Advertisement

Redox-controlled generation of the giant porphyry Cu–Au deposit at Pulang, southwest China

  • Weikai Li
  • Zhiming YangEmail author
  • Kang Cao
  • Yongjun Lu
  • Maoyu Sun
Original Paper
  • 103 Downloads

Abstract

Some porphyry Cu–Au deposits with relatively reduced ore assemblages, characterized by high hydrothermal pyrrhotite contents and a lack of primary hematite and magnetite, are generally considered to be associated with reduced I-type granitoids. However, the role of magmatic oxygen fugacity (fO2) in controlling Cu–Au mineralization in such reduced porphyry deposits is poorly understood. The giant Late Triassic (ca 216 Ma) Pulang porphyry Cu–Au deposit of southwest China shows typical reduced ore assemblages. This study reported the systematical variation of upper crustal magmatic fO2 of Pulang deposit, based on detailed investigations of mineral crystallization sequences and compositional features of the mineralization-related porphyries (early P1 and late P2 porphyry). Results indicate that magma of the mineralization-related porphyries experienced complex fO2 fluctuations during its upper crustal evolution. The early primary magma had very high initial fO2, with ΔFMQ ≥ + 3.0 at depths of > 12 km [ΔFMQ is the deviation of logfO2 from the fayalite–magnetite–quartz (FMQ) buffer]. The fO2 of evolved parental magma subsequently decreased, with ΔFMQ ≤ + 1.9, due to injection of relatively reduced dioritic magmas (ΔFMQ = + 1.4 to + 2.3) from a deeper chamber (17–21 km depth) into the primary magma chamber at 10–12 km depth. Magma mixing had largely ceased at 6–10 km depth. The parental magma then ponded within the reduced Tumugou formation at a depth of ~ 3.7 km where magmatic fO2 decreased to a moderately oxidized state (ΔFMQ = ~ + 1.6), and finally to a moderately reduced state [reflected by log(Fe2O3/FeO) ratios of < − 0.5 for P1 porphyry] due to contamination of parental magma by wall-rock Tumugou Formation. This decrease of fO2 in the parental magma resulted in separation of magmatic sulfide, and the subsequent exsolution of reduced ore fluids responsible for the generation of Pulang ore assemblages. The fO2 of the residual parental magma increased after exsolution of the reduced fluids to ΔFMQ values of + 3.2 to + 4.2 [also reflected by high log(Fe2O3/FeO) ratios of > − 0.5 for P2 porphyry]. Results of this study of magmatic fO2 indicate that porphyry magmas associated with reduced Pulang ore assemblages were initially generated as highly oxidized magma which was subsequently reduced through magma mixing and contamination by reduced sedimentary rocks of the Tumugou Formation. The sharp fO2 decrease at very shallow depth prevented the early loss of Cu and Au because the magma remained oxidized until it was emplaced at ~ 3.7 km depth. Moderately reduced magmas may thus have a genetic association with porphyry Cu–Au mineralization.

Keywords

Porphyry Cu–Au deposit Oxygen fugacity (fO2Fractional crystallization Magma mixing Geothermobarometer Pulang 

Notes

Acknowledgements

This work was funded by the National Key Research and Development Project of China (2016YFC0600305), the National Natural Science Foundation of China (41825005, 41320104004, 41273051, 41473041), and the Ministry of Land and Resources of China (201011011). We thank Guochen Dong, Massimo Chiaradia, Gordon Moore, Rui Wang, Fuat Yavuz, Filippo Ridolfi, Junting Qiu and Yuan Mei for suggestions of modeling, whole-rock and mineral component analyses, and Zhenyu Chen and Xiaodan Chen for assistance in EMPA analysis, and Biao Song, Shiwen Xie, Zhuoying Yu, and Yi Hu for help with SHRIMP zircon U–Pb dating and LA–ICP–MS zircon trace element analysis. Mingjian Cao and an anonymous reviewer are thanked for their thoughtful reviews. We appreciate Gordon Moore, associate editor of Contributions to Mineralogy and Petrology, for his constructive comments and editing. This is contribution 1231 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.CCFS.mq.edu.au). Yongjun Lu publish with permission of the Executive Director, Geological Survey of Western Australia. Contribution to IGCP 662.

Supplementary material

410_2019_1546_MOESM1_ESM.xlsx (34 kb)
Supplementary material 1 (XLSX 35 KB)
410_2019_1546_MOESM2_ESM.xlsx (39 kb)
Supplementary material 2 (XLSX 40 KB)
410_2019_1546_MOESM3_ESM.xlsx (31 kb)
Supplementary material 3 (XLSX 31 KB)
410_2019_1546_MOESM4_ESM.xlsx (36 kb)
Supplementary material 4 (XLSX 37 KB)
410_2019_1546_MOESM5_ESM.xlsx (30 kb)
Supplementary material 5 (XLSX 30 KB)
410_2019_1546_MOESM6_ESM.xlsx (15 kb)
Supplementary material 6 (XLSX 15 KB)
410_2019_1546_MOESM7_ESM.xlsx (22 kb)
Supplementary material 7 (XLSX 23 KB)
410_2019_1546_MOESM8_ESM.xlsx (11 kb)
Supplementary material 8 (XLSX 12 KB)
410_2019_1546_MOESM9_ESM.xlsx (58 kb)
Supplementary material 9 (XLSX 58 KB)

References

  1. Allen JC, Boettcher AL (1978) Amphiboles in andesite and basalt; II, stability as a function of P–T–fH2O–fO2. Am Miner 63(11–12):1074–1087Google Scholar
  2. Allen JC, Boettcher AL, Marland G (1975) Amphiboles in andesite and basalt: I. Stability as a function of P–T–fO2. Am Miner 60(11–12):1069–1085Google Scholar
  3. Allibone AH, Windh J, Etheridge MA, Burton D, Anderson G, Edwards PW et al (1998) Timing relationships and structural controls on the location of Au–Cu mineralization at the Boddington gold mine, Western Australia. Econ Geol 93(3):245–270.  https://doi.org/10.2113/gsecongeo.93.3.245 CrossRefGoogle Scholar
  4. Anderson JL, Barth AP, Wooden JL, Mazdab F (2008) Thermometers and thermobarometers in granitic systems. Rev Mineral Geochem 69(1):121–142.  https://doi.org/10.2138/rmg.2008.69.4 CrossRefGoogle Scholar
  5. Ballard JR, Palin MJ, Campbell IH (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Mineral Petrol 144(3):347–364.  https://doi.org/10.1007/s00410-002-0402-5 CrossRefGoogle Scholar
  6. Bell AS, Simon A (2011) Experimental evidence for the alteration of the Fe3+/ΣFe of silicate melt caused by the degassing of chlorine-bearing aqueous volatiles. Geology 39:499–502.  https://doi.org/10.1130/G31828.1 CrossRefGoogle Scholar
  7. BGMRSP (Bureau of Geology and Mineral Resources of Sichuan Province) (1991) Regional geology of Sichuan Province. Geological Publishing House, Beijing (in Chinese with English abstract)Google Scholar
  8. Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170.  https://doi.org/10.1016/S0009-2541(03)00165-7 CrossRefGoogle Scholar
  9. Blevin PL (2004) Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implications for gold-rich ore system. Resour Geol 54:241–252.  https://doi.org/10.1111/j.1751-3928.2004.tb00205.x CrossRefGoogle Scholar
  10. Blundy J, Wood B (1994) Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372:452–454.  https://doi.org/10.1038/372452a0 CrossRefGoogle Scholar
  11. Botcharnikov RE, Linnen RL, Wilke M, Holtz F, Jugo PJ, Berndt J (2011) High gold concentrations in sulphide-bearing magma under oxidizing conditions. Nat Geosci 4(2):112.  https://doi.org/10.1038/ngeo1042 CrossRefGoogle Scholar
  12. Burgisser A, Scaillet B (2007) Redox evolution of a degassing magma rising to the surface. Nature 445:194–197.  https://doi.org/10.1038/nature05509 CrossRefGoogle Scholar
  13. Burnham AD, Berry AJ (2012) An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochim Cosmochim Acta 95:196–212.  https://doi.org/10.1016/j.gca.2012.07.034 CrossRefGoogle Scholar
  14. Candela PA (1986) The evolution of aqueous vapor from silicate melts: effect on oxygen fugacity. Geochim Cosmochim Acta 50:1205–1211.  https://doi.org/10.1016/0016-7037(86)90403-5 CrossRefGoogle Scholar
  15. Candela PA (1997) A review of shallow, ore-related granites: textures, volatiles, and ore metals. J Petrol 38(12):1619–1633.  https://doi.org/10.1093/petroj/38.12.1619 CrossRefGoogle Scholar
  16. Cao DH, Wang AJ, Li WC, Wang GS, Li RP, Li YK (2009) Magma mixing in the Pulang porphyry copper deposit: evidence from petrology and element geochemistry. Acta Geol Sin 83(2):166–175 (in Chinese with English abstract)Google Scholar
  17. Cao K, Xu JF, Chen JL, Huang XX, Ren JB (2014a) Origin of porphyry intrusions hosting superlarge Pulang porphyry copper deposit in Yunnan Province: implications for metallogenesis. Miner Depos 33(2):307–322 (in Chinese with English abstract)Google Scholar
  18. Cao M, Qin K, Li G, Jin L, Evans NJ, Yang X (2014b) Baogutu: an example of reduced porphyry Cu deposit in western Junggar. Ore Geol Rev 56:159–180.  https://doi.org/10.1016/j.oregeorev.2013.08.014 CrossRefGoogle Scholar
  19. Cao K, Xu JF, Chen JL, Huang XX, Ren JB, Zhao XD, Liu ZX (2016) Double-layer structure of the crust beneath the Zhongdian arc, SW China: U–Pb geochronology and Hf isotope evidence. J Asian Earth Sci 115:455–467.  https://doi.org/10.1016/j.jseaes.2015.10.024 CrossRefGoogle Scholar
  20. Cao M, Qin K, Li G, Evans NJ, Hollings P, Maisch M, Kappler A (2017) Mineralogical evidence for crystallization conditions and petrogenesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit (Western Junggar, NW China): Mössbauer spectroscopy, EPM and LA-(MC)-ICPMS analyses. Ore Geol Rev 86:382–403.  https://doi.org/10.1016/j.oregeorev.2017.02.033 CrossRefGoogle Scholar
  21. Carmichael ISE (1967) The iron–titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contrib Mineral Petrol 14(1):36–64.  https://doi.org/10.1007/BF00370985 CrossRefGoogle Scholar
  22. Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Mineral Petrol 106:129–141.  https://doi.org/10.1007/BF00306429 CrossRefGoogle Scholar
  23. Carroll MR, Rutherford MJ (1987) The stability of igneous anhydrite: experimental results and implications for sulfur behavior in the 1982 el chichon trachyandesite and other evolved magmas. J Petrol 28(5):78–801.  https://doi.org/10.1093/petrology/28.5.781 CrossRefGoogle Scholar
  24. Chen JL, Xu JF, Ren JB, Huang XX, Wang BD (2014) Geochronology and geochemical characteristics of Late Triassic porphyritic rocks from the Zhongdian arc, eastern Tibet, and their tectonic and metallogenic implications. Gondwana Res.  https://doi.org/10.1016/j.gr.2013.07.022 CrossRefGoogle Scholar
  25. Chiaradia M (2014) Copper enrichment in arc magmas controlled by overriding plate thickness. Nat Geosci 7:43–46.  https://doi.org/10.1038/ngeo2028 CrossRefGoogle Scholar
  26. Chou IM (1978) Calibration of oxygen buffers at elevated P and T using the hydrogen fugacity sensor. Am Mineral 63(7–8):690–703Google Scholar
  27. Christie DM, Carmichael ISE, Langmuir CH (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79:397–411.  https://doi.org/10.1016/0012-821X(86)90195-0 CrossRefGoogle Scholar
  28. Costa F, Scaillet B, Pichavant M (2004) Petrological and experimental constraints on the pre-eruption conditions of Holocene dacite from Volcán San Pedro (36 S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas. J Petrol 45(4):855–881.  https://doi.org/10.1093/petrology/egg114 CrossRefGoogle Scholar
  29. Czamanske GK, Wones DR (1973) Oxidation during magmatic differentiation, Finnmarka Complex, Oslo area, Norway: part 2, the mafic silicates. J Petrol 14(3):349–380.  https://doi.org/10.1093/petrology/14.3.349 CrossRefGoogle Scholar
  30. De Moor JM, Fischer TP, Sharp ZD, King PL, Wilke M, Botcharnikov RE, Rivard C (2013) Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua) volcanoes: implications for degassing processes and oxygen fugacities of basaltic systems. Geochem Geophys Geosyst 14(10):4076–4108.  https://doi.org/10.1002/ggge.20255 CrossRefGoogle Scholar
  31. Dilles JH, Kent AJ, Wooden JL, Tosdal RM, Koleszar A, Lee RG, Farmer LP (2015) Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Econ Geol 110(1):241–251.  https://doi.org/10.2113/econgeo.110.1.241 CrossRefGoogle Scholar
  32. Eggler DH (1972) Amphibole stability in H2O-undersaturated calc-alkaline melts. Earth Planet Sci Lett 15(1):28–34.  https://doi.org/10.1016/0012-821X(72)90025-8 CrossRefGoogle Scholar
  33. Elkins LT, Grove TL (1990) Ternary feldspar experiments and thermodynamic models. Am Mineral 75(5–6):544–559Google Scholar
  34. Evans KA (2012) The redox budget of subduction zones. Earth Sci Rev 113(1–2):11–32.  https://doi.org/10.1016/j.earscirev.2012.03.003 CrossRefGoogle Scholar
  35. Fabbrizio E, Rouse PJ, Carroll MR (2006) New experimental data on biotite + magnetite + sanidine saturated phonolitic melts and application to the estimation of magmatic water fugacity. Am Mineral 91(11–12):1863–1870.  https://doi.org/10.2138/am.2006.2055 CrossRefGoogle Scholar
  36. Fan YH, Li WC (2006) Geological characteristics of the Pulang porphyry copper deposit, Yunnan. Geol China 33:352–362 (in Chinese with English abstract)Google Scholar
  37. Féménias O, Mercier JCC, Nkono C, Diot H, Berza T, Tatu M, Demaiffe D (2006) Calcic amphibole growth and compositions in calc-alkaline magmas: evidence from the Motru Dike Swarm (Southern Carpathians, Romania). Am Mineral 91(1):73–81.  https://doi.org/10.2138/am.2006.1869 CrossRefGoogle Scholar
  38. Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in–zircon and zr-in-rutile thermometers. Contrib Mineral Petrol 154(4):429–437.  https://doi.org/10.1007/s00410-007-0201-0 CrossRefGoogle Scholar
  39. Foster MD (1960) Interpretation of the composition of trioctahedral micas. US Geol Surv Prof Pap 354–B:11–49Google Scholar
  40. Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS et al (2008) Ti–in–zircon thermometry: applications and limitations. Contrib Mineral Petrol 156(2):197–215.  https://doi.org/10.1007/s00410-008-0281-5 CrossRefGoogle Scholar
  41. Guo X, Du YS, Pang ZS, LI ST, LI Q (2009) Characteristics of the ore-forming fluids in alteration zones of the Pulang porphyry copper deposit in Yunnan Province and its metallogenic significance. Geoscience 23(3):465–471 (in Chinese with English abstract)Google Scholar
  42. Harrison TM, Schmitt AK (2007) High sensitivity mapping of ti distributions in hadean zircons. Earth Planet Sci Lett 261(1–2):9–19.  https://doi.org/10.1016/j.epsl.2007.05.016 CrossRefGoogle Scholar
  43. Hart CJ, Goldfarb RJ, Lewis LL, Mair JL (2004) The Northern Cordilleran Mid-cretaceous plutonic province: ilmenite/magnetite-series granitoids and intrusion related mineralisation. Resour Geol 54:253–280.  https://doi.org/10.1111/j.1751-3928.2004.tb00206.x CrossRefGoogle Scholar
  44. Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370(6490):519–527.  https://doi.org/10.1038/370519a0 CrossRefGoogle Scholar
  45. Henry DJ, Guidotti CV, Thomson JA (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. Am Mineral 90(2–3):316–328.  https://doi.org/10.2138/am.2005.1498 CrossRefGoogle Scholar
  46. Hewitt DA (1978) A redetermination of the fayalite–magnetite–quartz equilibrium between 650 and 850 °C. Am J Sci 278(5):715–724.  https://doi.org/10.2475/ajs.278.5.715 CrossRefGoogle Scholar
  47. Hinton RW, Upton BGJ (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim Cosmochim Acta 55(11):3287–3302.  https://doi.org/10.1016/0016-7037(91)90489-R CrossRefGoogle Scholar
  48. Hofmann AE, Baker MB, Eiler JM (2014) Sub-micron-scale trace-element distributions in natural zircons of known provenance: implications for Ti-in-zircon thermometry. Contrib Mineral Petrol 168(3):1–21.  https://doi.org/10.1007/s00410-014-1057-8 CrossRefGoogle Scholar
  49. Holloway JR, Blank JG (1994) Application of experimental results to C–O–H species in natural melts. Rev Mineral Geochem 30(1):187–230Google Scholar
  50. Hou ZQ, Mo XX (1991) The evolution of Yidun island arc and implications in the exploration of Kuroko-type volcanogenic massive sulphide deposits in Sanjiang area, China. Earth Sci J China Univ Geosci 16:153–164 (in Chinese with English abstract)Google Scholar
  51. Hou ZQ, Yang YQ, Qu XM et al (2004) Tectonic evolution and mineralization systems of the Yidun arc orogen in Sanjiang region, China. Acta Geol Sin 78(1):109–120 (in Chinese with English abstract)Google Scholar
  52. Hou Z, Zaw K, Pan G et al (2007) Sanjiang Tethyan metallogenesis in SW China: tectonic setting, metallogenic epochs and deposit types. Ore Geol Rev 31(1):48–87.  https://doi.org/10.1016/j.oregeorev.2004.12.007 CrossRefGoogle Scholar
  53. Irvine T, Baragar W (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548.  https://doi.org/10.1139/e71-055 CrossRefGoogle Scholar
  54. Jain JC, Neal CR, Hanchar JM (2001) Problems associated with the determination of rare earth elements of a “Gem”. Quality zircon by inductively coupled plasma-mass spectrometry. Geostand Newsl 25(2–3):229–237.  https://doi.org/10.1111/j.1751-908X.2001.tb00598.x CrossRefGoogle Scholar
  55. Jenner FE, O’Neill HStC, Arculus RJ, Mavrogenes JA (2010) The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. J Petrol 51:2445–2464.  https://doi.org/10.1093/petrology/egq063 CrossRefGoogle Scholar
  56. Jugo PJ (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37(5):415–418.  https://doi.org/10.1130/G25527A.1 CrossRefGoogle Scholar
  57. Jugo PJ, Candela PA, Piccoli PM (1999) Magmatic sulfides and Au:Cu ratios in porphyry deposits: an experimental study of copper and gold partitioning at 850 C, 100 MPa in a haplogranitic melt–pyrrhotite–intermediate solid solution-gold metal assemblage, at gas saturation. Lithos 46(3):573–589.  https://doi.org/10.1016/S0024-4937(98)00083-8 CrossRefGoogle Scholar
  58. Kebede T, Horie K, Hidaka H, Terada K (2007) Zircon ‘microvein’in peralkaline granitic gneiss, western Ethiopia: origin, SHRIMP U–Pb geochronology and trace element investigations. Chem Geol 242(1):76–102.  https://doi.org/10.1016/j.chemgeo.2007.03.014 CrossRefGoogle Scholar
  59. Kelley KA, Cottrell E (2012) The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth Planet Sci Lett 329:109–121.  https://doi.org/10.1016/j.epsl.2012.02.010 CrossRefGoogle Scholar
  60. Kesler SE (1973) Copper, molybdenum and gold abundances in porphyry copper deposits. Econ Geol 68(1):106–112.  https://doi.org/10.2113/gsecongeo.68.1.106 CrossRefGoogle Scholar
  61. Kyono A, Kimata M (2001) Refinement of the crystal structure of a synthetic non-stoichiometric Rb’-feldspar. Mineral Mag 65(4):523–531.  https://doi.org/10.1180/002646101750377542 CrossRefGoogle Scholar
  62. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD et al (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Can Mineral 35:219–246.  https://doi.org/10.1180/minmag.1997.061.405.13 CrossRefGoogle Scholar
  63. Lee CTA, Leeman WP, Canil D, Li ZXA (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46(11):2313–2336.  https://doi.org/10.1093/petrology/egi056 CrossRefGoogle Scholar
  64. Li W, Zeng P, Hou Z, White NC (2011) The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province, southwest China. Econ Geol 106(1):79–92.  https://doi.org/10.2113/econgeo.106.1.79 CrossRefGoogle Scholar
  65. Liu XL, Li WC, Yin GH, Zhang N (2013a) The geochronology, mineralogy and geochemistry study of the Pulang porphyry copper deposits in Geza arc of Yunnan Province. Acta Petrol Sin 29(9):3049–3064 (in Chinese with English abstract)Google Scholar
  66. Liu JT, Yang LQ, Lu L (2013b) Pulang reduced porphyry copper deposit in the Zhongdian area, Northwest China: constrains by the mineral assemblages and the ore-forming fluid compositions. Acta Petrol Sin 29(11):3914–3924 (in Chinese with English abstract)Google Scholar
  67. Lledo HL, Jenkins DM (2008) Experimental investigation of the upper thermal stability of Mg-rich actinolite; implications for Kiruna-type iron deposits. J Petrol 49(2):225–238.  https://doi.org/10.1093/petrology/egm078 CrossRefGoogle Scholar
  68. Lu YJ, Loucks RR, Fiorentini ML, McCuaig TC, Evans NJ, Yang ZM, Hou ZQ, Kirkland CL, Parra-Avila LA, Kobussen A (2016) Zircon compositions as a pathfinder for porphyry Cu–Mo–Au deposits. Soc Econ Geol Spec Publ 19:329–347Google Scholar
  69. Ludwig KR (2001) Users Manual for Isoplot/Ex (rev. 2.49). A geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special Publication No 1aGoogle Scholar
  70. Mathez EA (1984) Influence of degassing on oxidation-states of basalticmagmas. Nature 310:371–375.  https://doi.org/10.1038/310371a0 CrossRefGoogle Scholar
  71. Middlemost EAK (1994) Naming materials in the magma/igneous rock system. Earth Sci Rev 37(3):215–224.  https://doi.org/10.1016/0012-8252(94)90029-9 CrossRefGoogle Scholar
  72. Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31(6):529–532.  https://doi.org/10.1130/0091-7613(2003)031%3C0529:HACGIO%3E2.0.CO;2 CrossRefGoogle Scholar
  73. Molina JF, Moreno JA, Castro A, Rodríguez C, Fershtater GB (2015) Calcic amphibole thermobarometry in metamorphic and igneous rocks: new calibrations based on plagioclase/amphibole Al–Si partitioning and amphibole/liquid Mg partitioning. Lithos 232:286–305.  https://doi.org/10.1016/j.lithos.2015.06.027 CrossRefGoogle Scholar
  74. Moore G (2008) Interpreting H2O and CO2 contents in melt inclusions: constraints from solubility experiments and modeling. Rev Mineral Geochem 69(1):333–362.  https://doi.org/10.2138/rmg.2008.69.9 CrossRefGoogle Scholar
  75. Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Am Mineral 83(1):36–42.  https://doi.org/10.2138/am-1998-1-203 CrossRefGoogle Scholar
  76. Mungall JE (2002) Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30(10):915–918.  https://doi.org/10.1130/0091-7613(2002)030%3C0915:RTMSMA%3E2.0.CO;2 CrossRefGoogle Scholar
  77. Mungall JE, Brenan JM, Godel B, Barnes SJ, Gaillard F (2015) Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles. Nat Geosci 8(8):216–219.  https://doi.org/10.1038/ngeo2373 CrossRefGoogle Scholar
  78. Myers JT, Eugster HP (1983) The system Fe–Si–O: oxygen buffer calibrations to 1500 K. Contrib Mineral Petrol 82(1):75–90.  https://doi.org/10.1007/BF00371177 CrossRefGoogle Scholar
  79. Nachit H, Razafimahefa N, Stussi JM, Carron JP (1985) Composition chimique des biotites et typologie magmatique des granitoides. Comtes Rendus Hebdomadaires de l’Académie des Sciences 301(11):813–818Google Scholar
  80. Nadeau O, Williams-Jones AE, Stix J (2010) Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids. Nat Geosci 3(7):501–505.  https://doi.org/10.1038/ngeo899 CrossRefGoogle Scholar
  81. Nandedkar RH, Ulmer P, Müntener O (2014) Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol 167(6):1015.  https://doi.org/10.1007/s00410-014-1015-5 CrossRefGoogle Scholar
  82. Nasir S (1994) PTOXY: software package for the calculation of pressure–temperature–oxygen fugacity using a selection of metamorphic geothermobarometers. Comput Geosci 20(9):1297–1320.  https://doi.org/10.1016/0098-3004(94)90056-6 CrossRefGoogle Scholar
  83. O’Neill HS (1987) Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am Miner 72(1–2):67–75Google Scholar
  84. O’Neill HSC, Pownceby MI (1993) Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe–‘‘FeO’’, Co–CoO, Ni–NiO, and Cu–Cu2O oxygen buffers, and new data for the W–WO2 buffer. Contrib Mineral Petrol 114:296–314.  https://doi.org/10.1007/BF01046533 CrossRefGoogle Scholar
  85. Pan GT, Xu Q, Hou ZQ, Wang LQ, Du DX, Mo XX, Li DM, Wang MJ, Li XZ, Jiang XS (2003) Archipelagic orogenesis, metallogenic systems and assessment of the mineral resources along the Nujiang–Lancangjiang–Jinshajiang Area in Southwestern China. Geological Publishing House, Beijing (in Chinese with English abstract)Google Scholar
  86. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58(1):63–81.  https://doi.org/10.1007/BF00384745 CrossRefGoogle Scholar
  87. Plank T, Kelley KA, Zimmer MM, Hauri EH, Wallace PJ (2013) Why do mafic arc magmas contain ~ 4 wt% water on average? Earth Planet Sci Lett 364:168–179.  https://doi.org/10.1016/j.epsl.2012.11.044 CrossRefGoogle Scholar
  88. Qiu JT, Yu XQ, Santosh M, Zhang DH, Chen SQ, Li PJ (2013) Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China. Mineralium Deposita 48(5):545–556.  https://doi.org/10.1007/s00126-013-0456-5 CrossRefGoogle Scholar
  89. Rapp RP, Watson EB (1986) Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib Mineral Petrol 94(3):304–316.  https://doi.org/10.1007/BF00371439 CrossRefGoogle Scholar
  90. Reid A, Wilson CJ, Shun L, Pearson N, Belousova E (2007) Mesozoic plutons of the Yidun Arc, SW China: U/Pb geochronology and Hf isotopic signature. Ore Geol Rev 31(1):88–106.  https://doi.org/10.1016/j.oregeorev.2004.11.003 CrossRefGoogle Scholar
  91. Ren JB, Xu JF, Chen JL, Zhang SQ, Liang HY (2011) Geochemistry and petrogenesis of Pulang porphyries in Sanjiang region. Acta Petrologica et Mineralogica 30(4):581–592 (in Chinese with English abstract)Google Scholar
  92. Richards JP (2015) The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos 233:27–45.  https://doi.org/10.1016/j.lithos.2014.12.011 CrossRefGoogle Scholar
  93. Ridolfi F, Renzulli A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1130 °C and 2.2 GPa. Contrib Mineral Petrol 163(5):877–895.  https://doi.org/10.1007/s00410-011-0704-6 CrossRefGoogle Scholar
  94. Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160(1):45–66.  https://doi.org/10.1007/s00410-009-0465-7 CrossRefGoogle Scholar
  95. Rombach CS, Newberry RJ (2001) Shotgun deposit: granite porphyry-hosted gold-arsenic mineralization in southwestern Alaska, USA. Mineralium Deposita 36(6):607–621.  https://doi.org/10.1007/s001260100192 CrossRefGoogle Scholar
  96. Rowins SM (2000) Reduced porphyry copper–gold deposits: a new variation on an old theme. Geology 28(6):491–494.  https://doi.org/10.1130/0091-7613(2000)28%3C491:RPCDAN%3E2.0.CO;2 CrossRefGoogle Scholar
  97. Sano Y, Terada K, Fukuoka T (2002) High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem Geol 184(3):217–230.  https://doi.org/10.1016/S0009-2541(01)00366-7 CrossRefGoogle Scholar
  98. Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure; an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310.  https://doi.org/10.1007/BF00310745 CrossRefGoogle Scholar
  99. Shannon RT (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Crystal Phys Diffr Theor Gen Crystallogr 32(5):751–767.  https://doi.org/10.1107/S0567739476001551 CrossRefGoogle Scholar
  100. Sillitoe RH (2000) Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery. Rev Econ Geol 13:315–345Google Scholar
  101. Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105(1):3–41.  https://doi.org/10.2113/gsecongeo.105.1.3 CrossRefGoogle Scholar
  102. Smith CM, Canil D, Rowins SM, Friedman R (2012) Reduced granitic magmas in an arc setting: the Catface porphyry Cu–Mo deposit of the Paleogene Cascade Arc. Lithos 154:361–373.  https://doi.org/10.1016/j.lithos.2012.08.001 CrossRefGoogle Scholar
  103. Smithson DM (2004) Late Eocene tectono-magmatic evolution and genesis of reduced porphyry copper-gold mineralization at the North Fork deposit, west central Cascade Range, Washington, USA (Doctoral dissertation, University of British Columbia).  https://doi.org/10.14288/1.0052761
  104. Smythe DJ, Brenan JM (2016) Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth Planet Sci Lett 453:260–266.  https://doi.org/10.1016/j.epsl.2016.08.013 CrossRefGoogle Scholar
  105. Song B, Zhang YH, Wan YS (2002) Mounting and analytical procedure of SHRIMPzircon dating. Geol Rev 48:26–30 (in Chinese with English abstract)Google Scholar
  106. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345.  https://doi.org/10.1144/GSL.SP.1989.042.01.19 CrossRefGoogle Scholar
  107. Thomas JB, Bodnar RJ, Shimizu N, Sinha AK (2002) Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochim Cosmochim Acta 66(16):2887–2901.  https://doi.org/10.1016/S0016-7037(02)00881-5 CrossRefGoogle Scholar
  108. Thompson JFH, Sillitoe RH, Baker T, Lang JR, Mortensen JK (1999) Intrusion-related gold deposits associated with tungsten-tin provinces. Mineralium Deposita 34(4):323–334.  https://doi.org/10.1007/s001260050207 CrossRefGoogle Scholar
  109. Trail D, Watson EB, Tailby ND (2011) The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480(7375):79–82.  https://doi.org/10.1038/nature10655 CrossRefGoogle Scholar
  110. Trail D, Watson EB, Tailby ND (2012) Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim Cosmochim Acta 97:70–87.  https://doi.org/10.1016/j.gca.2012.08.032 CrossRefGoogle Scholar
  111. Uchida E, Endo S, Makino M (2007) Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resour Geol 57(1):47–56.  https://doi.org/10.1111/j.1751-3928.2006.00004.x CrossRefGoogle Scholar
  112. Vernon RH (1990) Crystallization and hybridism in microgranitoid enclave magmas: microstructural evidence. J Geophys Res Solid Earth 95(B11):17849–17859.  https://doi.org/10.1029/JB095iB11p17849 CrossRefGoogle Scholar
  113. Waldbaum DR, Thompson JB (1969) Mixing properties of sanedine crystalline solutions IV: phase diagrams from equations of state. Am Mineral 54:1274–1298Google Scholar
  114. Wang S, Zhang X, Leng C, Qin C (2007) A tentative study of ore geochemistry and ore-forming mechanism of Pulang porphyry copper deposit in Zhongdian, northwestern Yunnan. Mineralium Deposits 26(3):277–288 (in Chinese with English abstract)Google Scholar
  115. Wang BQ, Zhou MF, Li JW, Yan DP (2011) Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: adakitic magmatism and porphyry copper mineralization. Lithos 127(1):24–38.  https://doi.org/10.1016/j.lithos.2011.07.028 CrossRefGoogle Scholar
  116. Wang BQ, Wang W, Chen WT, Gao JF, Zhao XF, Yan DP, Zhou MF (2013) Constraints of detrital zircon U–Pb ages and Hf isotopes on the provenance of the Triassic Yidun Group and tectonic evolution of the Yidun Terrane, Eastern Tibet. Sediment Geol 289:74–98.  https://doi.org/10.1016/j.sedgeo.2013.02.005 CrossRefGoogle Scholar
  117. Wang R, Richards JP, Hou ZQ, Yang ZM, Gou ZB, DuFrane SA (2014) Increasing magmatic oxidation state from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: implication for collision-related porphyry Cu–Mo–Au mineralization. Econ Geol 109(7):1943–1965.  https://doi.org/10.2113/econgeo.109.7.1943 CrossRefGoogle Scholar
  118. Wang P, Dong G, Santosh M, Li X, Dong M (2017) Triassic ore-bearing and barren porphyries in the Zhongdian Arc of SW China: implications for the subduction of the Palaeo-Tethys Ocean. Int Geol Rev 59(11):1490–1505.  https://doi.org/10.1080/00206814.2017.1285256 CrossRefGoogle Scholar
  119. Watson EB, Green TH (1981) Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet Sci Lett 56:405–421.  https://doi.org/10.1016/0012-821X(81)90144-8 CrossRefGoogle Scholar
  120. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64(2):295–304.  https://doi.org/10.1016/0012-821X(83)90211-X CrossRefGoogle Scholar
  121. Weislogel AL (2008) Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan–Ganzi complex, central China. Tectonophysics 451:331–345.  https://doi.org/10.1016/j.tecto.2007.11.053 CrossRefGoogle Scholar
  122. Wilkinson JJ (2013) Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat Geosci 6(11):917–925.  https://doi.org/10.1038/ngeo1940 CrossRefGoogle Scholar
  123. Williams-Jones AE, Samson IM, Linnen RL (1989) Fluid evolution and its role in the genesis of the granite-related Madeleine copper deposit, Gaspe, Quebec. Econ Geol 84(6):1515–1524.  https://doi.org/10.2113/gsecongeo.84.6.1515 CrossRefGoogle Scholar
  124. Williamson BJ, Herrington RJ, Morris A (2016) Porphyry copper enrichment linked to excess aluminium in plagioclase. Nat Geosci 9:237–241.  https://doi.org/10.1038/ngeo2651 CrossRefGoogle Scholar
  125. Wones DR (1972) Stability of biotite: a reply. Am Mineral 57(1–2):316–317Google Scholar
  126. Wones DR (1981) Mafic silicates as indicators of intensive variables in granitic magmas. Min Geol.  https://doi.org/10.11456/shigenchishitsu1951.31.191 CrossRefGoogle Scholar
  127. Wones DR, Eugster HP (1965) Stability of biotite-experiment theory and application. Am Mineral 50(9):1228–1272Google Scholar
  128. Woodland AB, Wood BJ (1994) Fe3O4 activities in Fe–Ti spinel solid solutions. Eur J Mineral 6:23–37.  https://doi.org/10.1127/ejm/6/1/0023 CrossRefGoogle Scholar
  129. Yang ZM, Cooke DR (2018) Porphyry Cu deposits in China. Society of Economic Geologists Special Publication (in press)Google Scholar
  130. Yang YQ, Hou ZQ, Huang DH, Qu X (2002) Collision orogenic process and magmatic metallogenic system in Zhongdian island arc. Acta Petrol Sin 23:17–24 (in Chinese with English abstract)Google Scholar
  131. Yang TN, Ding Y, Zhang HR, Fan JW, Liang MJ, Wang XH (2014) Two-phase subduction and subsequent collision defines the Paleotethyan tectonics of the southeastern Tibetan Plateau: evidence from zircon U–Pb dating, geochemistry, and structural geology of the Sanjiang orogenic belt, southwest China. Geol Soc Am Bull 126:1654–1682.  https://doi.org/10.1130/B30921.1 CrossRefGoogle Scholar
  132. Yang ZM, Chang ZS, Paquette J, White NC, Hou ZQ, Ge LS (2015a) Magmatic Au mineralization at the Bilihe Au deposit, China. Econ Geol 110(7):1661–1668.  https://doi.org/10.2113/econgeo.110.7.1661 CrossRefGoogle Scholar
  133. Yang ZM, Lu YJ, Hou ZQ, Chang ZS (2015b) High-Mg diorite from Qulong in southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. J Petrol 56(2):227–254.  https://doi.org/10.1093/petrology/egu076 CrossRefGoogle Scholar
  134. Yang ZM, Hou ZQ, Chang ZS, Li QY, Liu YF, Qu HC, Sun MY, Xu B (2016) Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: petrogenesis and implications for the formation of collisional and postcollisional porphyry cu systems in continental collision zones. Lithos 136(3):213–226.  https://doi.org/10.1016/j.lithos.2015.04.002 CrossRefGoogle Scholar
  135. Zajacz Z, Candela PA, Piccoli PM, Sanchez-Valle C, Wälle M (2012) Gold and copper in volatile saturated mafic to intermediate magmas: solubilities, partitioning and implications for ore deposit formation. Geochim Cosmochim Acta 91:140–159.  https://doi.org/10.1016/j.gca.2012.05.033 CrossRefGoogle Scholar
  136. Zajacz Z, Candela PA, Piccoli PM, Sanchez-Valle C, Wälle M (2013) Solubility and partitioning behavior of Au, Cu, Ag and reduced S in magmas. Geochim Cosmochim Acta 112:288–304.  https://doi.org/10.1016/j.gca.2013.02.026 CrossRefGoogle Scholar
  137. Zeng PS, Li WC, Wang HP, Li H (2006) The Indosinian Pulang superlarge porphyry copper deposit in Yunnan, China: petrology and chronology. Acta Petrol Sin 22(4):989–1000 (in Chinese with English abstract)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Weikai Li
    • 1
    • 2
  • Zhiming Yang
    • 1
    • 3
    Email author
  • Kang Cao
    • 1
  • Yongjun Lu
    • 4
    • 5
  • Maoyu Sun
    • 1
    • 2
  1. 1.Key Laboratory of Deep-Earth Dynamics, Institute of GeologyChinese Academy of Geological SciencesBeijingChina
  2. 2.School of Earth and Space SciencesPeking UniversityBeijingChina
  3. 3.Economic Geology Research Centre (EGRU), College of Science and EngineeringJames Cook UniversityTownsvilleAustralia
  4. 4.Geological Survey of Western AustraliaEast PerthAustralia
  5. 5.Centre for Exploration Targeting and Australian Research Council Centre of Excellence for Core to Crust Fluid Systems (CCFS), School of Earth SciencesUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations