Advertisement

U–Pb isotopic dating of titanite microstructures: potential implications for the chronology and identification of large impact structures

  • K. Papapavlou
  • J. R. Darling
  • D. E. Moser
  • I. R. Barker
  • EIMF
  • L. F. White
  • P. C. Lightfoot
  • C. D. Storey
  • J. Dunlop
Original Paper

Abstract

Identifying and dating large impact structures is challenging, as many of the traditional shock indicator phases can be modified by post-impact processes. Refractory accessory phases, such as zircon, while faithful recorders of shock wave passage, commonly respond with partial U–Pb age resetting during impact events. Titanite is an accessory phase with lower Pb closure temperature than many other robust chronometers, but its potential as indicator and chronometer of impact-related processes remains poorly constrained. In this study, we examined titanite grains from the Sudbury (Ontario, Canada) and Vredefort (South Africa) impact structures, combining quantitative microstructural and U–Pb dating techniques. Titanite grains from both craters host planar microstructures and microtwins that show a common twin–host disorientation relationship of 74° about <102>. In the Vredefort impact structure, the microtwins deformed internally and developed high- and low-angle grain boundaries that resulted in the growth of neoblastic crystallites. U–Pb isotopic dating of magmatic titanite grains with deformation microtwins from the Sudbury impact structure yielded a 207Pb/206Pb age of 1851 ± 12 Ma that records either the shock heating or the crater modification stage of the impact event. The titanite grains from the Vredefort impact structure yielded primarily pre-impact ages recording the cooling of the ultra-high-temperature Ventersdorp event, but domains with microtwins or planar microstructures show evidence of U–Pb isotopic disturbance. Despite that the identified microtwins are not diagnostic of shock-metamorphic processes, our contribution demonstrates that titanite has great potential to inform studies of the terrestrial impact crater record.

Keywords

Titanite Sudbury Vredefort U–Pb geochronology EBSD Impact craters 

Notes

Acknowledgements

K.P acknowledges a Ph.D. studentship from the University of Portsmouth. Vale is acknowledged for access to drillcore material. Vale geologists Lisa Gibson, Colin Mecke, Clarence Pickett, and Rob Pelkey are thanked for the provided information and feedback. J.D acknowledges Higher Education Innovation Fund and Researcher Development Fund grant from the University of Portsmouth. Constructive and insightful reviews by Timmons Erickson and an anonymous reviewer enhanced the manuscript and are greatly appreciated. The previous reviews by Nick Timms, Chloe Bonamici, Fred Jourdan, and Elizaveta Kovaleva are also greatly appreciated as well as editorial handling by Steven Reddy. Personal communication with Mark Biren regarding unpublished data from the Manicouagan impact crater is also gratefully acknowledged.

Supplementary material

410_2018_1511_MOESM1_ESM.docx (393 kb)
Supplementary material 1 (DOCX 393 KB)
410_2018_1511_MOESM2_ESM.docx (556 kb)
Supplementary material 2 (DOCX 556 KB)
410_2018_1511_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 15 KB)
410_2018_1511_MOESM4_ESM.xlsx (74 kb)
Supplementary material 4 (XLSX 74 KB)
410_2018_1511_MOESM5_ESM.docx (122 kb)
Supplementary material 5 (DOCX 121 KB)
410_2018_1511_MOESM6_ESM.docx (5.1 mb)
Supplementary material 6 (DOCX 5268 KB)

References

  1. Abramov O, Kring DA, Mojzsis SJ (2013) The impact environment of the Hadean Earth. Chemie Der Erde Geochem 73(3):227–248.  https://doi.org/10.1016/j.chemer.2013.08.004 CrossRefGoogle Scholar
  2. Ague DM, Wenk HR, Wenk E (1990) Deformation Microstructures and Lattice orientations of Plagioclase in Gabbros from Central Australia. Geophys Monogr 56:173–186.  https://doi.org/10.1029/GM056p0173 CrossRefGoogle Scholar
  3. Ames DE, Davidson A, Wodicka N (2008) Geology of the giant Sudbury polymetallic mining camp, Ontario Canada. Econ Geol 103(5):1057–1077.  https://doi.org/10.2113/gsecongeo.103.5.1057 CrossRefGoogle Scholar
  4. Bailey J, Lafrance B, McDonald AM, Fedorowich JS, Kamo S, Davis WJ, D A A (2004) Mazatzal–Labradorian-age (17–16 Ga) ductile deformation of the South Range Sudbury impact structure at the Thayer Lindsley mine, Ontario. Can J Earth Sci 41(12):1491–1505.  https://doi.org/10.1139/e04-098 CrossRefGoogle Scholar
  5. Biren M, Spray JG (2010) Shock veins in the central uplift of the Manicouagan impact structure. In: 41st Lunar and planetary science conference, March 1–5, TexasGoogle Scholar
  6. Biren MB, Spray JG (2011) Shock veins in the central uplift of the Manicouagan impact structure: context and genesis. Earth Planet Sci Lett 303(3–4):310–322.  https://doi.org/10.1016/j.epsl.2011.01.003 CrossRefGoogle Scholar
  7. Bleeker W, Ernst RE (2006) Short-lived mantle generated magmatic events and their dyke swarms: the key unlocking Earth’s paleogeographic record back to 2.6 Ga. In: Hanski E, Mertanen S, Ram o T, Vuollo J (eds) Dyke Swams—time markers of crustal evolution. Taylor and Francis/Balkema, London, pp 3–26CrossRefGoogle Scholar
  8. Bonamici CE, Kozdon R, Ushikubo T, Valley JW (2014) Intragrain oxygen isotope zoning in titanite by SIMS: cooling rates and fluid infiltration along the Carthage–Colton Mylonite Zone, Adirondack Mountains, NY, USA. J Metamorph Geol 32(1):71–92.  https://doi.org/10.1111/jmg12059 CrossRefGoogle Scholar
  9. Bonamici CE, Fanning CM, Kozdon R, Fournelle JH, Valley JW (2015) Combined oxygen-isotope and U–Pb zoning studies of titanite: new criteria for age preservation. Chem Geol 398:70–84.  https://doi.org/10.1016/j.chemgeo.2015.02.002 CrossRefGoogle Scholar
  10. Boerner DE, Milkereit B, Wu J, Salisbury M (2000) Seismic images and three-dimensional architecture of a Proterozoic shear zone in the Sudbury Structure (Superior Province, Canada). Tectonics 19(2):397–405.  https://doi.org/10.1029/1999TC900060 CrossRefGoogle Scholar
  11. Borg, I Y (1970) Mechanical <110> twinning in shocked sphene. Am Mineral 55:1876–1888Google Scholar
  12. Borg IY, Heard HC (1972) Mechanical Twinning in Sphene at 8 Kbar, 25° to 500 °C. Geol Soc Am Mem 132:585–592.  https://doi.org/10.1130/MEM132-p585 CrossRefGoogle Scholar
  13. Cavosie AJ, Erickson TM, Timms NE, Reddy SM, Talavera C, Montalvo SD, Moser D (2015) A terrestrial perspective on using ex situ shocked zircons to date lunar impacts. Geology 43(11):999–1002.  https://doi.org/10.1130/G370591 CrossRefGoogle Scholar
  14. Cherniak DJ (1993) Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport. Chem Geol 110(1–3):177–194.  https://doi.org/10.1016/0009-2541(93)90253-F CrossRefGoogle Scholar
  15. Cherniak D, Watson E (2001) Pb diffusion in zircon. Chem Geol 172(1–2):5–24.  https://doi.org/10.1016/S0009-2541(00)00233-3 CrossRefGoogle Scholar
  16. Christian JW, Mahajan S (1995) Deformation twinning. Progr Mater Sci.  https://doi.org/10.1016/0079-6425(94)00007-7 CrossRefGoogle Scholar
  17. Corfu F, Stone D (1998) The significance of titanite and apatite U–Pb ages: Constraints for the post-magmatic thermal-hydrothermal evolution of a batholithic complex, Berens River area, northwestern Superior Province, Canada. Geochim Cosmochim Acta 62(17):2979–2995.  https://doi.org/10.1016/S0016-7037(98)00225-7 CrossRefGoogle Scholar
  18. Darling JR, Moser DE, Barker IR, Tait KT, Chamberlain KR, Schmitt AK, Hyde BC (2016) Variable microstructural response of baddeleyite to shock metamorphism in young basaltic shergottite NWA 5298 and improved U–Pb dating of Solar System events. Earth Planet Sci Lett 444:1–12.  https://doi.org/10.1016/j.epsl.2016.03.032 CrossRefGoogle Scholar
  19. Davidson A, van Breemen O, Sullivan RW (1992) Circa 1.75 Ga ages for plutonic rocks from the Southern Province and adjacent Grenville Province: what is the expression of the Penokean orogeny? In: Radiogenic age and isotopic studies: report 6, Geological Survey of Canada Paper 92-2, pp 107–118Google Scholar
  20. Deer WA, Howie RA, Zussman J (1997) Rock forming minerals, volume 1A: orthosilicates. The Geological Society, 2nd edn, p 919Google Scholar
  21. Delaney JS, Takeda H, Prinz M, Nehru CE, Harlow GE (1983) The nomenclature of polymict basaltic achondrites. Meteoritics 18(2):103–111.  https://doi.org/10.1111/j.1945-5100.1983.tb00581.x CrossRefGoogle Scholar
  22. Deutsch A, Schärer U (1990) Isotope systematics and shock-wave metamorphism: I U–Pb in zircon, titanite and monazite, shocked experimentally up to 59 GPa. Geochim Cosmochim Acta 54(12):3427–3434.  https://doi.org/10.1016/0016-7037(90)90295-V CrossRefGoogle Scholar
  23. Erickson TM, Pearce MA, Taylor RJM, Timms NE, Clark C, Reddy SM, Buick IS (2015) Deformed monazite yields high-temperature tectonic ages. Geology 43(5):383–386.  https://doi.org/10.1130/G36533.1 CrossRefGoogle Scholar
  24. Erickson TM, Cavosie AJ, Pearce MA, Timms NE, Reddy SM (2016) Empirical constraints on shock features in monazite using shocked zircon inclusions. Geology 44(8):635–638.  https://doi.org/10.1130/G379791 CrossRefGoogle Scholar
  25. Erickson TM, Timms NE, Kirkland CL, Tohver E, Cavosie AJ, Pearce MA, Reddy SM (2017) Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages. Contrib Miner Petrol 172(2–3):11.  https://doi.org/10.1007/s00410-017-1328-2 CrossRefGoogle Scholar
  26. Fleet ME, Barnett RL, Morris WA (1987) Prograde metamorphism of the Sudbury igneous complex. Can Mineral 25:499–514Google Scholar
  27. Frarey MJ, Loveridge WD, Sullivan RW (1982) A U–Pb age for the Creighton granite, Ontario. Shock metamorphism of natural materials, Monography Book Corporation, Baltimore, pp 383–412CrossRefGoogle Scholar
  28. Frost BR, Chamberlain KR, Schumacher JC (2001) Sphene (titanite): phase relations and role as a geochronometer. Chem Geol 172(1–2):131–148.  https://doi.org/10.1016/S0009-2541(00)00240-0 CrossRefGoogle Scholar
  29. Ghose S, Ito Y, Hatch D (1991) Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5. Phys Chem Miner 17(7):591–603.  https://doi.org/10.1007/BF00203838 CrossRefGoogle Scholar
  30. Gibson RL, Reimold WU (2001) The Vredefort impact structure, South Africa (The scientific evidence and a two-day excursion guide). In: Council for Geoscience Memoir 92. Council for Geoscience, Pretoria, p 111Google Scholar
  31. Graham IT, De Waal SA, Armstrong RA (2005) New U–Pb SHRIMP zircon age for the Schurwedraai alkali granite: Implications for pre-impact development of the Vredefort Dome and extent of Bushveld magmatism, South Africa. J Afr Earth Sci 43(5):537–548.  https://doi.org/10.1016/j.jafrearsci.2005.09.009 CrossRefGoogle Scholar
  32. Grieve RA, McKay GA, Smith HD, Weill DF (1975) Lunar polymict breccia 14321: a petrographic study. Geochim Cosmochim Acta.  https://doi.org/10.1016/0016-7037(75)90193-3 CrossRefGoogle Scholar
  33. Grieve RAF, Coderre JM, Robertson PB, Alexopoulos J (1990) Microscopic planar deformation features in quartz of the Vredefort structure: anomalous but still suggestive of an impact origin. Tectonophysics 171(1):185–200.  https://doi.org/10.1016/0040-1951(90)90098-S CrossRefGoogle Scholar
  34. Guan YB, Crozaz G (2000) Light rare earth element enrichments in ureilites: a detailed ion microprobe study. Meteorit Planet Sci 35(1):131–144.  https://doi.org/10.1111/j.1945-5100.2000.tb01980.x CrossRefGoogle Scholar
  35. Hart R, Moser D, Andreoli M (1999) Archean age for the granulite facies metamorphism near the center of the Vredefort structure, South Africa. Geology 27(12):1091–1094.  https://doi.org/10.1130/0091-7613(1999)027%3C1091 CrossRefGoogle Scholar
  36. Heaman LM (2009) The application of U–Pb geochronology to mafic, ultramafic and alkaline rocks: an evaluation of three mineral standards. Chem Geol 261(1–2):42–51.  https://doi.org/10.1016/jchemgeo200810021 CrossRefGoogle Scholar
  37. Heaman LM, Le Cheminant AN (2001) Anomalous U–Pb systematics in mantle-derived baddeleyite xenocrysts from ile Bizard: Evidence for high temperature radon diffusion? Chem Geol 172(1–2):77–93.  https://doi.org/10.1016/S0009-2541(00)00237-0 CrossRefGoogle Scholar
  38. Henkel H, Reimold WU (1998) Integrated geophysical modelling of a giant, complex impact structure: anatomy of the Vredefort Structure, South Africa. Tectonophysics 287(1–4):1–20.  https://doi.org/10.1016/S0040-1951(98)80058-9 CrossRefGoogle Scholar
  39. Ivanov BA (2005) Numerical modeling of the largest terrestrial meteorite craters. Solar Syst Res.  https://doi.org/10.1007/s11208-005-0051-0 CrossRefGoogle Scholar
  40. Kamo SL, Reimold WU, Krogh TE, Colliston WP (1996) A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and Granophyre. Earth Planet Sci Lett 144(3):369–387.  https://doi.org/10.1016/S0012-821X(96)00180-X CrossRefGoogle Scholar
  41. Kenkmann T, Collins GS, Wünnemann K (2013) The modification stage of crater formation. In: Impact cratering. Wiley, Chichester, pp 60–75.  https://doi.org/10.1002/9781118447307.ch5 CrossRefGoogle Scholar
  42. Kenny GG, Morales LF, Whitehouse MJ, Petrus JA, Kamber BS (2017) The formation of large neoblasts in shocked zircon and their utility in dating impacts. Geology 45(11):1003–1006.  https://doi.org/10.1130/G39328.1 CrossRefGoogle Scholar
  43. Krogh TE, Davis DW, Corfu F (1984) Precise U–Pb zircon and baddeleyite ages for the Sudbury area. In: Pye EG, Naldrett AJ, Gilbin PE (eds) The geology and ore deposits of the Sudbury structure. Special Volume 1, Ontario Geological Survey, pp 431–446Google Scholar
  44. Krogh TE, Kamo SL, Bohor BF (1996) Shock metamorphosed zircons with correlated U–Pb discordance and melt rocks with concordant protolith ages indicate an impact origin for the sudbury structure. In: Geophysical Monograph Series.  https://doi.org/10.1029/GM095p0343 CrossRefGoogle Scholar
  45. Kunz M, Xirouchakis D, Lindsley DH, Hausermann D (1996) High-pressure phase transition in titanite (CaTiOSiO4). Am Miner 81(11–12):1527–1530.  https://doi.org/10.2138/am-1996-11-1225 CrossRefGoogle Scholar
  46. Langenhorst F, Dressler B (2003) First observation of silicate hollandite in a terrestrial rock. In: Proceeding of the third international conference on large meteorite impacts geological society of America Special Paper, Abstract #4046Google Scholar
  47. Lightfoot PC (2017) Nickel sulfide ores and impact melts: origin of the Sudbury Igneous complex. Elsevier, OxfordGoogle Scholar
  48. Ludwig KR (2003) User’s manual for isoplot 3.0—a geochronological toolkit for Microsoft Excel, vol 4. Berkeley Geochronology Center Special Publication, p 71Google Scholar
  49. Maitland T, Sitzman S (2007) Electron backscatter diffraction (EBSD) technique and materials characterization examples. Scanning microscopy for nanotechnology: techniques and applications, pp 41–76CrossRefGoogle Scholar
  50. Moser, D E (1997) Dating the shock wave and thermal imprint of the giant Vredefort impact, South Africa. Geology, 25(1), 7–10.  https://doi.org/10.1130/0091-7613(1997)025%3C0007:DTSWAT%3E23CO;2 CrossRefGoogle Scholar
  51. Moser DE, Cupelli CL, Barker IR, Flowers RM, Bowman JR, Wooden J, Hart JR (2011) New zircon shock phenomena and their use for dating and reconstruction of large impact structures revealed by electron nanobeam (EBSD, CL, EDS) and isotopic U–Pb and (U–Th)/He analysis of the Vredefort dome. Can J Earth Sci 48(2):117–139.  https://doi.org/10.1139/E11-011 CrossRefGoogle Scholar
  52. Mukwakwami J, Lafrance B, Lesher CM, Tinkham D, Rayner N, Ames D (2014) Deformation, metamorphism, and mobilization of Ni–Cu–PGE sulfide ores at Garson Mine. Sudbury Mineralium Deposita 49(2):175–198.  https://doi.org/10.1007/s00126-013-0479-y CrossRefGoogle Scholar
  53. Muller WF, Franz G (2004) Unusual deformation microstructures in garnet, titanite and clinozoisite from an eclogite of the Lower Schist Cover, Tauern Window, Austria. Eur J Mineral 16(6):939–944.  https://doi.org/10.1127/0935-1221/2004/0016-0939 CrossRefGoogle Scholar
  54. Papapavlou K, Darling JR, Storey CD, Lightfoot PC, Moser DE, Lasalle S (2017) Dating shear zones with plastically deformed titanite: new insights into the orogenic evolution of the Sudbury impact structure (Ontario, Canada). Precambr Res 291:220–235.  https://doi.org/10.1016/j.precamres.2017.01.007 CrossRefGoogle Scholar
  55. Papapavlou K, Darling JR, Lightfoot PC, Lasalle S, Gibson L, Storey CD, Moser D (2018) Polyorogenic reworking of ore-controlling shear zones at the South Range of the Sudbury impact structure: a telltale story from in situ U–Pb titanite geochronology. Terra Nova.  https://doi.org/10.1111/ter.12332 CrossRefGoogle Scholar
  56. Parrish RR (1990) U–Pb dating of monazite and its application to geological problems. Can J Earth Sci 27:1431–1450.  https://doi.org/10.1139/e90-152 CrossRefGoogle Scholar
  57. Paterson BA, Stephens WE (1992) Kinetically induced compositional zoning in titanite: implications for accessory-phase/melt partitioning of trace elements. Contrib Miner Petrol 109(3):373–385.  https://doi.org/10.1007/BF00283325 CrossRefGoogle Scholar
  58. Piazolo S, Austrheim H, Whitehouse M (2012) Brittle-ductile microfabrics in naturally deformed zircon: Deformation mechanisms and consequences for U–Pb dating. Am Miner 97(10):1544–1563.  https://doi.org/10.2138/am.2012.3966 CrossRefGoogle Scholar
  59. Prior DJ, Mariani E, Wheeler J (2009) EBSD in the earth sciences: applications, common practice, and challenges. In Electron backscatter diffraction in materials science, pp 345–360.  https://doi.org/10.1007/978-0-387-88136-2_26 CrossRefGoogle Scholar
  60. Putnis A (1992) Introduction to mineral sciences. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  61. Riller U (2005) Structural characteristics of the Sudbury impact structure, Canada: impact-induced versus orogenic deformation—a review. Meteorit Planet Sci 40(11):1723–1740.  https://doi.org/10.1111/j.1945-5100.2005.tb00140.x CrossRefGoogle Scholar
  62. Riller U, Lieger D, Gibson RL, Grieve RAF, Stöffler D (2010) Origin of large-volume pseudotachylite in terrestrial impact structures. Geology 38(7):619–622.  https://doi.org/10.1130/G30806.1 CrossRefGoogle Scholar
  63. Schmitz, M D, Bowring, S A (2003) Ultrahigh-temperature metamorphism in the lower crust during Neoarchean Ventersdorp rifting and magmatism, Kaapvaal craton, southern Africa. Bull Geol Soc Am 115(5):533–548.  https://doi.org/10.1130/0016-7606(2003)115%3C0533:UMITLC%3E20CO;2 CrossRefGoogle Scholar
  64. Spandler C, Hammerli J, Sha P, Hilbert-Wolf H, Hu Y, Roberts E, Schmitz M (2016) MKED1: a new titanite standard for in situ analysis of Sm–Nd isotopes and U–Pb geochronology. Chem Geol 425:110–126.  https://doi.org/10.1016/jchemgeo201601002 CrossRefGoogle Scholar
  65. Spencer KJ, Hacker BR, Kylander-Clark ARC, Andersen TB, Cottle JM, Stearns MA, Seward, G G E (2013) Campaign-style titanite U–Pb dating by laser-ablation ICP: implications for crustal flow, phase transformations and titanite closure. Chem Geol 341:84–101.  https://doi.org/10.1016/jchemgeo201211012 CrossRefGoogle Scholar
  66. Stöffler D (1972) Deformation and transformation of rock-forming minerals by natural and experimental shock processes I Behavior of minerals under shock compression. Fortschritte Der Mineralogie 49:50–113Google Scholar
  67. Taylor M, Brown GE (1976) High-temperature structural study of the P21/a–A21a phase transition in synthetic titanite, CaTiSiO5. Am Miner 61:435–447Google Scholar
  68. Timms NE, Erickson TM, Pearce MA, Cavosie AJ, Schmieder M, Tohver E, Wittmann A (2017) A pressure-temperature phase diagram for zircon at extreme conditions. Earth Sci Rev.  https://doi.org/10.1016/j.earscirev.2016.12.008 CrossRefGoogle Scholar
  69. Van Soest MC, Hodges KV, Wartho JA, Biren MB, Monteleone BD, Ramezani J, Thompson LM (2012) (U-Th)/He dating of terrestrial impact structures: the Manicouagan example. Geochem Geophys Geosyst.  https://doi.org/10.1029/2010GC003465 CrossRefGoogle Scholar
  70. Vernon RH (2004) A practical guide to rock microstructure. Cambridge University Press, Cambridge, p 606CrossRefGoogle Scholar
  71. White LF, Darling JR, Moser DE, Cayron C, Barker I, Dunlop J, Tait KT (2018) Baddeleyite as a widespread and sensitive indicator of meteorite bombardment in planetary crusts. Geology 46(8):719–722.  https://doi.org/10.1130/G45008.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GEOTOPUniversité du Québec à MontréalMontrealCanada
  2. 2.School of Earth and Environmental SciencesUniversity of PortsmouthPortsmouthUK
  3. 3.Department of Earth SciencesUniversity of Western OntarioLondonCanada
  4. 4.Edinburgh Ion Microprobe Facility, School of Geosciences, Grant InstituteUniversity of EdinburghEdinburghUK
  5. 5.Department of Natural HistoryRoyal Ontario MuseumTorontoCanada

Personalised recommendations