Advertisement

The stability of hydrous phases beyond antigorite breakdown for a magnetite-bearing natural serpentinite between 6.5 and 11 GPa

  • J. Maurice
  • N. Bolfan-Casanova
  • J. A. Padrón-Navarta
  • G. Manthilake
  • T. Hammouda
  • J. M. Hénot
  • D. Andrault
Original Paper
  • 182 Downloads

Abstract

Phase relations for a natural serpentinite containing 5 wt% of magnetite have been investigated using a multi-anvil apparatus between 6.5 and 11 GPa and 400–850 °C. Post-antigorite hydrous phase assemblages comprise the dense hydrous magnesium silicates (DHMSs) phase A (11.3 wt% H2O) and the aluminous phase E (Al-PhE, 11.9 wt% H2O). In addition, a ferromagnesian hydrous silicate (11.1 wt% H2O) identified as balangeroite (Mg,Fe)42Si16O54(OH)40, typically described in low pressure natural serpentinite, was found coexisting with Al-PhE between 650 and 700 °C at 8 GPa. In the natural antigorite system, phase E stability is extended to lower pressures (8 GPa) than previously reported in simple chemical systems. The reaction Al-phase E = garnet + olivine + H2O is constrained between 750 and 800 °C between 8 and 11 GPa as the terminal boundary between hydrous mineral assemblages and nominally anhydrous assemblages, hence restricting water transfer into the deep mantle to the coldest slabs. The water storage capacity of the assemblage Al-PhE + enstatite (high-clinoenstatite) + olivine, relevant for realistic hydrated slab composition along a relatively cold temperature path is estimated to be ca. 2 wt% H2O. Attempts to mass balance run products emphasizes the role of magnetite in phase equilibria, and suggests the importance of ferric iron in the stabilization of hydrous phases such as balangeroite and aluminous phase E.

Keywords

Hydrous phases stability Natural serpentinite Water transfer Subduction 

Notes

Acknowledgements

We gratefully acknowledge constructive reviews by R. Stalder, P. Fumagalli and K. Iacovino and the editorial handling. We thank D. Mainprice for providing us with the natural sample of serpentinite that was used for our experiments. This study is part of J. Maurice PhD financed by the ANR HYDEEP “Hydrogen in the Deep Earth” project to N. Bolfan-Casanova and the ANR OxyDeep project to Denis Andrault. We also thank J.-L. Devidal (Laboratoire Magmas et Volcans, Clermont-Ferrand) for his assistance during microprobe analysis, F. Schiavi (LMV, Clermont-Ferrand) for Raman analyses support, P. Bouilhol (CRPG, Nancy) for instructive discussions and assistance during garnets Fe3+ measurements using the flank method. We thank L. Jouffret (Institut de Chimie, Clermont-Ferrand) for providing balangeroite X-Ray single crystal structure refinement. This is Laboratory of Excellence Clervolc contribution number 314.

Supplementary material

410_2018_1507_MOESM1_ESM.bmp (508 kb)
Supplementary material 1 (BMP 507 KB)

References

  1. Andreani M, Muñoz M, Marcaillou C, Delacour A (2013) µXANES study of iron redox state in serpentine during oceanic serpentinization. Lithos 178:70–83CrossRefGoogle Scholar
  2. Artioli G, Fumagalli P, Poli S (1999) The crystal structure of Mg8Mg2Al2Al8Si12(O,OH)56 pumpellyite and its relevance in ultramafic systems at high pressure. Am Mineral 84:1906–1914CrossRefGoogle Scholar
  3. Auzanneau E, Vielzeuf D, Schmidt MW (2006) Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol 152:125–148CrossRefGoogle Scholar
  4. Bean VE, Akimoto S, Bell PM, Block S, Holzapfel WB, Manghnani MH, Nicol MF, Stishov SM (1986) Another step toward an international practical pressure scale: 2nd AIRAPT IPPS task group report. Phys B + C 139–140:52–54CrossRefGoogle Scholar
  5. Bebout GE, Barton MD (2002) Tectonic and metasomatic mixing in a high-T, subduction-zone mélange-insights into the geochemical evolution of the slab–mantle interface. Chem Geol 187:79–106CrossRefGoogle Scholar
  6. Bonaccorsi E, Ferraris G, Merlino S (2012) Crystal structure of 2M and 1A polytypes of balangeroite. Zeitschrift für Krist 227:460–467CrossRefGoogle Scholar
  7. Bose K, Ganguly J (1995) Quartz-coesite transition revisited: reversed experimental determination at 500–1200 °C and retrieved thermochemical properties. Am Mineral 80:231–238CrossRefGoogle Scholar
  8. Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378CrossRefGoogle Scholar
  9. Bromiley GD, Pawley AR (2002) The high-pressure stability of Mg-sursassite in a model hydrous peridotite: a possible mechanism for the deep subduction of significant volumes of H2O. Contrib Mineral Petrol 142:714–723CrossRefGoogle Scholar
  10. Bromiley GD, Pawley AR (2003) The stability of antigorite in the systems MgO–SiO2–H2O (MSH) and MgO–Al2O3–SiO2–H2O (MASH): The effects of Al3+ substitution on high-pressure stability. Am Mineral 88:99–108CrossRefGoogle Scholar
  11. Bulanova GP, Walter MJ, Smith CB, Kohn SC, Armstrong LS, Blundy J, Gobbo L (2010) Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol 160:489–510CrossRefGoogle Scholar
  12. Cai N, Inoue T, Fujino K, Ohfuji H, Yurimoto H (2015) A possible new Al-bearing hydrous Mg-silicate (23 Å phase) in the deep upper mantle. Am Mineral 100:2330–2335CrossRefGoogle Scholar
  13. Capitani G, Mellini M (2004) The modulated crystal structure of antigorite: the m = 17 polysome. Am Mineral 89:147–158CrossRefGoogle Scholar
  14. Compagnoni R, Ferraris G, Fiora L (1983) Balangeroite, a new fibrous silicate related to gageite from Balangero, Italy. Am Mineral 68:214–219Google Scholar
  15. Debret B, Bolfan-Casanova N, Padrón-Navarta JA, Martin-Hernandez F, Andreani M, Garrido CJ, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Muñoz M, Trcera N (2015) Redox state of iron during high-pressure serpentinite dehydration. Contrib Mineral Petrol 169:36CrossRefGoogle Scholar
  16. Demouchy S, Bolfan-Casanova N (2016) Distribution and transport of hydrogen in the lithospheric mantle: a review. Lithos 240–243:402–425CrossRefGoogle Scholar
  17. Deriu A, Ferraris G, Belluso E (1994) 57Fe Mössbauer study of the asbestiform silicates balangeroite and carlosturanite. Phys Chem Miner 21:222–227CrossRefGoogle Scholar
  18. Deschamps F, Godard M, Guillot S, Hattori K (2013) Geochemistry of subduction zone serpentinites: a review. Lithos 178:96–127CrossRefGoogle Scholar
  19. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435CrossRefGoogle Scholar
  20. Evans BW, Dyar MD, Kuehner SM (2012) Implications of ferrous and ferric iron i antigorite. Am Mineral 97:184–196CrossRefGoogle Scholar
  21. Fockenberg T (1998) An experimental study of the pressure-temperature stability of MgMgAl-pumpellyite in the system MgO–Al2O3–SiO2–H2O. Am Mineral 83:220–227CrossRefGoogle Scholar
  22. Frost DJ (1999) The stability of dense hydrous magnesium silicates in earth’s transition zone and lower mantle. In: Fei Y-W, Bertka C, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R. (Joe) Boyd, vol 6. Geochemical Society of Special Publications, London, pp 283–296Google Scholar
  23. Frost DJ, Fei Y (1998) Stability of phase D at high pressure and high temperature. J Geophys Res Solid Earth 103:7463–7474CrossRefGoogle Scholar
  24. Fumagalli P, Klemme S (2015) Mineralogy of the Earth: phase transitions and mineralogy of the upper mantle. In: Schubert G (ed) Treatise on geophysics, 2nd edn. Elsevier, Oxford, pp 7–31CrossRefGoogle Scholar
  25. Fumagalli P, Poli S (1999) Phase relationships in hydrous peridotites at high pressure: preliminary results of multianvil experiments. Period di Mineral 68:275–286Google Scholar
  26. Fumagalli P, Poli S (2005) Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol 46:555–578CrossRefGoogle Scholar
  27. Fumagalli P, Stixrude L, Poli S, Snyder D (2001) The 10 Å phase: a high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere. Earth Planet Sci Lett 186:125–141CrossRefGoogle Scholar
  28. Fumagalli P, Poli S, Fischer J, Merlini M, Gemmi M (2014) The high-pressure stability of chlorite and other hydrates in subduction mélanges: experiments in the system Cr2O3–MgO–Al2O3–SiO2–H2O. Contrib Mineral Petrol 167:979CrossRefGoogle Scholar
  29. Gemmi M, Fischer J, Merlini M, Poli S, Fumagalli P, Mugnaioli E, Kolb U (2011) A new hydrous Al-bearing pyroxene as a water carrier in subduction zones. Earth Planet Sci Lett 310:422–428CrossRefGoogle Scholar
  30. Gemmi M, Merlini M, Palatinus L, Fumagalli P, Hanfland M (2016) Electron diffraction determination of 11.5 Å and HySo structures: candidate water carriers to the Upper Mantle. Am Mineral 101:2645–2654CrossRefGoogle Scholar
  31. Groppo C, Compagnoni R (2007) Metamorphic veins from the serpentinites of the Piemonte Zone, western Alps, Italy: a review. Period di Mineral 76:95–124Google Scholar
  32. Grützner T, Klemme S, Rohrbach A, Gervasoni F, Berndt J (2017) The role of F-clinohumite in volatile recycling processes in subduction zones. Geology 45:443–446CrossRefGoogle Scholar
  33. Hammouda T (2003) High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett 214:357–368CrossRefGoogle Scholar
  34. Harte B (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral Mag 74:189–215CrossRefGoogle Scholar
  35. Hattori KH, Guillot S (2007) Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochem Geophys Geosyst 8:pp.Q09010l charCrossRefGoogle Scholar
  36. Hernlund J, Leinenweber K, Locke D, Tyburczy JA (2006) A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am Mineral 91:295–305CrossRefGoogle Scholar
  37. Höfer HE, Brey GP (2007) The iron oxidation state of garnet by electron microprobe: its determination with the flank method combined with major-element analysis. Am Mineral 92:873–885CrossRefGoogle Scholar
  38. Holl CM, Smyth JR, Manghnani MH, Amulele GM, Sekar M, Frost DJ, Prakapenka VB, Shen G (2006) Crystal structure and compression of an iron-bearing phase A to 33 GPa. Phys Chem Miner 33:192–199CrossRefGoogle Scholar
  39. Irifune T, Kubo N, Isshiki M, Yamasaki Y (1998) Phase transformations in serpentine and transportation of water into the lower mantle. Geophys Res Lett 25:203–206CrossRefGoogle Scholar
  40. Iwamori H (2004) Phase relations of peridotites under H2O-saturated conditions and ability of subducting plates for transportation of H2O. Earth Planet Sci Lett 227:57–71CrossRefGoogle Scholar
  41. Kanzaki M (1991) Stability of hydrous magnesium silicates in the mantle transition zone. Phys Earth Planet Inter 66:307–312CrossRefGoogle Scholar
  42. Kawamoto T (2004) Hydrous phase stability and partial melt chemistry in H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys Earth Planet Inter 143144:387–395CrossRefGoogle Scholar
  43. Kawamoto T, Holloway JR (1997) Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 GPa. Science 80:276:240–243CrossRefGoogle Scholar
  44. Kawamoto T, Leinenweber K, Hervig RL, Holloway JR (1995) Stability of hydrous minerals in H2O-saturated KLB-1 peridotite up to 15 GPA. In: AIP conference Proceedings. AIP, pp 229–239Google Scholar
  45. Kleppe AK, Jephcoat AP (2006) Raman spectroscopic studies of hydrous and nominally anhydrous deep mantle phases. In: Geophysical monograph series, pp 69–93Google Scholar
  46. Komabayashi T (2006) Phase relations of hydrous peridotite: implications for water circulation in the Earth’s mantle. American Geophysical Union, Washington, pp 29–43Google Scholar
  47. Komabayashi T, Hirose K, Funakoshi K, Takafuji N (2005a) Stability of phase A in antigorite (serpentine) composition determined by in situ X-ray pressure observations. Phys Earth Planet Inter 151:276–289CrossRefGoogle Scholar
  48. Komabayashi T, Omori S, Maruyama S (2005b) Experimental and theoretical study of stability of dense hydrous magnesium silicates in the deep upper mantle. Phys Earth Planet Inter 153:191–209CrossRefGoogle Scholar
  49. Kudoh Y, Finger LW, Hazen RM (1993) Phase E: a high pressure hydrous silicate with unique crystal chemistry. Phys Chem Miner 19:357–360CrossRefGoogle Scholar
  50. Liu L (1987) Effects of H2O on the phase behaviour of the forsterite-enstatite system at high pressures and temperatures and implications for the Earth. Phys Earth Planet Inter 49:142–167CrossRefGoogle Scholar
  51. Liu L, Lin CC, Mernagh TP, Irifune T (1997a) Raman spectra of phase A at various pressures and temperatures. J Phys Chem Solids 58:2023–2030CrossRefGoogle Scholar
  52. Liu L, Mernagh TP, Lin CC, Irifune T (1997b) Raman spectra of phase E at various pressures and temperatures with geophysical implications. Earth Planet Sci Lett 149:57–65CrossRefGoogle Scholar
  53. Luth RW (1995) Is phase A relevant to the Earth’s mantle? Geochim Cosmochim Acta 59:679–682CrossRefGoogle Scholar
  54. Marchesi C, Garrido CJ, Padrón-Navarta JA, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT (2013) Element mobility from seafloor serpentinization to high-pressure dehydration of antigorite in subducted serpentinite: insights from the Cerro del Almirez ultramafic massif (southern Spain). Lithos 15:128–142CrossRefGoogle Scholar
  55. Merkulova M, Muñoz M, Vidal O, Brunet F (2016) Role of iron content on serpentinite dehydration depth in subduction zones: experiments and thermodynamic modeling. Lithos 254:441–452CrossRefGoogle Scholar
  56. Mibe K, Fujii T, Yasuda A (2002) Composition of aqueous fluid coexisting with mantle minerals at high pressure and its bearing on the differentiation of the Earth’s mantle. Geochim Cosmochim Acta 66:2273–2285CrossRefGoogle Scholar
  57. Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol 135:18–40CrossRefGoogle Scholar
  58. Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y, Fujino K, Higo Y (2014) Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat Geosci 7:224–227CrossRefGoogle Scholar
  59. Padrón-Navarta JA, Hermann J (2017) A Subsolidus olivine water solubility equation for the Earth’s upper mantle. J Geophys Res Solid Earth 122:9862–9880CrossRefGoogle Scholar
  60. Padrón-Navarta JA, Hermann J, Garrido CJ et al (2010) An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite. Contrib Mineral Petrol 159:25–42CrossRefGoogle Scholar
  61. Padrón-Navarta JA, López Sánchez-Vizcaíno V, Garrido CJ, Gómez-Pugnaire MT (2011) Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filabride Complex, Southern Spain). J Petrol 52:2047–2078CrossRefGoogle Scholar
  62. Padrón-Navarta JA, Sánchez-Vizcaíno VL, Hermann J, Connolly JAD, Garrido CJ, Gómez-Pugnaire MT, Marchesi C (2013) Tschermak’s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos 178:186–196CrossRefGoogle Scholar
  63. Pamato MG, Myhill R, Boffa Ballaran T, Frost DJ, Heidelbach F, Miyajima N (2014) Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate. Nat Geosci 8:75–79CrossRefGoogle Scholar
  64. Pawley A (2003) Chlorite stability in mantle peridotite: the reaction clinochlore + enstatite = forsterite + pyrope + H2O. Contrib Mineral Petrol 144:449–456CrossRefGoogle Scholar
  65. Pawley AR, Wood BJ (1996) The low-pressure stability of phase A, Mg7Si2O8(OH)6. Contrib Mineral Petrol 124:90–97CrossRefGoogle Scholar
  66. Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchison MT, Matvee S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:221–224CrossRefGoogle Scholar
  67. Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379CrossRefGoogle Scholar
  68. Schmidt MW, Poli S (2014) Devolatization during subduction. In: Rudnick RL (ed) The crust. Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 669–701Google Scholar
  69. Schwartz S, Guillot S, Reynard B, Lafay R, Debret B, Nicollet C, Lanari P, Auzende AL (2013) Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 178:197–121CrossRefGoogle Scholar
  70. Shieh SR, Mao HK, Hemley RJ, Ming LC (1998) Decomposition of phase D in the lower mantle and the fate of dense hydrous silicates in subducting slabs. Earth Planet Sci Lett 159:13–23CrossRefGoogle Scholar
  71. Spandler C, Hermann J, Faure K, Mavrogenes J, Arculus R (2008) The importance of talc and chlorite ‘‘hybrid’’ rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction mélange of New Caledonia. Contrib Mineral Petrol 155:181–198CrossRefGoogle Scholar
  72. Stalder R, Ulmer P (2001) Phase relations of a serpentine composition between 5 and 14 GPa: significance of clinohumite and phase E as water carriers into the transition zone. Contrib Mineral Petrol 140:670–679CrossRefGoogle Scholar
  73. Stalder R, Ulmer P, Thompson A, Günther D (2001) High pressure fluids in the system MgO–SiO2–H2O under upper mantle conditions. Contrib Mineral Petrol 140:607–618CrossRefGoogle Scholar
  74. Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183:73–90CrossRefGoogle Scholar
  75. Taylor WR, Green DH (1988) Measurement of reduced peridotite–C–O–Hsolidus and implications for redox melting of the mantle. Nature 332:349–352CrossRefGoogle Scholar
  76. Till CB, Grove TL, Withers AC (2012) The beginnings of hydrous mantle wedge melting. Contrib Mineral Petrol 163:669–688CrossRefGoogle Scholar
  77. Torres-Roldán RL, García-Casco A, García-Sanchez PA (2000) CSpace: an integrated workplace for the graphical and algebraic analysis of phase assemblages on 32-bit wintel platforms. Comput Geosci 26:779–793CrossRefGoogle Scholar
  78. Trommsdorff V, Evans BW (1974) Alpine metamorphism of peridotitic rocks. Schweizerische Mineral Petrogr Mitteilungen 54:333–354Google Scholar
  79. Trommsdorff V, Sánchez-Vizcaíno VL, Gómez-Pugnaire MT, Müntener O (1998) High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contrib Mineral Petrol 132:139–148CrossRefGoogle Scholar
  80. Ulmer P, Stalder R (2001) The Mg(Fe)SiO3 orthoenstatite–clinoenstatite transitions at high pressures and temperatures determined by Raman-spectroscopy on quenched samples. Am Mineral 86:1267–1274CrossRefGoogle Scholar
  81. Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861CrossRefGoogle Scholar
  82. Ulmer P, Trommsdorff V (1999) Phase relations of hydrous mantle subducting to 300 km. In: Fei Y-W, Bertka C, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R. (Joe) Boyd, vol 6. Geochemical Society of Special Publications, London, pp 259–281Google Scholar
  83. van Keken PE, Hacker BR, Syracuse EM, Abers GA (2011) Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res 116:B01401Google Scholar
  84. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  85. Wunder B (1998) Equilibrium experiments in the system MgO–SiO2–H2O (MSH): stability fields of clinohumite–OH [Mg9Si4O16(OH)2], chondrodite–OH [Mg5Si2O8(OH)2] and phase A (Mg7Si2O8(OH)6). Contrib Mineral Petrol 132:111–120CrossRefGoogle Scholar
  86. Wunder B, Schreyer W (1997) Antigorite: high-pressure stability in the system MgO–SiO2–H2O (MSH). Lithos 41:213–227CrossRefGoogle Scholar
  87. Wunder B, Wirth R, Gottschalk M (2001) Antigorite: pressure and temperature dependence of polysomatism and water content. Eur J Mineral 13:485–495CrossRefGoogle Scholar
  88. Yamamoto K, Akimoto SI (1974) High pressure and high temperature investigations in the system MgO–SiO2–H2O. J Solid State Chem 9:187–195CrossRefGoogle Scholar
  89. Yamamoto K, Akimoto S (1977) The system MgO–SiO2–H2O at high pressures and temperatures; stability field for hydroxyl-chondrodite, hydroxyl-clinohumite and 10 Å-phase. Am J Sci 277:288–312CrossRefGoogle Scholar
  90. Zhang J, Li B, Utsumi W, Liebermann R (1996) In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Phys Chem Miner 23:1–10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. Maurice
    • 1
  • N. Bolfan-Casanova
    • 1
  • J. A. Padrón-Navarta
    • 2
  • G. Manthilake
    • 1
  • T. Hammouda
    • 1
  • J. M. Hénot
    • 1
  • D. Andrault
    • 1
  1. 1.Laboratoire Magmas et VolcansAubiere CedexFrance
  2. 2.Géosciences Montpellier, Université de Montpellier 2 & CNRSMontpellier Cedex 05France

Personalised recommendations