Advertisement

Experimental study of trace element distribution between calcite, fluorite and carbonatitic melt in the system CaCO3 + CaF2 + Na2CO3 ± Ca3(PO4)2 at 100 MPa

  • Dmitry A. ChebotarevEmail author
  • Ilya V. Veksler
  • Cora Wohlgemuth-Ueberwasser
  • Anna G. Doroshkevich
  • Monika Koch-Müller
Original Paper

Abstract

Here we present an experimental study of the distribution of a broad range of trace elements between carbonatite melt, calcite and fluorite. The experiments were performed in the CaCO3 + CaF2 + Na2CO3 ± Ca3(PO4)2 synthetic system at 650–900 °C and 100 MPa using rapid-quench cold-seal pressure vessels. Starting mixtures were composed of reagent-grade oxides, carbonates, Ca3(PO4)2 and CaF2 doped with 1 wt% REE–HFSE mixture. The results show that the distribution coefficients of all the analyzed trace elements for calcite and fluorite are below 1, with the highest values observed for Sr (0.48–0.8 for calcite and 0.14–0.3 for fluorite) and Y (0.18–0.3). The partition coefficients of REE gradually increase with increasing atomic number from La to Lu. The solubility of Zr, Hf, Nb and Ta in the synthetic F-rich carbonatitic melts, which were used in our experiments, is low and limited by crystallization of baddeleyite and Nb-bearing perovskite.

Keywords

Carbonatites Distribution coefficients Trace elements Partitioning Fluorite Calcite 

Notes

Acknowledgements

We thank Christian Schmidt, Hans-Peter Nabein, Reiner Schulz, Anton F. Shatsky, Konstantin D. Litasov, Galina I. Galay, Oona Appelt, Schäpan, Hau Hu for their help and consultations during preparation of the article. Reviews by Roberth Luth and Ramya Murali helped to significantly improve the text. The work is done on state assignment of IGM SB RAS.

References

  1. Blundy J, Dalton J (2000) Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol 139:356–371CrossRefGoogle Scholar
  2. Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49:797–821CrossRefGoogle Scholar
  3. Brey GP, Bulatov VK, Girnis AV (2011) Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle. Chem Geol 281:333–342.  https://doi.org/10.1016/j.chemgeo.2010.12.019 CrossRefGoogle Scholar
  4. Broom-Fendley S, Brady AE, Wall F, Gunn G, Dawes W (2017) REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geol Rev 81:23–41CrossRefGoogle Scholar
  5. Chakhmouradian AR, Reguir EP, Couëslan C et al (2016) Calcite and dolomite in intrusive carbonatites. II. Trace-element variations. Minerol Petrol 110:361–377.  https://doi.org/10.1007/s00710-015-0392-4 CrossRefGoogle Scholar
  6. Dalton JA, Presnall DC (1998a) Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib Minerol Petrol 131:123–135CrossRefGoogle Scholar
  7. Dalton JA, Presnall DC (1998b) The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO–MgO–Al2O3–SiO2–CO2 at 6 GPa. J Petrol 39:1953–1964Google Scholar
  8. Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440:659–662CrossRefGoogle Scholar
  9. Dasgupta R, Hirschmann MM (2007) Effect of variable carbonate concentration on the solidus of mantle peridotite. Am Minerol 92:370–379CrossRefGoogle Scholar
  10. Dasgupta R, Hirschmann MM, McDonough WF, Spiegelman M, Withers AC (2009) Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem Geol 262:57–77CrossRefGoogle Scholar
  11. Doroshkevich AG, Veksler I, Klemd R, Khromova EA, Izbrodin IA (2017) Trace-element composition of minerals and rocks in the Belaya Zima carbonatite complex (Russia): implications for the mechanisms of magma evolution and carbonatite formation. Lithos 284–285:91–108.  https://doi.org/10.1016/j.lithos.2017.04.003 CrossRefGoogle Scholar
  12. Eggler DH (1978) The effect of CO<2) upon partial melting of peridotite in the system Na<2) O-CaO-Al<2) O<3) -MgO-SiO<2) -CO<2) to 35 kb, with an analysis of melting in a peridotite-H<2) O-CO<2) system. Am J Sci 278(3):305–343CrossRefGoogle Scholar
  13. Falloon TJ, Green DH (1989) The solidus of carbonated, fertile peridotite. Earth Planet Sci Lett 94:364–370CrossRefGoogle Scholar
  14. Falloon TJ, Green DH (1990) The solidus of carbonated fertile peridotite under fluid-saturated conditions. Geology 18:195–199CrossRefGoogle Scholar
  15. Foley SF, Yaxley GM, Rosenthal A, Buhre S, Kiseeva ES, Rapp RP, Jacob DE (2009) The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112:274–283CrossRefGoogle Scholar
  16. Gaetani GA, Kent AJR, Grove TL, Hutcheon ID, Stolper EM (2003) Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contrib Minerol Petrol 145:391–405CrossRefGoogle Scholar
  17. Girnis AV, Bulatov VK, Brey GP, Gerdes A, Höfer HE (2013) Trace element partitioning between mantle minerals and silico-carbonate melts at 6–12 GPa and applications to mantle metasomatism and kimberlite genesis. Lithos 160–161:183–200CrossRefGoogle Scholar
  18. Green TH (1994) Experimental studies of trace-element partitioning applicable to igneous petrogenesis m Sedona 16 years later. Chem Geol 117:1–36CrossRefGoogle Scholar
  19. Green TH, Adam J, Sie SH (1992) Trace element partitioning between silicate minerals and carbonatite at 25 kbar and application to mantle metasomatism. Mineral Petrol 46:179–184CrossRefGoogle Scholar
  20. Gudfinnsson GH, Presnall DC (2005) Continuous gradation among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J Petrol 46:1645–1659CrossRefGoogle Scholar
  21. Hammouda T, Moine BN, Devidal JL, Vincent C (2009) Trace element partitioning during partial melting of carbonated eclogites. Phys Earth Planet Inter 174:60–69CrossRefGoogle Scholar
  22. Hammouda T, Chantel J, Devidal JL (2010) Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. Geochim Cosmochim Acta 74:7220–7235CrossRefGoogle Scholar
  23. Jago BC, Gittins J (1993) Pyrochlore crystallization in carbonatites: the role of fluorine. S Afr J Geol 96:149–159Google Scholar
  24. Kjarsgaard BA, Hamilton DL (1989) The genesis of carbonatites by immiscibility. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, Boston, pp 388–404Google Scholar
  25. Klemme S, van der Laan SR, Foley SF, Günther D (1995) Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett 133:439–448CrossRefGoogle Scholar
  26. Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  27. Lee W, Wyllie PJ (1994) Experimental data bearing on liquid immiscibility, crystal fractionation and the origin of calciocarbonatites and natrocarbonatites. Int Geol Rev 36:797–819CrossRefGoogle Scholar
  28. Mariano AN (1989) Nature of economic mineralization in carbonatites and related rocks. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin-Hyman, London, pp 149–176Google Scholar
  29. Martin LHJ, Schmidt MW, Hannes B, Mattsson HB, Ulmer P, Hametner K, Günther D (2012) Element partitioning between immiscible carbonatite–kamafugite melts with application to the Italian ultrapotassic suite. Chem Geol 320–321:96–112CrossRefGoogle Scholar
  30. Martin LHJ, Schmidt MW, Mattson HB, Guenther D (2013) Element partitioning between immiscible carbonatite and silicate melts from dry and H2O-bearing systems at 1–3 GPa. J Petrol 54:2301–2338CrossRefGoogle Scholar
  31. Matthews W, Linnen RL, Guo Q (2003) A filler-rod technique for controlling redox conditions in cold-seal pressure vessels. Am Mineral 88:701–707CrossRefGoogle Scholar
  32. Mitchell RH (1997) Preliminary studies of the solubility and stability of perovskite group compounds in the synthetic carbonatite system calcite–portlandite. J Afr Earth Sci 25:147–158CrossRefGoogle Scholar
  33. Mitchell RH (2005) Carbonatites and carbonatites and carbonatites. Can Mineral 43:2049–2068CrossRefGoogle Scholar
  34. Mitchell RH, Kjarsgaard BA (2002) Solubility of niobium in the system CaCO3–Ca(OH)2–NaNbO3 at 0.1 GPa pressure. Contrib Mineral Petrol 144:93–97.  https://doi.org/10.1007/s00410-002-0384-3 CrossRefGoogle Scholar
  35. Mitchell RH, Kjarsgaard BA (2004) Solubility of niobium in the system CaCO3–CaF2–NaNbO3 at 0.1 GPa pressure: implications for the crystallization of pyrochlore from carbonatite magma. Contrib Mineral Petrol 148:281–287.  https://doi.org/10.1007/s00410-004-0603-1 CrossRefGoogle Scholar
  36. Otto JW, Wyllie PJ (1993) Relationship between silicate melts and carbonate-precipitating melts in CaO–MgO–SiO2–CO2–H2O at 2 kbar. Mineral Petrol 48:343–365CrossRefGoogle Scholar
  37. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom.  https://doi.org/10.1039/c1ja10172b CrossRefGoogle Scholar
  38. Prowatke S, Klemme S (2006) Rare earth element partitioning between titanite and silicate melts: Henry’s law revisited. Geochim Cosmochim Acta 70:4997–5012CrossRefGoogle Scholar
  39. Ryabchikov ID, Orlova GP, Senin VG, Trubkin NV (1993) Partitioning of rare earth elements between phosphate-rich carbonatite melts and mantle peridotites. Mineral Petrol 49:1–12CrossRefGoogle Scholar
  40. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geological Society of London, London, pp 313–345Google Scholar
  41. Sweeney RJ (1994) Carbonatite melt compositions in the Earth’s mantle. Earth Planet Sci Lett 128:259–270CrossRefGoogle Scholar
  42. Sweeney RJ, Prozesky V, Przybylowicz W (1995) Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18–46 kbar pressure. Geochim Cosmochim Acta 59:3671–3683CrossRefGoogle Scholar
  43. Tomkute V, Solheim A, Sakirzanovas S, Oye B, Olsent E (2014) Phase equilibria evaluation for CO2 capture: CaO–CaF2–NaF, CaCO3–NaF–CaF2, and Na2CO3–CaF2–NaF. J Chem Eng Data 59:1257–1263CrossRefGoogle Scholar
  44. Veksler IV, Nielsen TFD, Sokolov SV (1998a) Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. J Petrol 39:2015e2031Google Scholar
  45. Veksler IV, Petibon C, Jenner G, Dorfman AM, Dingwell DB (1998b) Trace element partitioning in immiscible silicate and carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J Petrol 39:2095–2104CrossRefGoogle Scholar
  46. Veksler IV, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevsky LV, Jeffries T, Dingwell DB (2012) Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts with implications to the origin of natrocarbonatite. Geochim Cosmochim Acta 79:20–40CrossRefGoogle Scholar
  47. Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335:343–346CrossRefGoogle Scholar
  48. Woodhead J, Hellstrom J, Hergt J, Greig A, Maas R (2007) Isotopic and elemental imaging of geological materials by laser ablation Inductively coupled plasma mass spectrometry. J Geostand Geoanal Res 31:331–343Google Scholar
  49. Woolley AR, Kjarsgaard BA (2008) Carbonatite occurrences of the world: map and database. Geological Survey of Canada. 28 pages (1 sheet); 1 CD-ROM.  https://doi.org/10.4095/225115
  50. Wyllie PJ, Huang WL (1976) Carbonation and melting reactions in the system CaO–MgO–SiO2–CO2 at mantle pressures with geophysical and petrological applitations. Contrib Mineral Petrol 54:79–107CrossRefGoogle Scholar
  51. Xie Y, Hou Z, Yin S, Dominy SC, Xu J, Tian S, Xu W (2009) Continuous carbonatitic melt-liquid evolution for REE mineralization system: evidence from inclusions in the Maoniuping REE deposit in the western Sichuan, China. Ore Geol Rev 36:89–104CrossRefGoogle Scholar
  52. Xie Y, Li Y, Hou Z, Cook DR, Danyushevsky L, Dominy SC, Yin S (2015) A model for carbonatite hosted REE mineralisation—the Mianning–Dechang REE belt, western Sichuan Province, China. Ore Geol Rev 70:595–612CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.V.S. Sobolev Institute of Geology and MineralogySiberian Branch of Russian Academy of SciencesNovosibirskRussia
  2. 2.German Research Centre for GeosciencesGFZPotsdamGermany
  3. 3.Institute of Earth and Environmental SciencePotsdam UniversityPotsdamGermany
  4. 4.Geological Institute SB RASUlan-UdeRussia

Personalised recommendations