Advertisement

A refined model for lithosphere evolution beneath the decratonized northeastern North China Craton

  • A-Bing Lin
  • Jian-Ping ZhengEmail author
  • Qing Xiong
  • Sonja Aulbach
  • Jiang-Gu Lu
  • Shao-Kui Pan
  • Hong-Kun Dai
  • Hui Zhang
Original Paper
  • 92 Downloads

Abstract

The eastern North China Craton (NCC), where an initially diamondiferous deep cratonic mantle root was lost during Paleozoic and Mesozoic time, represents a prime natural laboratory to study the processes and mechanisms of continental lithospheric mantle destruction and replacement, which remain, however, controversial. In this study, detailed petrography, whole-rock and mineral compositions of spinel-facies peridotite xenoliths from Cenozoic basalts in the Huinan area, northeastern NCC, are presented to provide new constraints on the transformation of the subcontinental lithospheric mantle (SCLM). These xenoliths define two groups based on textural observation and mineral modes: Group 1 peridotites show protogranular textures and consist of harzburgites and dunites. They have low Al2O3 contents in whole-rock and orthopyroxene (0.53–1.06 wt.% and 2.10–3.21 wt.%, respectively), high olivine modes (79–96%), whole-rock MgO (44.8–47.9 wt.%) and Mg# (100 Mg/(Mg + FeT) molar: 90.1–90.7), suggesting that they were derived from moderately refractory SCLM. In contrast, Group 2 xenoliths display porphyroclastic to protogranular textures and consist of lherzolites and harzburgites with rare spinel-pyroxene intergrowths. They have overall higher Al2O3 (1.48–3.23 wt.% and 3.02–4.65 wt.%, respectively) in whole-rock and orthopyroxene, lower olivine modes (64–83%), MgO (38.6–44.5 wt.%) and whole-rock Mg# values 87.6–90.1, and they may represent fertile SCLM. Peridotites of both groups have similar equilibration temperatures (i.e., 923–977 °C and 881–1110 °C, respectively), which are not correlated with Mg# in olivines, suggesting that they coexist over a range of depths. However, clinopyroxenes in the Group 1 xenoliths display LREE-enriched and convex-upward REE patterns, whereas those in Group 2 mainly show LREE-depleted and spoon-shaped REE patterns, with minor LREE-enriched and convex-upward ones. In addition, spinel-pyroxene intergrowths indicative of garnet destabilization are ubiquitous in Group 1, consistent with variable Al2O3 over a narrow range of Mg# in some opx and low HREE in some cpx, but rare in Group 2 peridotites. Interaction of the fertile mantle with melts similar to the Cenozoic basalts at high melt–rock ratios eradicated most signatures of their origin in the garnet stability field, whereas the refractory peridotites, which reacted with residual melts or fluids at low melt/fluid-rock ratios, retained evidence for the former presence of garnet. We suggest that, combined, these observations are best reconciled if portions of ancient refractory lithosphere, which were partly delaminated during multiple subduction episodes affecting the eastern NCC, were re-accreted together with fertile mantle during asthenospheric upwelling driven by extension.

Keywords

Peridotite xenoliths Refertilization Mantle metasomatism Lithospheric mantle North China Craton 

Notes

Acknowledgements

We thank Editor Othmar Müntener, reviewer Emily J. Chin and an anonymous reviewer for constructive comments and suggestions on the original manuscript. This version benefited from constructive reviews by Emily J. Chin and Qiao Shu, and suggestions and handling by Editor Timothy Grove. This work was supported by the National Natural Science Foundation of China project (41520104003) and the National Key R&D Program of China (2016YFC0600403).

Supplementary material

410_2019_1551_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1114 KB)
410_2019_1551_MOESM2_ESM.xlsx (14 kb)
Supplementary material 2 (XLSX 14 KB)
410_2019_1551_MOESM3_ESM.xlsx (14 kb)
Supplementary material 3 (XLSX 13 KB)
410_2019_1551_MOESM4_ESM.xlsx (27 kb)
Supplementary material 4 (XLSX 27 KB)
410_2019_1551_MOESM5_ESM.xlsx (28 kb)
Supplementary material 5 (XLSX 28 KB)
410_2019_1551_MOESM6_ESM.xlsx (26 kb)
Supplementary material 6 (XLSX 25 KB)

References

  1. Aulbach S (2018) Cratonic Lithosphere discontinuities: dynamics of small-volume melting, meta-cratonisation and a possible role for brines. In: Yuan H, Romanowicz B (eds) Lithospheric discontinuities geophysical monograph 239. American Geophysical Union, Washington, D.C., pp. 177–204CrossRefGoogle Scholar
  2. Aulbach S, Massuyeau M, Gaillard F (2017a) Origins of cratonic mantle discontinuities: a view from petrology, geochemistry and thermodynamic models. Lithos 268:364–382.  https://doi.org/10.1016/j.lithos.2016.11.004 CrossRefGoogle Scholar
  3. Aulbach S, Sun J, Tappe S, Höfer HE, Gerdes A (2017b) Volatile-rich metasomatism in the Cratonic Mantle beneath SW Greenland: link to Kimberlites and Mid-lithospheric discontinuities. J Petrol 58:2311–2338.  https://doi.org/10.1093/petrology/egy009 CrossRefGoogle Scholar
  4. Bedini RM, Bodinier JL (1999) Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: ICP-MS data from the East African rift. Geochim Cosmochim Acta 63:3883–3900CrossRefGoogle Scholar
  5. Bernstein S, Kelemen P, Hanghøj K (2007) Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene. Geology 35:459–462.  https://doi.org/10.1130/G23336A.1 CrossRefGoogle Scholar
  6. Bhanot KK, Downes H, Petrone CM, Humphreys-Williams E (2017) Textures in spinel peridotite mantle xenoliths using micro-CT scanning: examples from Canary Islands and France. Lithos 276:90–102.  https://doi.org/10.1016/j.lithos.2016.08.004 CrossRefGoogle Scholar
  7. Blusztajn J, Shimizu N (1994) The trace-element variations in clinopyroxenes from spinel peridotite xenoliths from southwest Poland. Chem Geol 111:227–243CrossRefGoogle Scholar
  8. Bodinier JL, Vasseur G, Vernieres J, Dupuy C, Fabries J (1990) Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite. J Petrol 31:597–628CrossRefGoogle Scholar
  9. Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378CrossRefGoogle Scholar
  10. Byerly BL, Lassiter JC (2015) Trace element partitioning and Lu-Hf isotope systematics in spinel peridotites from the Rio Grande Rift and Colorado Plateau: towards improved age assessment of clinopyroxene Lu/Hf-176Hf/177Hf in SCLM peridotite. Chem Geol 413:146–158.  https://doi.org/10.1016/j.chemgeo.2015.08.009 CrossRefGoogle Scholar
  11. Canil D (2004) Mildly incompatible elements in peridotites and the origins of mantle lithosphere. Lithos 77:375–393.  https://doi.org/10.1016/j.lithos.2004.04.014 CrossRefGoogle Scholar
  12. Casagli A, Frezzotti ML, Peccerillo A, Tiepolo M, De Astis G (2017) (Garnet)-spinel peridotite xenoliths from Mega (Ethiopia): evidence for rejuvenation and dynamic thinning of the lithosphere beneath the southern Main Ethiopian Rift. Chem Geol 455:231–248.  https://doi.org/10.1016/j.chemgeo.2016.11.001 CrossRefGoogle Scholar
  13. Chen Y, Zhang YX, Graham D, Su SG, Deng JF (2007) Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos 96:108–126.  https://doi.org/10.1016/j.lithos.2006.09.015 CrossRefGoogle Scholar
  14. Chen L, Jiang MM, Yang JH, Wei ZG, Liu CZ, Ling Y (2014) Presence of an intralithospheric discontinuity in the central and western north China Craton: implications for destruction of the craton. Geology 42:223–226.  https://doi.org/10.1130/G35010.1 CrossRefGoogle Scholar
  15. Chin EJ, Lee CTA, Barnes J (2014) Thickening, refertilization, and the deep lithosphere filter in continental arcs: constraints from major and trace elements and oxygen isotopes. Earth Planet Sci Lett 397:184–200.  https://doi.org/10.1016/j.epsl.2014.04.022 CrossRefGoogle Scholar
  16. Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol 40:133–165CrossRefGoogle Scholar
  17. Dai HK, Zheng JP, Xiong Q, Su YP, Pan SK, Ping XQ, Zhou X (2018) Fertile lithospheric mantle underlying ancient continental crust beneath the northwestern north China craton: significant effect from the southward subduction of the Paleo–Asian Ocean. Geol Soc Am Bull 131:3–20.  https://doi.org/10.1130/B31871.1 CrossRefGoogle Scholar
  18. Dawson JB (1984) Contrasting types of upper mantle metasomatism? In: Kornprobst J (ed) Kimberlites II. The mantle and crust-mantle relationships. Elsevier, Amsterdam, pp 289–294CrossRefGoogle Scholar
  19. Fan QC, Sui JL, Liu RX, Wei HQ, Li N (2000) Petrology and geochemistry of Jinlongdingzi active volcano—the most recent basaltic explosive volcano at Longgang. Chin J Geochem 19:312–317Google Scholar
  20. Fan QC, Sui JL, Liu RX, Wei HQ, Li DM, Sun Q, Li N (2002) Periods of quarternary volcanic activity in Longgang area, Jilin province. Acta Petrol Sin 18:495–500 (In Chinese with English abstract)Google Scholar
  21. Foley SF (2008) Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci 1:503–510.  https://doi.org/10.1038/ngeo261 CrossRefGoogle Scholar
  22. Foley SF, Andronikov AV, Jacob DE, Melzer S (2006) Evidence from Antarctic mantle peridotite xenoliths for changes in mineralogy, geochemistry and geothermal gradients beneath a developing rift. Geochim Cosmochim Acta 70:3096–3120.  https://doi.org/10.1016/j.gca.2006.03.010 CrossRefGoogle Scholar
  23. Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta 38:1023–1059CrossRefGoogle Scholar
  24. Gao S, Rudnick RL, Carlson RW, McDonough WF, Liu YS (2002) Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett 198:307–322CrossRefGoogle Scholar
  25. Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC, Wang QH (2004) Recycling lower continental crust in the North China craton. Nature 432:892–899CrossRefGoogle Scholar
  26. Gorring ML, Kay SM (2000) Carbonatite metasomatized peridotite xenoliths from southern Patagonia: implications for lithospheric processes and Neogene plateau magmatism. Contrib Mineral Petrol 140:55–72CrossRefGoogle Scholar
  27. Griffin WL, O’Reilly SY, Ryan CG, Gaul O, Ionov DI (1998) Secular variation in the composition of subcontinental lithospheric mantle: geophysical and geodynamic implications. In: Braun J, Dooley JC, Goleby BR, van der Hilst RD, Klootwijk CT (eds) Structure and evolution of the Australian continent. Geodynamics, vol 26. American Geophysical Union, Washington, pp 1–26CrossRefGoogle Scholar
  28. Griffin WL, O’Reilly SY, Ryan CG (1999a) The composition and origin of subcontinental lithospheric mantle. In: Fei Y, Berka CM, Mysen BO (eds) Mantle petrology: field observations and high-pressure experimentation, pp 13–45Google Scholar
  29. Griffin WL, Ryan CG, Kaminsky FV, O’Reilly SY, Natapov LM, Win TT, Kinny PD, Ilupin IP (1999b) The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310:1–35CrossRefGoogle Scholar
  30. Griffin WL, O’Reilly SY, Abe N, Aulbach S, Davies RM, Pearson NJ, Doyle BJ, Kivi K (2003) The origin and evolution of Archean lithospheric mantle. Precambrian Res 127:19–41.  https://doi.org/10.1016/S0301-9268(03)00180-3 CrossRefGoogle Scholar
  31. Hellebrand E, Snow JE (2003) Deep melting and sodic metasomatism underneath the highly oblique-spreading Lena Trough (Arctic Ocean). Earth Planet Sci Lett 216:283–299.  https://doi.org/10.1016/S0012-821X(03)00508-9 CrossRefGoogle Scholar
  32. Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681CrossRefGoogle Scholar
  33. Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J Petrol 43:2305–2338CrossRefGoogle Scholar
  34. Herzberg C (2004) Partial crystallization of mid-ocean ridge basalts in the crust and mantle. J Petrol 45:2389–2405.  https://doi.org/10.1093/petrology/egh040 CrossRefGoogle Scholar
  35. Hirschmann MM (2000) Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem Geophys Geosyst 1:2000GC000070CrossRefGoogle Scholar
  36. Hu ZC, Gao S, Liu YS, Hu SH, Chen HH, Yuan HL (2008) Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J Anal At Spectrom 23:1093–1101.  https://doi.org/10.1039/B804760J CrossRefGoogle Scholar
  37. Ionov DA, Dupuy C, O’Reilly SY, Kopylova MG, Genshaft YS (1993) Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet Sci Lett 119:283–297CrossRefGoogle Scholar
  38. Ionov DA, Bodinier JL, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J Petrol 43:2219–2259CrossRefGoogle Scholar
  39. Ionov DA, Doucet LS, Xu YG, Golovin AV, Oleinikov OB (2018) Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite. Geochim Cosmochim Acta 224:132–153.  https://doi.org/10.1016/j.gca.2017.12.028 CrossRefGoogle Scholar
  40. Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678CrossRefGoogle Scholar
  41. Kaeser B, Kalt A, Pettke T (2006) Evolution of the lithospheric mantle beneath the Marsabit volcanic field (northern Kenya): constraints from microstructural, P–T and geochemical studies on xenoliths. J Petrol 47:2149–2184.  https://doi.org/10.1093/petrology/egl040 CrossRefGoogle Scholar
  42. Lee C-T, Harbert A, Leeman WP (2007) Extension of lattice strain theory to mineral/mineral rare-earth element partitioning: an approach for assessing disequilibrium and developing internally consistent partition coefficients between olivine, orthopyroxene, clinopyroxene and basaltic melt. Geochim Cosmochim Acta 71:481–496.  https://doi.org/10.1016/j.gca.2006.09.014 CrossRefGoogle Scholar
  43. Lee C-TA, Luffi P, Chin EJ (2011) Building and destroying continental mantle. Annu Rev Earth Planet Sci 39:59–90.  https://doi.org/10.1146/annurev-earth-040610-133505 CrossRefGoogle Scholar
  44. Lenoir X, Garrido CJ, Bodinier JL, Dautria JM (2000) Contrasting lithospheric mantle domains beneath the Massif Central (France) revealed by geochemistry of peridotite xenoliths. Earth Planet Sci Lett 181:359–375CrossRefGoogle Scholar
  45. Li CD, Zhang FQ, Miao LC, Xie HQ, Hua YQ, Xu YW (2007) Reconsideration of the Seluohe Group in Seluohe Area, Jilin Province. J Jilin Univ (Earth Sci) 37:841–847 (In Chinese with English abstract)Google Scholar
  46. Li CD, Xu YW, Zhang QH, Zhou HY, Peng SH, Chen JQ, Zhang K, Zhao LG, Li SY (2014) Neoarchean high-Mg andesites and its geological significance in Southern Jilin Province. J Jilin Univ (Earth Sci) 44:186–197 (In Chinese with English abstract)Google Scholar
  47. Lin J, Liu YS, Yang YH, Hu ZC (2016) Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sci 1:5–27.  https://doi.org/10.1016/j.sesci.2016.04.002 CrossRefGoogle Scholar
  48. Liu JQ (1999) Volcanoes in China. Science Press of China, Beijing, p 219 (In Chinese)Google Scholar
  49. Liu RX, Chen WJ, Sun JZ, Li DM (1992) The K–Ar age and tectonic environment of Cenozoic volcanic rock in China. In: Liu RX (ed) The age and geochemistry of Cenozoic volcanic rock in China. Seismologic Press, Beijing, pp 1–43 (In Chinese)Google Scholar
  50. Liu CQ, Masuda A, Xie GH (1994) Major-and trace-element compositions of Cenozoic basalts in eastern China: petrogenesis and mantle source. Chem Geol 114:19–42CrossRefGoogle Scholar
  51. Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43.  https://doi.org/10.1016/j.chemgeo.2008.08.004 CrossRefGoogle Scholar
  52. Liu L, Morgan JP, Xu YG, Menzies M (2018) Craton destruction part I: cratonic keel delamination along a weak Mid-Lithospheric discontinuity layer. J Geophys Res 123:10,040–010,068.  https://doi.org/10.1029/2017JB015372 CrossRefGoogle Scholar
  53. Lu JG, Zheng JP (2011) Mineralogical chemistry of peridotite xenoliths from the Huinan Cenozoic basalts: implication for evolution of the lithospheric mantle beneath the North China Craton. Acta Geol Sin 85:330–342 (In Chinese with English abstract)CrossRefGoogle Scholar
  54. Lu JG, Zheng JP, Griffin WL, Yu CM (2013) Petrology and geochemistry of peridotite xenoliths from the Lianshan region: Nature and evolution of lithospheric mantle beneath the lower Yangtze block. Gondwana Res 23:161–175.  https://doi.org/10.1016/j.gr.2012.01.008 CrossRefGoogle Scholar
  55. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  56. Menzies MA, Fan WM, Zhang M (1993) Palaeozoic and Cenozoic lithoprobes and the loss of> 120 km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geol Soc, London, vol 76, pp 71–81Google Scholar
  57. Navon O, Stolper E (1987) Geochemical consequences of melt percolation: the upper mantle as a chromatographic column. J Geol 95:285–307CrossRefGoogle Scholar
  58. Nimis P, Grütter H (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib Miner Petrol 159:411–427.  https://doi.org/10.1007/s00410-009-0455-9 CrossRefGoogle Scholar
  59. Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Miner Petrol 139:541–554CrossRefGoogle Scholar
  60. Niu YL (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074CrossRefGoogle Scholar
  61. O’Reilly SY, Griffin WL (2012) Mantle metasomatism. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock: lecture notes in earth system sciences. Springer, Berlin, pp 467–528.  https://doi.org/10.1007/978-3-642-28394-9_12 CrossRefGoogle Scholar
  62. O’Reilly SY, Griffin WL, Poudjom YH, Morgan P (2001) Are lithosphere forever? Tracking changes in subcontinental lithospheric mantle through time. GSA Today 11:4–10CrossRefGoogle Scholar
  63. Pan SK, Zheng JP, Chu LL, Griffin WL (2013) Coexistence of the moderately refractory and fertile mantle beneath the eastern Central Asian Orogenic Belt. Gondwana Res 23:176–189.  https://doi.org/10.1016/j.gr.2012.03.001 CrossRefGoogle Scholar
  64. Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic. Contrib Miner Petrol 139:36–53CrossRefGoogle Scholar
  65. Pearson DG, Wittig N (2014) The formation and evolution of cratonic mantle lithosphere: evidence from mantle xenoliths. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 255–292CrossRefGoogle Scholar
  66. Princivalle F, De Min A, Lenaz D, Scarbolo M, Zanetti A (2014) Ultramafic xenoliths from Damaping (Hannuoba region, NE-China): petrogenetic implications from crystal chemistry of pyroxenes, olivine and Cr-spinel and trace element content of clinopyroxene. Lithos 188:3–14.  https://doi.org/10.1016/j.lithos.2013.10.013 CrossRefGoogle Scholar
  67. Rampone E, Vissers RLM, Poggio M, Scambelluri M, Zanetti A (2010) Melt migration and intrusion during exhumation of the Alboran lithosphere: the Tallante mantle xenolith record (Betic Cordillera, SE Spain). J Petrol 51:295–325.  https://doi.org/10.1093/petrology/egp061 CrossRefGoogle Scholar
  68. Rivalenti G, Zanetti A, Girardi VA, Mazzucchelli M, Tassinari CC, Bertotto GW (2007) The effect of the Fernando de Noronha plume on the mantle lithosphere in north-eastern Brazil. Lithos 94:111–131CrossRefGoogle Scholar
  69. Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475CrossRefGoogle Scholar
  70. Shaw CS, Heidelbach F, Dingwell DB (2006) The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for “metasomatism” by the host lava. Contrib Mineral Petrol 151:681–697.  https://doi.org/10.1007/s00410-006-0087-2 CrossRefGoogle Scholar
  71. Smith D (1977) The origin and interpretation of spinel-pyroxene clusters in peridotite. J Geol 85:476–482CrossRefGoogle Scholar
  72. Stachel T, Luth RW (2015) Diamond formation—where, when and how? Lithos 220:200–220.  https://doi.org/10.1016/j.lithos.2015.01.028 CrossRefGoogle Scholar
  73. Su BX, Zhang HF, Sakyi PA, Yang YH, Ying JF, Tang YJ, Qin KZ, Xiao Y, Zhao XM, Mao Q, Ma YG (2011) The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central China. Contrib Mineral Petrol 161:465–482.  https://doi.org/10.1007/s00410-010-0543-x CrossRefGoogle Scholar
  74. Sun WD, Ding X, Hu YH, Li XH (2007) The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet Sci Lett 262:533–542.  https://doi.org/10.1016/j.epsl.2007.08.021 CrossRefGoogle Scholar
  75. Takazawa E, Frey FA, Shimizu N, Obata M (2000) Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): are they consistent with a partial melting process? Geochim Cosmochim Acta 64:695–716CrossRefGoogle Scholar
  76. Tang YJ, Zhang HF, Deloule E, Su BX, Ying JF, Xiao Y, Hu Y (2012) Slab-derived lithium isotopic signatures in mantle xenoliths from northeastern North China Craton. Lithos 149:79–90.  https://doi.org/10.1016/j.lithos.2011.12.001 CrossRefGoogle Scholar
  77. Tang YJ, Zhang HF, Ying JF, Su BX (2013) Widespread refertilization of cratonic and circum-cratonic lithospheric mantle. Earth-Sci Rev 118:45–68.  https://doi.org/10.1016/j.earscirev.2013.01.004 CrossRefGoogle Scholar
  78. Vernières JG, Godard M, Bodinier JL (1997) A plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth’s upper mantle. J Geophys Res 102:24771–24784CrossRefGoogle Scholar
  79. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60CrossRefGoogle Scholar
  80. Walter MJ (2003) Melt extraction and compositional variability in mantle lithosphere. In: Carlson RW (ed) Treatise on geochemistry. The mantle and core, vol 2. Elsevier, Amsterdam, pp 363–394CrossRefGoogle Scholar
  81. Wan YS, Song B, Yang C, Liu DY (2005) Zircon SHRIMP U-Pb geochronology of Archaean rocks from the Fushun-Qingyuan area, Liaoning Province and its geological significance. Acta Geol Sin 79:78–87 (In Chinese with English abstract)Google Scholar
  82. Wang T, Zheng Y, Zhang J, Zeng L, Donskaya T, Guo L, Li J (2011) Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: perspectives from metamorphic core complexes. Tectonics 30.  https://doi.org/10.1029/2011TC002896
  83. Wang J, Hattori K, Xie ZP (2013) Oxidation state of lithospheric mantle along the northeastern margin of the North China Craton: implications for geodynamic processes. Int Geol Rev 55:1418–1444.  https://doi.org/10.1080/00206814.2013.780722 CrossRefGoogle Scholar
  84. Wang HL, van Hunen J, Pearson DG (2015) The thinning of subcontinental lithosphere: the roles of plume impact and metasomatic weakening. Geochem Geophys Geosyst 16:1156–1171.  https://doi.org/10.1002/2015GC005784 CrossRefGoogle Scholar
  85. Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139CrossRefGoogle Scholar
  86. Windley BF, Maruyama S, Xiao WJ (2010) Delamination/thinning of sub-continental lithospheric mantle under eastern China: the role of water and multiple subduction. Am J Sci 310:1250–1293.  https://doi.org/10.2475/10.2010.03 CrossRefGoogle Scholar
  87. Witt-Eickschen G, O’Neill HSC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221:65–101.  https://doi.org/10.1016/j.chemgeo.2005.04.005 CrossRefGoogle Scholar
  88. Wu FY, Walker RJ, Ren XW, Sun DY, Zhou XH (2003) Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem Geol 196:107–129.  https://doi.org/10.1016/S0009-2541(02)00409-6 CrossRefGoogle Scholar
  89. Wu FY, Lin JQ, Wilde SA, Zhang XO, Yang JH (2005a) Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett 233:103–119.  https://doi.org/10.1016/j.epsl.2005.02.019 CrossRefGoogle Scholar
  90. Wu FY, Zhao GC, Wilde SA, Sun DY (2005b) Nd isotopic constraints on crustal formation in the North China Craton. J Asian Earth Sci 24:523–545.  https://doi.org/10.1016/j.jseaes.2003.10.011 CrossRefGoogle Scholar
  91. Xiao WJ, Windley BF, Hao J, Zhai MG (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 22:8–21.  https://doi.org/10.1029/2002TC001484 CrossRefGoogle Scholar
  92. Xiong Q, Griffin WL, Zheng JP, O’Reilly SY, Pearson NJ (2015) Episodic refertilization and metasomatism of Archean mantle: evidence from an orogenic peridotite in North Qaidam (NE Tibet, China). Contrib Miner Petrol 169:31.  https://doi.org/10.1007/s00410-015-1126-7 CrossRefGoogle Scholar
  93. Xu YG (2001) Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean Craton in China: evidence, timing and mechanism. Phys Chem Earth (A) 26:747–757CrossRefGoogle Scholar
  94. Xu YG, Ross JV, Mercier JCC (1993) The upper mantle beneath the Tanlu fault, eastern China: evidence for intra-lithospheric shear zones. Tectonophysics 225:337–360CrossRefGoogle Scholar
  95. Xu S, Nagao K, Uto K, Wakita H, Nakai S, Liu CQ (1998) He, Sr and Nd isotopes of mantle-derived xenoliths in volcanic rocks of NE China. J Asian Earth Sci 16:547–556CrossRefGoogle Scholar
  96. Xu XS, O’Reilly SY, Griffin WL, Zhou XM (2003a) Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China. Chem Geol 198:163–188.  https://doi.org/10.1016/S0009-2541(03)00004-4 CrossRefGoogle Scholar
  97. Xu YG, Menzies MA, Thirlwall MF, Huang XL, Liu Y, Gen XM (2003b) “Reactive” harzburgites from Huinan, NE China: products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochim Cosmochim Acta 67:487–505CrossRefGoogle Scholar
  98. Xu YG, Zhang HH, Qiu HN, Ge WC, Wu FY (2012) Oceanic crust components in continental basalts from Shuangliao, Northeast China: derived from the mantle transition zone? Chem Geol 328:168–184.  https://doi.org/10.1016/j.chemgeo.2012.01.027 CrossRefGoogle Scholar
  99. Yan J, Zhao JX, Liu HQ (2007) Quaternary basalts from Longgang in the north China Craton: petrologenesis and characteristics of the mantle source. Acta Petrol Sin 23:1413–1422 (In Chinese with English abstract)Google Scholar
  100. Yu JH, O’Reilly SY, Zhang M, Griffin WL, Xu XS (2005) Roles of melting and metasomatism in the formation of the Lithospheric Mantle beneath the Leizhou Peninsula, South China. J Petrol 47:355–383.  https://doi.org/10.1093/petrology/egi078 CrossRefGoogle Scholar
  101. Zangana NA, Downes H, Thirlwall MF, Marriner GF, Bea F (1999) Geochemical variation in peridotite xenoliths and their constituent clinopyroxenes from Ray Pic (French Massif Central): implications for the composition of the shallow lithospheric mantle. Chem Geol 153:11–35CrossRefGoogle Scholar
  102. Zhai MG, Santosh M (2011) The early Precambrian odyssey of the north China Craton: a synoptic overview. Gondwana Res 20:6–25.  https://doi.org/10.1016/j.gr.2011.02.005 CrossRefGoogle Scholar
  103. Zhang HF (2009) Peridotite-melt interaction: a key point for the destruction of cratonic lithospheric mantle. Chin Sci Bull 54:3417–3437Google Scholar
  104. Zhang HF, Yang YH (2007) Emplacement age and Sr-Nd-Hf isotopic characteristics of the diamondiferous kimberlites from the eastern North China Craton. Acta Petrol Sin 23:285–294 (In Chinese with English abstract)Google Scholar
  105. Zhang HF, Goldstein SL, Zhou XH, Sun M, Zheng JP, Cai Y (2008) Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol 155:271–293.  https://doi.org/10.1007/s00410-007-0241-5 CrossRefGoogle Scholar
  106. Zhang SH, Zhao Y, Davis GA, Ye H, Wu F (2014) Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: implications for lithospheric thinning and decratonization. Earth-Sci Rev 131:49–87.  https://doi.org/10.1016/j.earscirev.2013.12.004 CrossRefGoogle Scholar
  107. Zhao GC, Cawood PA, Wilde SA, Sun M, Lu LZ (2000) Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution. Precambrian Res 103:55–88CrossRefGoogle Scholar
  108. Zhao GC, Sun M, Wilde SA, Li SZ (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res 136:177–202.  https://doi.org/10.1016/j.precamres.2004.10.002 CrossRefGoogle Scholar
  109. Zheng JP (1999) Mesozoic-Cenozoic mantle replacement and lithospheric thinning, East China. China University of Geosciences Press, Wuhan, p 126 (In Chinese)Google Scholar
  110. Zheng JP (2009) Comparison of mantle derived materials from different spatiotemporal settings: implications for destructive and accretional processes of the North China Craton. Chin Sci Bull 54:3397–3416Google Scholar
  111. Zheng JP, Dai HK (2018) Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin-mountain respond in the North China Craton. Sci China Earth Sci 61:406–424.  https://doi.org/10.1007/s11430-017-9166-8 CrossRefGoogle Scholar
  112. Zheng JP, O’Reilly SY, Griffin WL, Lu FX, Zhang M (1998) Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton, eastern China. Int Geol Rev 40:471–499CrossRefGoogle Scholar
  113. Zheng JP, O’Reilly SY, Griffin WL, Lu FX, Zhang M, Pearson NJ (2001) Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos 57:43–66CrossRefGoogle Scholar
  114. Zheng JP, Griffin WL, O’Reilly SY, Yu CM, Zhang HF, Pearson N, Zhang M (2007) Mechanism and timing of lithospheric modification and replacement beneath the eastern north China Craton: peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta 71:5203–5225.  https://doi.org/10.1016/j.gca.2007.07.028 CrossRefGoogle Scholar
  115. Zhu RX, Yang JH, Wu FY (2012) Timing of destruction of the North China Craton. Lithos 149:51–60.  https://doi.org/10.1016/j.lithos.2012.05.013 CrossRefGoogle Scholar
  116. Ziberna L, Klemme S, Nimis P (2013) Garnet and spinel in fertile and depleted mantle: insights from thermodynamic modelling. Contrib Mineral Petrol 166:411–421.  https://doi.org/10.1007/s00410-013-0882-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Earth Sciences, State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina
  2. 2.Goethe Universität, Institut für GeowissenschaftenFrankfurtGermany
  3. 3.Key Laboratory of Submarine Geosciences, State Oceanic Administration, Second Institute of OceanographyMinistry of Natural ResourcesHangzhouChina

Personalised recommendations