Advertisement

Deep pre-eruptive storage of silicic magmas feeding Plinian and dome-forming eruptions of central and northern Dominica (Lesser Antilles) inferred from volatile contents of melt inclusions

  • H. Balcone-Boissard
  • G. Boudon
  • J. D. Blundy
  • C. Martel
  • R. A. Brooker
  • E. Deloule
  • C. Solaro
  • V. Matjuschkin
Original Paper

Abstract

Volatiles contribute to magma ascent through the sub-volcanic plumbing system. Here, we investigate melt inclusion compositions in terms of major and trace elements, as well as volatiles (H2O, CO2, SO2, F, Cl, Br, S) for Quaternary Plinian and dome-forming dacite and andesite eruptions in the central and the northern part of Dominica (Lesser Antilles arc). Melt inclusions, hosted in orthopyroxene, clinopyroxene and plagioclase are consistently rhyolitic. Post-entrapment crystallisation effects are limited, and negligible in orthopyroxene-hosted inclusions. Melt inclusions are among the most water-rich yet recorded (≤ 8 wt% H2O). CO2 contents are generally low (< 650 ppm), although in general the highest pressure melt inclusion contain the highest CO2. Some low-pressure (< 3 kbars) inclusions have elevated CO2 (up to 1100–1150 ppm), suggestive of fluxing of shallow magmas with CO2-rich fluids. CO2-trace element systematics indicate that melts were volatile-saturated at the time of entrapment and can be used for volatile-saturation barometry. The calculated pressure range (0.8–7.5 kbars) indicates that magmas originate from a vertically-extensive (3–27 km depth) storage zone within the crust that may extend to the sub-Dominica Moho (28 km). The vertically-extensive crustal system is consistent with mush models for sub-volcanic arc crust wherein mantle-derived mafic magmas undergo differentiation over a range of crustal depths. The other volatile range of composition for melt inclusions from the central part is F (75–557 ppm), Cl (1525–3137 ppm), Br (6.1–15.4 ppm) and SO2 (< 140 ppm), and for the northern part it’s F (92–798 ppm), Cl (1506–4428 ppm), Br (not determined) and SO2 (< 569; one value at 1015 ppm). All MIs, regardless of provenance, describe the same Cl/F correlation (8.3 ± 2.7), indicating that the magma source at depth is similar. The high H2O content of Dominica magmas has implications for hazard assessment.

Keywords

Melt inclusion Volatiles Arc magma Dominica Lesser Antilles arc 

Notes

Acknowledgements

We thank R. Arculus, R. Watts and S. Skora for help with sampling at Morne aux Diables, S. Hidalgo for help with sample preparation, M. Fialin, N. Rividi, S. Kearns and B. Buse for EPMA analyses and O. Boudouma for SEM investigations. This work was supported by the TelluS-ALEAS (2013) funding from INSU-CNRS, ERC Advanced Grant CRITMAG and EC FP7 Grant VUELCO.

Supplementary material

410_2018_1528_MOESM1_ESM.docx (27 kb)
Supplementary material 1 (DOCX 26 KB)
410_2018_1528_MOESM2_ESM.xlsx (18 kb)
Supplementary material 2 (XLSX 18 KB)
410_2018_1528_MOESM3_ESM.xlsx (15 kb)
Supplementary material 3 (XLSX 15 KB)
410_2018_1528_MOESM4_ESM.xlsx (54 kb)
Supplementary material 4 (XLSX 54 KB)

References

  1. Bachmann O, Huber C (2016) Silicic magma reservoirs in the Earth’s crust. Am Mineral 101(11):2377–2404.  https://doi.org/10.2138/am-2016-5675 CrossRefGoogle Scholar
  2. Balcone-Boissard H, Villemant B, Boudon G (2010) Behavior of halogens during the degassing of felsic magmas. Geochem Geophys Geosyst 11:Q09005.  https://doi.org/10.1029/2010GC003028 CrossRefGoogle Scholar
  3. Blundy J, Cashman K (2008) Petrologic reconstruction of magmatic system variables and processes. Rev Mineral Geochem 69:179–239CrossRefGoogle Scholar
  4. Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443(7-107):76–80.  https://doi.org/10.1038/nature05100 CrossRefGoogle Scholar
  5. Blundy J, Cashman KV, Berlo K (2008) Evolving magma storage conditions beneath Mount St. Helens inferred from chemical variations in melt inclusions from the 1980–1986 and current (2004–2006) eruptions. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, vol 1750. US Geological Survey Professional Paper, Denver, pp 755–790Google Scholar
  6. Blundy J, Cashman KV, Rust A, Witham F (2010) A case for CO2-rich arc magmas. Earth Planet Sci Lett 290(3–4):289–301.  https://doi.org/10.1016/j.epsl.2009.12.013 CrossRefGoogle Scholar
  7. Boudon G, Le Friant A, Komorowski J-C, Deplus D, Semet MP (2007) Volcano flank instability in the Lesser Antilles Arc: diversity of scale, processes, and temporal recurrence. J Geophys Res 112:B08205.  https://doi.org/10.1029/2006JB004674 CrossRefGoogle Scholar
  8. Boudon G, Balcone-Boissard H, Solaro C, Martel C (2017) A revised chronostratigraphy of recurrent large pumiceous eruptions in Dominica (Lesser Antilles Arc): implications on the behavior of the magma plumbing sytem. J Volcanol Geotherm Res 343:135–154.  https://doi.org/10.1016/j.jvolgeores.2017.06.022 CrossRefGoogle Scholar
  9. Bouysse P, Westercamp D (1990) Subduction of Atlantic aseismic ridges and Late Cenozoic evolution of the Lesser Antilles island arc. Tectonophysics 175:349–380.  https://doi.org/10.1016/0040-1951(90)90180-G CrossRefGoogle Scholar
  10. Caricchi L, Sheldrake TE, Blundy J (2018) Modulation of magmatic processes by CO2 flushing. Earth Planet Sci Lett 491:160–171CrossRefGoogle Scholar
  11. Carroll MR, Rutherford MJ (1987) Sulfur speciation in hydrous experimental glasses of varying oxidation state: results from measured wavelength shifts of sulfur X-rays. Am Mineral 73:845–849Google Scholar
  12. Cashman KV, Sparks RSJ, Blundy JD (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355:1280.  https://doi.org/10.1126/0.1126/science.aag3055 CrossRefGoogle Scholar
  13. Christopher TE, Blundy J, Cashman K, Cole P, Edmonds M, Smith P, Sparks RSJ, Stinton A (2015) Crustal-scale degassing due to magma system destabilisation and magma-gas decoupling at Soufrière Hills Volcano, Montserrat. Geochem Geophys Geosyst 16:2797–2811CrossRefGoogle Scholar
  14. Cooper GF, Davidson JP, Blundy JD (2016) Plutonic xenoliths from Martinique, Lesser Antilles: evidence for open system processes and reactive melt flow in island arc crust. Contrib Miner Petrol 171:87CrossRefGoogle Scholar
  15. Edmonds M, Kohn SC, Hauri EH, Humphreys MCS, Cassidy M (2016) Extensive, water-rich magma reservoir beneath southern Montserrat. Lithos 252–253:216–233.  https://doi.org/10.1016/j.lithos.2016.02.026 CrossRefGoogle Scholar
  16. Esposito R, Hunter J, Schiffbauer JD, Shimizu N, Bodnar RJ (2014) An assessment of the reliability of melt inclusions as recorders of the pre-eruptive volatile content of magmas. Am Mineral 99:976–998CrossRefGoogle Scholar
  17. Fichaut M, Maury RC, Traineau H, Westercamp D, Joron J-L, Gourgaud A, Coulon C (1989) Magmatology of Mt Pelée (Martinique FWI). III: fractional crystallisation versus magma mixing. J Volcanol Geotherm Res 38:189–213Google Scholar
  18. Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe–Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308(9):957–1039CrossRefGoogle Scholar
  19. Ghiorso MS, Gualda GAR (2015) An H2O-CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib Mineral Petrol.  https://doi.org/10.1007/s00410-015-1141-8 CrossRefGoogle Scholar
  20. Gourgaud A, Fichaut M, Joron JL (1989) Magmatology of Mt. Pelée (Martinique FWI). I: Magma mixing and triggering of 1902 and 1929 nuées ardentes. J Volcanol Geotherm Res 38:143–169CrossRefGoogle Scholar
  21. Gurenko AA, Trumbull RB, Thomas R, Lindsay JM (2005) A melt inclusion record of volatiles, trace elements and Li-B isotope variations in a single magma system from the Plat Pays Volcanic Complex, Dominica, Lesser Antilles. J Pet 46:2495–2526CrossRefGoogle Scholar
  22. Halama R, Boudon G, Villemant B, Joron J-L, Le Friant A, Komorowski J-C (2006) Pre-eruptive crystallization conditions of mafic and silicic magmas at the Plat Pays volcanic Complex, Dominica (Lesser Antilles). J Volcanol Geotherm Res 151:200–220CrossRefGoogle Scholar
  23. Howe TM, Lindsay JM, Shane P, Schmitt AK, Stockli DF (2014) Re-evaluation of the Roseau Tuff eruptive sequence and other Ignimbrites in Dominica, Lesser Antilles. J Quat Sci 29(6):531–546.  https://doi.org/10.1002/jqs.2723 CrossRefGoogle Scholar
  24. Howe TM, Lindsay JM, Shane P (2015) Evolution of young andesitic-dacitic magmatic systems beneath Dominica, Lesser Antilles. J Volcanol Geotherm Res 297:69–88.  https://doi.org/10.1016/j.jvolgeores.2015.02.009 CrossRefGoogle Scholar
  25. Kilgour G, Blundy J, Cashman K, Mader HM (2013) Small volume andesite magmas and melt-mush interactions at Ruapehu, New Zealand: evidence from melt inclusions. Contrib Mineral Petrol 1:1–22Google Scholar
  26. Kilgour G, Saunders K, Blundy J, Cashman K, Scott B, Miller C, Mader H (2014) Timescales of magmatic processes at Ruapehu volcano from diffusion chronometry and their comparison to monitoring data. J Volcanol Geotherm Res 1:1–14Google Scholar
  27. Kilinc IA, Burnham CW (1972) Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kbars. Econ Geol 67:231–235CrossRefGoogle Scholar
  28. Kopp H, Weinzierl W, Becel A, Charvis P, Evain M, Flueh ER, Gailler A, Galve A, Hirn A, Kandilarov A, Klaeschen D, Laigle M, Papenberg C, Planert L, Roux E (2011) Deep structure of the central Lesser Antilles Island Arc: relevance for the formation of continental crust. Earth Planet Sci Lett 304(1–2):121–134.  https://doi.org/10.1016/j.epsl.2011.01.024 CrossRefGoogle Scholar
  29. Labanieh S, Chauvel C, Germa A, Quidelleur X (2012) Martinique: a clear case for sediment melting and slab dehydration as a function of distance to the trench. J Pet 53(12):2441–2464.  https://doi.org/10.1093/petrology/egs055 CrossRefGoogle Scholar
  30. Laumonier M, Gaillard F, Muir D, Blundy J, Unsworth M (2017) Giant magmatic water reservoirs at mid-crustal depth inferred from electrical conductivity and the growth of the continental crust. Earth Planet Sci Lett 457:173–180.  https://doi.org/10.1016/j.epsl.2016.10.023 CrossRefGoogle Scholar
  31. Le Friant A, Boudon G, Komorowski J-C, Deplus C (2002) L’île de la Dominique: zone d’émission des avalanches de débris les plus volumineuses de l’arc des Petites Antilles. C R Geosci 334:235–243CrossRefGoogle Scholar
  32. LeBas MJ, LeMaitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  33. Lindsay JM, Stasiuk MV, Shepherd JB (2003) Geological history and potential hazards of the late-Pleistocene to Recent Plat Pays volcanic complex, Dominica, Lesser Antilles. Bull Volcanol 65:201–220Google Scholar
  34. Lindsay J, Smith AL, Roobol MJ, Stasiuk MV (2005) Dominica. In: Lindsay JM, Robertson REA, Shepherd JB, Ali S (eds) Volcanic Hazard Atlas of the Lesser Antilles. Seismic Research Unit. The University of West Indies, Trinidad, pp 1–48Google Scholar
  35. Macdonald R, Hawkesworth CJ, Heath E (2000) The Lesser Antilles volcanic chain: a study in arc magmatism. Earth Sci Rev 49:1–76.  https://doi.org/10.1016/S0012-8252(99)00069-0 CrossRefGoogle Scholar
  36. Martel C, Pichavant M, Bourdier J-L, Traineau H, Holtz F, Scaillet B (1998) Magma storage conditions and control of eruption regime in silicic volcanoes: experimental evidence from Mt. Pelée. Earth Planet Sci Lett 156:89–99CrossRefGoogle Scholar
  37. Martel C, Ali AR, Poussineau S, Gourgaud A, Pichavant M (2006) Basalt-inherited microlites in silicic magmas: evidence from Mount Pelée (Martinique, French West Indies). Geology 34(11):905–908.  https://doi.org/10.1130/G22672A.1 CrossRefGoogle Scholar
  38. Melekhova E, Blundy J, Martin R, Arculus R, Picahvant M (2017) Petrological and experimental evidence for differentiation of water-rich magmas beneath St. Kitts, Lesser Antilles. Contrib Mineral Petrol 172:98.  https://doi.org/10.1007/s00410-017-1416-3 CrossRefGoogle Scholar
  39. Moore G (2008) Interpreting H2O and CO2 contents in melt inclusions: constraints from solubility experiments and modeling. Rev Mineral Geochem 69(5):333–361CrossRefGoogle Scholar
  40. Muir DD, Blundy J, Rust AC, Hickey J (2014) Experimental constraints in dacite pre-eruptive magma storage conditions beneath Uturuncu volcano. J Pet.  https://doi.org/10.1093/petrology/egu005 CrossRefGoogle Scholar
  41. Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O–CO2 solution model written in Visual Basic for excel. Comput Geosci 28(5):597–604CrossRefGoogle Scholar
  42. Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229(1–3):78–95CrossRefGoogle Scholar
  43. Paulatto M, Annen CJ, Henstock TJ, Kiddle EJ, Minshull TA, Sparks RSJ, Voight B (2012) Magma chamber properties from integrated seismic tomography and thermal modeling at Montserrat. Geochem Geophys Geosyst.  https://doi.org/10.1029/2011GC003892 CrossRefGoogle Scholar
  44. Pichavant M, Martel C, Bourdier J-L, Scaillet B (2002) Physical conditions, structure, and dynamics of a zoned magma chamber: Mount Pelée (Martinique, Lesser Antilles Arc). J Geophys Res 107(B5):2093.  https://doi.org/10.1029/2001JB000315 CrossRefGoogle Scholar
  45. Pichavant M, Poussineau S, Lesne P, Solaro C, Bourdier J-L (2018) Experimental parameterization of magma mixing: application to the 1530 AD eruption of La Soufrière, Guadeloupe (Lesser Antilles). J Pet.  https://doi.org/10.1093/petrology/egy030 CrossRefGoogle Scholar
  46. Poussineau S (2005) Dynamique des magmas andésitiques: approche expérimentale et pétrostructurale; application à la Soufrière de Guadeloupe et à la Montagne Pelée. PhD thesis, Univ Orléans, p 300Google Scholar
  47. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120CrossRefGoogle Scholar
  48. Roobol MJ, Wright JV, Smith AL (1983) Calderas or gravity-slide structures in the Lesser Antilles island arc? J Volcanol Geotherm Res 19:121–134.  https://doi.org/10.1016/0377-0273(83)90128-2 CrossRefGoogle Scholar
  49. Samper A, Quidelleur X, Boudon G, Le Friant A, Komorowski J-C (2008) Radiometric dating of three large volume flank collapses in the Lesser Antilles Arc. J Volcanol Geotherm Res 176:485–492CrossRefGoogle Scholar
  50. Sigurdsson H (1972) Partly-welded pyroclast flow deposits in Dominica, Lesser Antilles. Bull Volcanol 36:148–163.  https://doi.org/10.1007/BF02596987 CrossRefGoogle Scholar
  51. Sigurdsson H, Carey SN (1981) Marine tephrochronology and quaternary explosive volcanism in the lesser antilles arc. In: Self S, Sparks RSJ (Eeds) Tephra studies. Reidel, Dordredcht, pp 255–280CrossRefGoogle Scholar
  52. Smith AL, Roobol MJ, Mattioli GS, Fryxel JE, Daly GE, Fernandez LA (2013) The volcanic geology of the mid-arc Island of Dominica, Lesser Antilles; the surface expression of an island-arc batholith. Geol Soc Am Spec Pap.  https://doi.org/10.1130/2013.2496 CrossRefGoogle Scholar
  53. Solano JMS, Jackson MD, Sparks RSJ, Blundy J, Annen C (2012) Melt segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. J Pet 53:1999–2026.  https://doi.org/10.1093/petrology/egs041 CrossRefGoogle Scholar
  54. Solaro-Müller C (2017) Storage conditions and dynamics of magma reservoirs feeding the major pumiceous eruptions of Dominica (Lesser Antilles Arc). PhD thesis, Univ. Sorbone Paris Cité, p 330Google Scholar
  55. Tamic N, Behrens H, Holtz (2001) The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2-H2O fluid phase. Chem Geol 174:333–347CrossRefGoogle Scholar
  56. Thirlwall MF, Graham AM, Arculus RJ, Harmon RS, Macpherson CG (1996) Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb–Sr–Nd–O isotope geochemistry of Grenada, Lesser Antilles. Geochim Cosmo Acta 60:4785–4810CrossRefGoogle Scholar
  57. Villemant B, Boudon G (1998) Transition between dome-forming and Plinian eruptive style: H2O and Cl degassing behavior. Nature 392:65–69CrossRefGoogle Scholar
  58. Wadge G (1984) Comparison of volcanic production rates and subduction rates in the Lesser Antilles and Central America. Geology 12:555–558.  https://doi.org/10.1130/0091-7613 CrossRefGoogle Scholar
  59. Wadge G, Shepherd JB (1984) Segmentation of the Lesser Antilles subduction zone. Earth Planet Sci Lett 71:297–304.  https://doi.org/10.1016/0012-821X(84)90094-3 CrossRefGoogle Scholar
  60. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240CrossRefGoogle Scholar
  61. Watson EB, Harrison M (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64(2):295–304CrossRefGoogle Scholar
  62. Webster JD (1997) Chloride solubility in felsic melts and the role of chloride in magmatic degassing. J Pet 38(12):1793–1807.  https://doi.org/10.1093/petroj/38.12.1793 CrossRefGoogle Scholar
  63. Webster JD, Holloway JR (1988) Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O + CO2 fluids: new implications for granitic differentiation and ore deposition. Geochem Comochim Acta 52(8):2091–2105CrossRefGoogle Scholar
  64. Webster JD, Kinzler RJ, Mathez EA (1999) Chloride and water solubility in basalt and andesite melts and implications for magmatic degassing. Geochem Comochim Acta 63(5):429–738Google Scholar
  65. Webster JD, Baker DR, Aiuppa A (2018) Halogens in mafic and intermediate-silica content magmas. In: The role of halogens in terrestrial and extraterrestrial geochemical processes. Springer, Berlin, pp 307–430Google Scholar
  66. Wilkinson JJ (2013) Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat Geosci 6:917–925.  https://doi.org/10.1038/ngeo1940 CrossRefGoogle Scholar
  67. Yanagida Y, Nakamura M, Yasuda A, Kuritani T, Nakagawa M, Yoshida T (2018) Differentiation of a hydrous arc magma recorded in melt inclusions in deep crustal cumulate xenoliths from Ichinomegata Maar, NE Japan. Geochem Geophys Geosyst 19:838–864CrossRefGoogle Scholar
  68. Ziberna L, Green ECR, Blundy JD (2017) Multiple-reaction geobarometry for olivine-bearing igneous rocks. Am Mineral.  https://doi.org/10.2138/am-2017-6154 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sorbonne Universités, UPMC Université Paris 06, CNRS, Institut des Sciences de la Terre de Paris (ISTeP)ParisFrance
  2. 2.Institut de Physique du Globe de Paris, Sorbonne Paris CitéUniversité Paris Diderot, CNRSParisFrance
  3. 3.School of Earth SciencesUniversity of BristolBristolUK
  4. 4.Institut des Sciences de la Terre d’Orléans (ISTO)UMR 7327 Université d’Orléans-CNRS-BRGMOrléansFrance
  5. 5.CRPG, UMR 7358, CNRS, Université de LorraineVandoeuvre-lès-Nancy CedexFrance
  6. 6.Institut für Geowissenschaften, Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations