Advertisement

Diffusion pathways of Fe2+ and Fe3+ during the formation of ferrian chromite: a µXANES study

  • F. GervillaEmail author
  • M. P. Asta
  • l. Fanlo
  • D. Grolimund
  • D. Ferreira-Sánchez
  • V. A. Samson
  • D. Hunziker
  • V. Colas
  • J. M. González-Jiménez
  • T. N. Kerestedjian
  • I. Sergeeva
Original Paper
  • 137 Downloads

Abstract

The alteration of chromian spinel is a key process during serpentinization and metamorphism of ultramafic rocks controlled by oxygen fugacity (fO2) and Fe2+ ↔ Fe3+ exchange during fluid–rock interaction. Chromian spinel alteration is better recorded in less permeable chromitite than in peridotites where extensive fluid–rock interaction frequently overprints the record of earlier stages of alteration. To shed light on that process we have studied the distribution of Fe2+ and Fe3+ in variably altered chromian spinel grains from a set of chromitite samples from the same mining district using synchrotron-based microscopic chemical imaging and spatially resolved X-ray absorption near edge structure spectroscopy. Our results show that early stages of alteration do not involve changes in Cr3+ and Fe2+ contents or in Fe speciation but only depletion in Al3+ and Mg2+ resulting in the formation of porous chromite. With ongoing alteration Fe3+ migrates into porous chromite mainly along fracture walls and fracture zones as well as along grain boundaries. Sheared-type chromitites record the maximum rates of fluid–rock interaction because in these chromitite-types the accommodation of deformation on porous chromite allowed higher rates of diffusion of Fe3+ and Fe2+ (a magnetite component with Fe3+/Fetotal = 0.66) into the newly formed neoblasts. In porous chromite-type texture (all the original chromite grains fully transformed to porous chromite) the deformation and accompanying diffusion processes result in the formation of homogenous ferrian chromite grains. In contrast, in partly altered-type texture (chromite grains with original cores surrounded by porous chromite), such processes are only restricted to the porous rims, giving rise to zoned chromian spinel-ferrian chromite grains.

Keywords

Metamorphic alteration Iron diffusion Chromian spinel Ferrian chromite µXANES spectra RIXS data 

Notes

Acknowledgements

The authors acknowledge the Paul Scherrer Institut, Villigen, Switzerland for provision of synchroton radiation beamtime (proposals 20131062 and 20141107) at beamline microXAS (X05LA) of the SLS. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant agreement no. 312284 (CALIPSO) and from Spanish ministerio de Ciencia, Innovación y Universidades (project RTI2018-099157-A-I00). Maria P. Asta has received financial support from the European Comission through the Marie Skłodowska-Curie Research Fellowship Programme. J. M. González-Jiménez thanks the support of a Ramón y Cajal Fellowship (RYC-2015-17596) granted by the Spanish “Ministerio de Economía y Competitividad (MINECO)”.

References

  1. Abzalov MZ (1998) Chromite-spinel in gabbro-wherlite intrusions of the Pechenga area, Kola Peninsula, Russia: emphasis on alteration features. Lithos 43:109–134CrossRefGoogle Scholar
  2. Barnes SJ (2000) Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. J Petrol 41:387–409CrossRefGoogle Scholar
  3. Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestial mafic and ultramafic rocks. J Petrol 42:2279–2302CrossRefGoogle Scholar
  4. Barra F, Gervilla F, Hernández E, Reich M, Padrón-Navarta JA, González-Jiménez JM (2014) Alteration patterns of chromian spinels from La Cabaña peridotite, south central Chile. Mineral Petrol 108:819–836CrossRefGoogle Scholar
  5. Beeson MH, Jackson ED (1969) Chemical composition of altered chromites from Stillwater complex, Montana. Am Mineral 54:1084–1100Google Scholar
  6. Berry AJ, O’Neill HSTC, Jayasuriya KD, Campbell SJ, Foran GJ (2003) XANES calibrations for the oxidation state of iron in silicate glass. Am Miner 88:976–977CrossRefGoogle Scholar
  7. Billia MA, Timms NE, Toy VG, Hart RD, Prior DJ (2013) Grain boundary dissolution porosity in quartzofelspathic ultramylonites: implications for permeability enhancement and wakening of mid-crustal shear zones. J Str Geol 53:2–14CrossRefGoogle Scholar
  8. Bliss NW, MacLean WH (1975) The paragenesis of zoned chromite from central Manitoba. Geochim Cosmochim Acta 39:973–990CrossRefGoogle Scholar
  9. Bonev N (2006) Cenozoic tectonic evolution of the eastern Rhodope massif (Bulgaria): basement structure and kinematics of syn- to postcollisional extensional deformation, vol 49. In: Dilek Y, Pavlides S (eds) Post-collisional tectonics and magmatism in the Mediterranean region and Asia. Geological Society of America Special Paper, pp 211–235Google Scholar
  10. Borfecchia E, Mino L, Gianolio D, Groppo C, Malaspina N, Martinez-Criado G, Sans JA, Poli S, Castellic D, Lamberti C (2012) Iron oxidation state in garnet from a subduction setting: a micro-XANES and electron microprobe (‘‘flank method’’) comparative study. J Anal At Spectrom 27:1725CrossRefGoogle Scholar
  11. Burkhard DJM (1993) Accessory chromium spinels: their coexistence and alteration in serpentinites. Geochim Cosmochim Acta 57:1297–1306CrossRefGoogle Scholar
  12. Colas V (2015) Modelos de alteración de cromititas ofiolíticas durante el metamorfismo. PhD Thesis, University of ZaragozaGoogle Scholar
  13. Colás V, Padrón-Navarta JA, González-Jiménez JM, Fanlo I, López Sánchez-Vizcaíno V, Gervilla F, Castroviejo R (2017) The role of silica in the hydrous metamorphism of chromite. Ore Geol Rev 90:274–286CrossRefGoogle Scholar
  14. Colás V, González-Jiménez JM, Camprubi A, Proenza JA, Griffin WL, Fanlo I, O’Reilly SY, Gervilla F, González-Partida E (2018) A reappraisal of the metamorphic history of the Tehuitzingo chromitite, Puebla state, Mexico. Int Geol Rev.  https://doi.org/10.1080/00206814.2018.1542633 CrossRefGoogle Scholar
  15. Company M, Gervilla F, Abu Anbar M (2014) Comportamiento de la cromita durante el metamorfismo de cromititas y de sus rocas ultramáficas encajantes en el Desierto Oriental de Egipto. Macla 19Google Scholar
  16. de Groot FMF, Glatzel P, Bergmann U, van Aken PA, Barrea RA, Klemme S, Havecker M, Knop-Gericke A, Heijboer WM, Weckhuysen BM (2005) 1s2p resonant inelastic X-ray scattering of iron oxides. J Phys Chem B 109:20751–20762CrossRefGoogle Scholar
  17. Evans BW, Frost BR (1975) Chrome-spinel in progressive metamorphism—a preliminary analysis. Geochim Cosmochim Acta 39:959–972CrossRefGoogle Scholar
  18. Frost BR (1991) Stability of oxide minerals in metamorphic rocks, vol 25. In: Lindsley RH (ed) Oxide minerals: petrologic and magnetic significance. Mineralogical Society of America, Reviews in Mineralogy, pp 469–487Google Scholar
  19. Fusseis F, Regenauer-Lieb K, Liu J, Hough RM, De Carlo F (2009) Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones. Nature 459:975–977CrossRefGoogle Scholar
  20. Gervilla F, Padrón-Navarta JA, Kerestedjian TN, Sergeeva I, González-Jiménez JM, Fanlo I (2012) Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: a two stage process. Contrib Mineral Petrol 164:647–657CrossRefGoogle Scholar
  21. Glatzel P, Bergmann U (2005) High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes—electronic and structural information. Coord Chem Rev 249:65–95CrossRefGoogle Scholar
  22. González-Jiménez JM, Kerestedjian T, Proenza JA, Gervilla F (2009) Metamorphism on chromite ores from the Dobromirtsi Ultramafic Massif, Rhodope Mountains (SE Bulgaria). Geol Acta 7:413–429Google Scholar
  23. González-Jiménez JM, Barra F, Garrido LNF, Reich M, Satsukawa T, Romero R, Salazar E, Colás V, Orellana F, Rabbia O, Plissart G, Morata D (2016) A secondary precious and base metal mineralization in chromitites linked to the development of a Paleozoic accretionary complex in Central Chile. Ore Geol Rev 78:14–40CrossRefGoogle Scholar
  24. Haggerty SE (1976) Opaque mineral oxides in terrestial igneous rocks, vol 3. In: Rumble D III (ed) Oxide minerals. Reviews in Mineralogy. Mineral Soc Am, pp 101–300Google Scholar
  25. Haslam HW, Harding RR, Tresham AE (1976) Chromite-chlorite intergrowths in peridotite at Chimwadzulu Hill, Malawi. Mineral Mag 40:695–701CrossRefGoogle Scholar
  26. Hoffman MA, Waker D (1978) Textural and chemical variations of olivine and chrome spinel in the East Dover ultramafic bodies, south central Vermont. Geol Soc Am Bull 89:699–710CrossRefGoogle Scholar
  27. Kimball KL (1990) Effects of hydrothermal alteration on the composition of chromian spinels. Contrib Miner Petrol 105:337–346CrossRefGoogle Scholar
  28. Kozhoukharova E (1998) Eclogitization of serpentinites into narrow shear zones from the Avren syncline, Eastern Rhodopes. Geochem Mineral Petrol 35:29–46 (in Bulgarian) Google Scholar
  29. Mellini M, Rumori C, Viti C (2005) Hydrothermally reset magmatic spinels in retrograde serpentinites: formation of “ferritchromit” rims and chlorite aureoles. Contrib Mineral Petrol 149:266–275CrossRefGoogle Scholar
  30. Menegon L, Fusseis F, Stünitz H, Xianghui Xiao X (2015) Creep cavitation bands control porosity and fluid flow in lower crustal shear zones. Geology 43:227–230CrossRefGoogle Scholar
  31. Merlini A, Grieco G, Diella V (2009) Ferritchromite and chromian-chlorite formation in mélange-hosted Kalkan chromite (Southern urals, Russia). Am Miner 94:1459–1467CrossRefGoogle Scholar
  32. Métrich N, Susini J, Foy E, Farges F, Massare D, Sylla L, Lequien S, Bonnin-Mosbah M (2006) Redox state of iron in peralkaline rhyolitic glass/melt: X-ray absorption micro-spectroscopy experiments at high temperature. Chem Geol 231:350–363CrossRefGoogle Scholar
  33. Mogessie A, Scheipl G, Bauer C, Krenn K, Georgieva M (2008) Petrology and geochemistry of the Avren Complex, Rhodope Massif, Bulgaria. Abstract, International Geological Congress, OsloGoogle Scholar
  34. Mposkos E (2002) Petrology of the ultra-high pressure metamorphic Kimi complex in Rhodope (N.E. Greece): A new insight into the Alpine geodynamic evolution of the Rhodope. Bull Geol Soc Greece 34(6):2169–2188CrossRefGoogle Scholar
  35. Mposkos E, Kostopoulos DK (2001) Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: a new ultrahigh-pressure metamorphic province established. Earth Planet Sci Lett 192:497–506CrossRefGoogle Scholar
  36. Mposkos E, Krohe A (2000) Petrological and structural evolution of continental high pressure (HP) metamorphic rocks in the Alpine Rhodope Domain (N. Greece). In: Panaydes I, Xenopontos C, Malpas J (eds) Proceedings of the 3rd International Conf. on the Geology of the Eastern Mediterranean (Nicosia, Cyprus). The Geological Survey of Cyprus, Nicosia, pp 221–232Google Scholar
  37. Mposkos E, Krohe A (2006) Pressure–temperature-deformation paths of closely associated ultra-high-pressure (diamond-bearing) crustal and mantle rocks of the Kimi complex: implications for the tectonic history of the Rhodope Mountains, northern Greece. Can J Earth Sci 43:1755–1776CrossRefGoogle Scholar
  38. Mukherjee R, Mondal SK, Rosing MT, Frei R (2010) Compositional variations in the Mesoarchean chromitites of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implications for tectonic setting. Contrib Miner Petrol 160:865–885CrossRefGoogle Scholar
  39. Onyeagocha AC (1974) Alteration of chromite from the twin Sisters dunite, Washington. Am Miner 59:608–612Google Scholar
  40. Prabhakar N, Bhattacharya A (2013) Origin of zoned spinel by coupled dissolution–precipitation and inter-crystalline diffusion: evidence from serpentinized wehrlite, Bangriposi, Eastern India. Contrib Mineral Petrol 166:1047–1066CrossRefGoogle Scholar
  41. Proenza JA, Ortega-Gutiérrez F, Camprubí A, Tritlla J, Elías-Herrera M, Reyes-Salas M (2004) Paleozoic serpentinite-enclosed chromitites from Tehuitzingo (Acatlán Complex, southern Mexico): a petrological and mineralogical study. J S Am Earth Sci 16:649–666CrossRefGoogle Scholar
  42. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchroton Rad 12:537–541CrossRefGoogle Scholar
  43. Roshchin AV, Roshchin VE (2003) Diffusion of anions and cations in oxide crystal lattices during the reduction and oxidation of metals. Russ Metall (Metally) 1:1–5Google Scholar
  44. Sarov S (2004) Geological map of Republic of Bulgaria 1: 50 000, sheet K 35-88 B and K-35-100 A. Bulgarian National Geological Survey, Project 425/20/07. 2004Google Scholar
  45. Satsukawa T, Piazolo S, González-Jiménez JM, Colás V, Griffin WL, O’Reilly SY, Gervilla F, Fanlo I, Kerestedjian TN (2015) Fluid-present deformation aids chemical homogeneization in chromite: insights from chromites from Golyamo Kamenyane, SE Bulgaria. Lithos 228–229:78–89CrossRefGoogle Scholar
  46. Sergeeva IS, Kerestedjian TN, Nikolova RP, Gherkezova-Zhelena ZP, Gervilla F (2017) Crystal chemistry and structural characterization of natural Cr-spinels. Bulg Chem Commun 49(special Issue A):7–20Google Scholar
  47. Spier CA, Ferreira Filho CF (2001) The chromite deposits of the Bacuri mafic-ultramafic layered complex, Guyana Shield, Amapá State, Brasil. Econ Geol 96:817–835Google Scholar
  48. Suzuki A, Yasuda A, Ozawa K (2008) Cr and Al diffusion in chromite spinel: experimental determination and its implication for diffusion creep. Phys Chem Miner 35:433–445CrossRefGoogle Scholar
  49. Szlachetko J, Nachtegaal M, de Boni E, Willimann M, Safonova O, Sa J, Smolentsev G, Szlachetko M, van Bokhoven JA, Dousse JC, Hoszowska J, Kayser Y, Jagodzinski P, Bergamaschi A, Schmitt B, David C, Lucke A (2012) A von Hamos X-ray spectrometer based on a segmented-type diffraction crystal for single-shot X-ray emission spectroscopy and time-resolved resonant inelastic X-ray scattering studies. Rev Sci Instrum 83:103105-1–103105-7CrossRefGoogle Scholar
  50. Ulmer GC (1974) Alteration of chromite during serpentinization the Pennsylvania-Maryland District. Am Mineral 59:1236–1241Google Scholar
  51. Van Orman JA, Crispin KL (2010) Diffusion in oxides. Rev Mineral Geochem 72:757–825CrossRefGoogle Scholar
  52. Wilke M, Farges F, Petit PE, Brown GE Jr, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K-XANES spectroscopic study. Am Miner 86:714–730CrossRefGoogle Scholar
  53. Wylie AN, Candela PA, Burke TM (1987) Compositional zoning in unusual Zn-rich chromit from the Sykesville district of Maryland and its bearing on the origin of “ferritchromite”. Am Miner 72:413–422Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • F. Gervilla
    • 1
    Email author
  • M. P. Asta
    • 2
  • l. Fanlo
    • 3
  • D. Grolimund
    • 4
  • D. Ferreira-Sánchez
    • 4
  • V. A. Samson
    • 4
  • D. Hunziker
    • 5
  • V. Colas
    • 6
  • J. M. González-Jiménez
    • 1
  • T. N. Kerestedjian
    • 7
  • I. Sergeeva
    • 7
  1. 1.Departamento de Mineralogía y Petrología and Instituto Andaluz de Ciencias de la Tierra, Facultad de CienciasUniversidad de Granada-CSICGranadaSpain
  2. 2.Institut des Sciences de la Terre (ISTerre, UMR 5275)Université Grenoble AlpesGrenobleFrance
  3. 3.Departamento de Ciencias de la Tierra, Cristalografía y MineralogíaUniversidad de ZaragozaSaragossaSpain
  4. 4.Swiss Light SourcePaul Scherrer InstituteVilligenSwitzerland
  5. 5.Department of Earth SciencesSwiss Federal Instiute of Technology Zurich (ETHZ)ZurichSwitzerland
  6. 6.Instituto de Geología, Universidad Nacional Autónoma de MéxicoCiudad De MéxicoMexico
  7. 7.Bulgarian Academy of Sciences, Geological InstituteSofíaBulgaria

Personalised recommendations