaction with additional carbonatite melt. Major and trace element chemistry as well as a complex suite of inclusion phases clearly link the melts in both cases. The growth textures of the gc-Cpx indicate that it grew in two stages: first quickly as a result of interaction between (tephri-)phonolitic silicate melt and carbonatite melt; then more slowly and free-floating in magma with no contact to Mantle or Crustal rocks. We conclude that Mantle metasomatism has in this case directly produced (tephri-)phonolitic magma of sufficient volume and proportion to allow extraction from the original host rock, not merely some interstitial phonolitic melt. However, surface outcrops of such phonolite have so far not been identified in continental settings.

Keywords

Mantle metasomatism Carbonatite Phonolite Green-core clinopyroxene Eger Graben 

Notes

Acknowledgements

We would like to express our gratitude to Nicole Biedermann, Magdalena Blum-Oeste, Gerhard Franz, Felix Kaufmann, Ralf Milke. Michaela Neumann, Lutz Hecht and Buia Hund for valuable discussions and help with sampling, Radosław Michalik, Jörg Nissen, Peter Czaja and Thomas Wenzel for EPMA support and Petra Marsiske for whole-rock analytical work. We thank Lukáš Ackerman, Matteo Masotta, Silvio Mollo and an anonymous reviewer for their helpful comments that greatly improved the manuscript as well as Gordon Moore for editorial handling.

Supplementary material

410_2019_1630_MOESM1_ESM.xlsx (11 kb)
Supplementary material 1 (XLSX 11 kb)
410_2019_1630_MOESM2_ESM.xlsx (141 kb)
Supplementary material 2 (XLSX 141 kb)
410_2019_1630_MOESM3_ESM.pdf (1 mb)
Supplementary material 3 (PDF 1,055 kb)
410_2019_1630_MOESM4_ESM.xlsx (10 kb)
Supplementary material 4 (XLSX 10 kb)

References

  1. Abdelfadil KM, Romer RL, Seifert T, Lobst R (2013) Calc-alkaline lamprophyres from Lusatia (Germany)—evidence for a repeatedly enriched mantle source. Chem Geol 353:230–245.  https://doi.org/10.1016/j.chemgeo.2012.10.023 CrossRefGoogle Scholar
  2. Ackerman L, Špaček P, Magna T, Ulrych J, Svojtka M, Hegner E, Balogh K (2013) Alkaline and Carbonate-rich melt metasomatism and melting of subcontinental lithospheric mantle: evidence from mantle xenoliths, NE Bavaria, Bohemian Massif. J Petrol 54:2597–2633.  https://doi.org/10.1093/petrology/egt059 CrossRefGoogle Scholar
  3. Ackerman L, Medaris G, Špaček P, Ulrych J (2015a) Geochemical and petrological constraints on mantle composition of the Ohře (Eger) rift, Bohemian Massif: peridotite xenoliths from the České Středohoří Volcanic complex and northern Bohemia. Int J Earth Sci 104:1957–1979.  https://doi.org/10.1007/s00531-014-1054-1 CrossRefGoogle Scholar
  4. Ackerman L, Ulrych J, Řanda Z, Erban V, Hegner E, Magna T, Balogh K, Frána J, Lang M, Novák JK (2015b) Geochemical characteristics and petrogenesis of phonolites and trachytic rocks from the České Středohoří Volcanic Complex, the Ohře Rift, Bohemian Massif. Lithos 224–225:256–271.  https://doi.org/10.1016/j.lithos.2015.03.014 CrossRefGoogle Scholar
  5. Amundsen HEF (1987) Evidence for liquid immiscibility in the upper mantle. Nature 327:692–695.  https://doi.org/10.1038/327692a0 CrossRefGoogle Scholar
  6. Anovitz LM, Essene EJ (1987) Phase equilibria in the system CaCO3–MgCO3–FeCO3. J Petrol 28:389–415.  https://doi.org/10.1093/petrology/28.2.389 CrossRefGoogle Scholar
  7. Ashwal L, Torsvik T, Horváth P, Harris C, Webb S, Werner S, Corfu F (2016) A Mantle-derived origin for Mauritian trachytes. J Petrol 57:1645–1675.  https://doi.org/10.1093/petrology/egw052 CrossRefGoogle Scholar
  8. Babuška V, Plomerová J (2010) Mantle lithosphere control of crustal tectonics and magmatism of the western Ohře (Eger) rift. J Geosci.  https://doi.org/10.3190/jgeosci.070 CrossRefGoogle Scholar
  9. Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827.  https://doi.org/10.1016/0016-7037(94)90116-3 CrossRefGoogle Scholar
  10. Bédard JH (2014) Parameterizations of calcic clinopyroxene-Melt trace element partition coefficients: CPX Partitioning. Geochem Geophys Geosyst 15:303–336.  https://doi.org/10.1002/2013GC005112 CrossRefGoogle Scholar
  11. Blundy J, Dalton J (2000) Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol 139:356–371.  https://doi.org/10.1007/s004100000139 CrossRefGoogle Scholar
  12. Blundy J, Wood B (1994) Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372:452–454.  https://doi.org/10.1038/372452a0 CrossRefGoogle Scholar
  13. Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397.  https://doi.org/10.1016/S0012-821X(03)00129-8 CrossRefGoogle Scholar
  14. Brandl PA, Genske FS, Beier C, Haase KM, Sprung P, Krumm SH (2015) Magmatic evidence for carbonate metasomatism in the lithospheric mantle underneath the Ohře (Eger) rift. J Petrol 56:1743–1774.  https://doi.org/10.1093/petrology/egv052 CrossRefGoogle Scholar
  15. Brenna M, Price R, Cronin SJ, Smith IEM, Sohn YK, Kim GB, Maas R (2014) Final magma storage depth modulation of explosivity and trachyte-phonolite genesis at an intraplate Volcano: a case study from Ulleung Island, South Korea. J Petrol 55:709–747.  https://doi.org/10.1093/petrology/egu004 CrossRefGoogle Scholar
  16. Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental Melting of carbonated peridotite at 6–10 GPa. J Petrol 49:797–821.  https://doi.org/10.1093/petrology/egn002 CrossRefGoogle Scholar
  17. Chazot G, Menzies M, Harte B (1996) Silicate glasses in spinel lherzolites from Yemen: origin and chemical composition. Chem Geol 134:159–179CrossRefGoogle Scholar
  18. Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999) Carbonatite metasomatism of the oceanic upper Mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of grande comore, Indian Ocean. J Petrol 40:133–165CrossRefGoogle Scholar
  19. Cooper AF, Gittins J, Tuttle OF (1975) The system Na2CO3–K2CO3–CaCO3 at 1 kilobar and its significance in carbonatite petrogenesis. Am J Sci 275:534–560.  https://doi.org/10.2475/ajs.275.5.534 CrossRefGoogle Scholar
  20. Dalton JA, Wood BJ (1993) The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet Sci Lett 119:511–525.  https://doi.org/10.1016/0012-821X(93)90059-I CrossRefGoogle Scholar
  21. Dasgupta R, Hirschmann MM, Stalker K (2006) Immiscible Transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated Ocean Island Lavas. J Petrol 47:647–671.  https://doi.org/10.1093/petrology/egi088 CrossRefGoogle Scholar
  22. Dobosi G, Fodor RV (1992) Magma fractionation, replenishment, and mixing as inferred from green-core clinopyroxenes in Pliocene basanite, southern Slovakia. Lithos 28:133–150.  https://doi.org/10.1016/0024-4937(92)90028-W CrossRefGoogle Scholar
  23. Duda A, Schmincke H-U (1985) Polybaric differentiation of alkali basaltic magmas: evidence from green-core clinopyroxenes (Eifel, FRG). Contrib Mineral Petrol 91:340–353.  https://doi.org/10.1007/BF00374690 CrossRefGoogle Scholar
  24. Edgar AD, Lloyd FE, Forsyth DM, Barnett RL (1989) Origin of glass in upper mantle xenoliths from the quaternary volcanics of Gees, West Eifel, Germany. Contrib Mineral Petrol 103:277–286.  https://doi.org/10.1007/BF00402915 CrossRefGoogle Scholar
  25. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Lond Spec Pub 179:35–61.  https://doi.org/10.1144/GSL.SP.2000.179.01.05 CrossRefGoogle Scholar
  26. Frezzotti ML, Tecce F, Casagli A (2012) Raman spectroscopy for fluid inclusion analysis. J Geochem Explor 112:1–20.  https://doi.org/10.1016/j.gexplo.2011.09.009 CrossRefGoogle Scholar
  27. Ghosh S, Ohtani E, Litasov KD, Terasaki H (2009) Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth’s deep mantle. Chem Geol 262:17–28.  https://doi.org/10.1016/j.chemgeo.2008.12.030 CrossRefGoogle Scholar
  28. Granet M, Wilson M, Achauer U (1995) Imaging a mantle plume beneath the French Massif Central. Earth Planet Sci Lett 136:281–296.  https://doi.org/10.1016/0012-821X(95)00174-B CrossRefGoogle Scholar
  29. Grant TB, Milke R, Pandey S, Jahnke H (2013) The Heldburg Phonolite, Central Germany: reactions between phonolite and xenocrysts from the upper mantle and lower crust. Lithos 182–183:86–101.  https://doi.org/10.1016/j.lithos.2013.09.012 CrossRefGoogle Scholar
  30. Green TH, Adam J, Siel SH (1992) Trace element partitioning between silicate minerals and carbonatite at 25 kbar and application to mantle metasomatism. Miner Petrol 46:179–184.  https://doi.org/10.1007/BF01164645 CrossRefGoogle Scholar
  31. Guzmics T, Mitchell RH, Szabó C, Berkesi M, Milke R, Ratter K (2012) Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania): evolution of carbonated nephelinitic magma. Contrib Miner Petrol 164:101–122.  https://doi.org/10.1007/s00410-012-0728-6 CrossRefGoogle Scholar
  32. Haase KM, Renno AD (2008) Variation of magma generation and mantle sources during continental rifting observed in Cenozoic lavas from the Eger Rift, Central Europe. Chem Geol 257:192–202.  https://doi.org/10.1016/j.chemgeo.2008.09.003 CrossRefGoogle Scholar
  33. Harmer RE (1999) The petrogenetic association of carbonatite and alkaline magmatism: constraints from the spitskop complex, South Africa. J Petrol 40:525–548CrossRefGoogle Scholar
  34. Ionov DA, Dupuy C, O’Reilly SY, Kopylova MG, Genshaft YS (1993) Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet Sci Lett 119:283–297.  https://doi.org/10.1016/0012-821X(93)90139-Z CrossRefGoogle Scholar
  35. Ionov DA, O’Reilly SY, Genshaft YS, Kopylova MG (1996) Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: phase relationships, mineral compositions and trace-element residence. Contrib Miner Petrol 125:375–392.  https://doi.org/10.1007/s004100050229 CrossRefGoogle Scholar
  36. Jones AP, Genge M, Carmody L (2013) Carbonate melts and carbonatites. Rev Miner Geochem 75:289–322.  https://doi.org/10.2138/rmg.2013.75.10 CrossRefGoogle Scholar
  37. Keller J (1981) Carbonatitic volcanism in the Kaiserstuhl alkaline complex: evidence for highly fluid carbonatitic melts at the earth’s surface. J Volca Geotherm Res 9:423–431.  https://doi.org/10.1016/0377-0273(81)90048-2 CrossRefGoogle Scholar
  38. Klemme S, van der Laan SR, Foley SF, Günther D (1995) Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett 133:439–448.  https://doi.org/10.1016/0012-821X(95)00098-W CrossRefGoogle Scholar
  39. Kogarko LN, Henderson CMB, Pacheco H (1995) Primary Ca-rich carbonatite magma and carbonate-silicate-sulphide liquid immiscibility in the upper mantle. Contrib Miner Petrol 121:267–274.  https://doi.org/10.1007/BF02688242 CrossRefGoogle Scholar
  40. Kukuła A, Puziewicz J, Matusiak-Małek M, Ntaflos T, Büchner J, Tietz O (2015) Depleted subcontinental lithospheric mantle and its tholeiitic melt metasomatism beneath NE termination of the Eger Rift (Europe): the case study of the Steinberg (Upper Lusatia, SE Germany) xenoliths. Miner Petrol 109:761–787.  https://doi.org/10.1007/s00710-015-0405-3 CrossRefGoogle Scholar
  41. Laporte D, Lambart S, Schiano P, Ottolini L (2014) Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites. Earth Planet Sci Lett 404:319–331.  https://doi.org/10.1016/j.epsl.2014.08.002 CrossRefGoogle Scholar
  42. Masotta M, Mollo S, Freda C, Gaeta M, Moore G (2013) Clinopyroxene–liquid thermometers and barometers specific to alkaline differentiated magmas. Contrib Miner Petrol 166:1545–1561.  https://doi.org/10.1007/s00410-013-0927-9 CrossRefGoogle Scholar
  43. Masotta M, Mollo S, Gaeta M, Freda C (2016) Melt extraction in mush zones: the case of crystal-rich enclaves at the Sabatini Volcanic District (central Italy). Lithos 248–251:288–292.  https://doi.org/10.1016/j.lithos.2016.01.030 CrossRefGoogle Scholar
  44. Matusiak-Małek M, Puziewicz J, Ntaflos T, Grégoire M, Kukuła A, Wojtulek PM (2017) Origin and evolution of rare amphibole-bearing mantle peridotites from Wilcza Góra (SW Poland), Central Europe. Lithos 286–287:302–323.  https://doi.org/10.1016/j.lithos.2017.06.017 CrossRefGoogle Scholar
  45. Medaris LG, Ackerman L, Jelínek E, Michels ZD, Erban V, Kotková J (2015) Depletion, cryptic metasomatism, and modal metasomatism (refertilization) of Variscan lithospheric mantle: evidence from major elements, trace elements, and Sr–Nd–Os isotopes in a Saxothuringian garnet peridotite. Lithos 226:81–97.  https://doi.org/10.1016/j.lithos.2014.10.007 CrossRefGoogle Scholar
  46. Mollo S, Masotta M (2014) Optimizing pre-eruptive temperature estimates in thermally and chemically zoned magma chambers. Chem Geol 368:97–103.  https://doi.org/10.1016/j.chemgeo.2014.01.007 CrossRefGoogle Scholar
  47. Mollo S, Gaeta M, Freda C, Di Rocco T, Misiti V, Scarlato P (2010) Carbonate assimilation in magmas: a reappraisal based on experimental petrology. Lithos 114:503–514.  https://doi.org/10.1016/j.lithos.2009.10.013 CrossRefGoogle Scholar
  48. Mollo S, Putirka K, Misiti V, Soligo M, Scarlato P (2013) A new test for equilibrium based on clinopyroxene–melt pairs: Clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions. Chem Geol 352:92–100.  https://doi.org/10.1016/j.chemgeo.2013.05.026 CrossRefGoogle Scholar
  49. Nicolas A (1986) A melt extraction model based on structural studies in Mantle peridotites. J Petrol 27:999–1022.  https://doi.org/10.1093/petrology/27.4.999 CrossRefGoogle Scholar
  50. Olin PH, Wolff JA (2010) Rare earth and high field strength element partitioning between iron-rich clinopyroxenes and felsic liquids. Contrib Miner Petrol 160:761–775.  https://doi.org/10.1007/s00410-010-0506-2 CrossRefGoogle Scholar
  51. Palme H, O’Neill HSC (2003) Cosmochemical estimates of Mantle composition. Treatise Geochem 2:568.  https://doi.org/10.1016/B0-08-043751-6/02177-0 CrossRefGoogle Scholar
  52. Palme H, O’Neill HStC (2014) Cosmochemical Estimates of Mantle Composition. In: Treatise Geochem, vol 2, 2nd ed. Elsevier, pp 1–39Google Scholar
  53. Plomerová J, Achauer U, Babuška V, Vecsey L, BOHEMA Working Group (2007) Upper mantle beneath the Eger Rift (Central Europe): plume or asthenosphere upwelling? Geophys J Int 169:675–682.  https://doi.org/10.1111/j.1365-246X.2007.03361.x CrossRefGoogle Scholar
  54. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Miner Geochem 69:61–120.  https://doi.org/10.2138/rmg.2008.69.3 CrossRefGoogle Scholar
  55. Putirka KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am Miner 88:1542–1554.  https://doi.org/10.2138/am-2003-1017 CrossRefGoogle Scholar
  56. Puziewicz J, Koepke J, Grégoire M, Ntaflos T, Matusiak-Małek M (2011) Lithospheric Mantle modification during cenozoic rifting in central europe: evidence from the księginki nephelinite (SW Poland) Xenolith Suite. J Petrol 52:2107–2145.  https://doi.org/10.1093/petrology/egr041 CrossRefGoogle Scholar
  57. Puziewicz J, Matusiak-Małek M, Ntaflos T, Grégoire M, Kukuła A (2015) Subcontinental lithospheric mantle beneath Central Europe. Int J Earth Sci 104:1913–1924.  https://doi.org/10.1007/s00531-014-1134-2 CrossRefGoogle Scholar
  58. Rapprich V, Kochergina YV, Magna T, Laufek F, Halodová P, Bůzek F (2017) Carbonate-rich dyke in Roztoky intrusive complex—an evidence for carbonatite magmatism in the Eger rift? J Geosci.  https://doi.org/10.3190/jgeosci.238 CrossRefGoogle Scholar
  59. Riley TR, Bailey DK, Harmer RE, Liebsch H, Lloyd FE, Palmer MR (1999) Isotopic and geochemical investigation of a carbonatite-syenite-phonolite diatreme, West Eifel (Germany). Miner Mag 63:615–631.  https://doi.org/10.1180/002646199548736 CrossRefGoogle Scholar
  60. Ritter JRR, Jordan M, Christensen UR, Achauer U (2001) A mantle plume below the Eifel volcanic fields, Germany. Earth Planet Sci Lett 186:7–14.  https://doi.org/10.1016/S0012-821X(01)00226-6 CrossRefGoogle Scholar
  61. Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475.  https://doi.org/10.1016/0012-821X(93)90076-L CrossRefGoogle Scholar
  62. Schultze DS, Jourdan F, Hecht L, Reimold WU, Schmitt R-T (2016) Tenoumer impact crater, Mauritania: impact melt genesis from a lithologically diverse target. Meteorit Planet Sci 51:323–350.  https://doi.org/10.1111/maps.12593 CrossRefGoogle Scholar
  63. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767.  https://doi.org/10.1107/S0567739476001551 CrossRefGoogle Scholar
  64. Shatskiy AF, Litasov KD, Palyanov YN (2015) Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: review of experimental data. Russ Geol Geophys 56:113–142.  https://doi.org/10.1016/j.rgg.2015.01.007 CrossRefGoogle Scholar
  65. Špaček P, Ackerman L, Habler G, Abart R, Ulrych J (2013) Garnet breakdown, symplectite formation and melting in basanite-hosted peridotite xenoliths from zinst (Bavaria, Bohemian Massif). J Petrol 54:1691–1723.  https://doi.org/10.1093/petrology/egt028 CrossRefGoogle Scholar
  66. Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Pub 42:313–345.  https://doi.org/10.1144/GSL.SP.1989.042.01.19 CrossRefGoogle Scholar
  67. Sweeney RJ (1994) Carbonatite melt compositions in the Earth’s mantle. Earth Planet Sci Lett 128:259–270.  https://doi.org/10.1016/0012-821X(94)90149-X CrossRefGoogle Scholar
  68. Ulrych J, Štěpánková-Svobodová J (2014) Cenozoic alkaline volcanic rocks with carbonatite affinity in the Bohemian Massif: their sources and magma generation. Miner Slovaka 46:45–58Google Scholar
  69. Ulrych J, Dostal J, Hegner E, Balogh K, Ackerman L (2008) Late Cretaceous to Paleocene melilitic rocks of the Ohře/Eger Rift in northern Bohemia, Czech Republic: insights into the initial stages of continental rifting. Lithos 101:141–161.  https://doi.org/10.1016/j.lithos.2007.07.012 CrossRefGoogle Scholar
  70. Ulrych J, Dostal J, Adamovič J, Jelínek E, Špaček P, Hegner E, Balogh K (2011) Recurrent cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos 123:133–144.  https://doi.org/10.1016/j.lithos.2010.12.008 CrossRefGoogle Scholar
  71. Welsch B, Hammer J, Baronnet A, Jacob S, Hellebrand E, Sinton J (2016) Clinopyroxene in postshield Haleakala ankaramite: 2. Texture, compositional zoning and supersaturation in the magma. Contrib Miner Petrol 171:6.  https://doi.org/10.1007/s00410-015-1213-9 CrossRefGoogle Scholar
  72. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187.  https://doi.org/10.2138/am.2010.3371 CrossRefGoogle Scholar
  73. Wilson M, Downes H (1991) Tertiary-quaternary extension-related alkaline magmatism in Western and Central Europe. J Petrol 32:811–849.  https://doi.org/10.1093/petrology/32.4.811 CrossRefGoogle Scholar
  74. Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317.  https://doi.org/10.1016/0012-821X(91)90078-V CrossRefGoogle Scholar
  75. Yaxley GM, Brey GP (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib Miner Petrol 146:606–619.  https://doi.org/10.1007/s00410-003-0517-3 CrossRefGoogle Scholar
  76. Yaxley G, Kamenetsky V, Green D, Falloon T (1997) Glasses in mantle xenoliths from western Victoria, Australia, and their relevance to mantle processes. Earth Planet Sci Lett 148:433–446.  https://doi.org/10.1016/S0012-821X(97)00058-7 CrossRefGoogle Scholar
  77. Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111.  https://doi.org/10.1016/0040-1951(92)90338-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Angewandte GeowissenschaftenTechnische Universität BerlinBerlinGermany
  2. 2.Arbeitsbereich Mineralogie-PetrologieFreie Universität BerlinBerlinGermany
  3. 3.Fachbereich GeowissenschaftenUniversität BremenBremenGermany

Personalised recommendations