Fluid–rock reactions in the 1.3 Ga siderite carbonatite of the Grønnedal–Íka alkaline complex, Southwest Greenland

  • E. RantaEmail author
  • G. Stockmann
  • T. Wagner
  • T. Fusswinkel
  • E. Sturkell
  • E. Tollefsen
  • A. Skelton
Original Paper


Petrogenetic studies of carbonatites are challenging, because carbonatite mineral assemblages and mineral chemistry typically reflect both variable pressure–temperature conditions during crystallization and fluid–rock interaction caused by magmatic–hydrothermal fluids. However, this complexity results in recognizable alteration textures and trace-element signatures in the mineral archive that can be used to reconstruct the magmatic evolution and fluid–rock interaction history of carbonatites. We present new LA–ICP–MS trace-element data for magnetite, calcite, siderite, and ankerite–dolomite–kutnohorite from the iron-rich carbonatites of the 1.3 Ga Grønnedal–Íka alkaline complex, Southwest Greenland. We use these data, in combination with detailed cathodoluminescence imaging, to identify magmatic and secondary geochemical fingerprints preserved in these minerals. The chemical and textural gradients show that a 55 m-thick basaltic dike that crosscuts the carbonatite intrusion has acted as the pathway for hydrothermal fluids enriched in F and CO2, which have caused mobilization of the LREEs, Nb, Ta, Ba, Sr, Mn, and P. These fluids reacted with and altered the composition of the surrounding carbonatites up to a distance of 40 m from the dike contact and caused formation of magnetite through oxidation of siderite. Our results can be used for discrimination between primary magmatic minerals and later alteration-related assemblages in carbonatites in general, which can lead to a better understanding of how these rare rocks are formed. Our data provide evidence that siderite-bearing ferrocarbonatites can form during late stages of calciocarbonatitic magma evolution.


Carbonatites Ferrocarbonatite Metasomatism LA–ICP–MS Grønnedal–Íka 



The work was financially supported by the Bolin Centre for Climate Research at Stockholm University. The core samples of this study were taken with permission from the Mineral License and Safety Authority (MLSA), Government of Greenland with license no. 032/2014. We thank Helena Korkka (University of Helsinki) and our late friend Dan Zetterberg (Stockholm University) for the preparation of thin and thick sections. The help and support of Radoslaw Michallik (University of Helsinki) during EPMA analysis is greatly appreciated. Dina Schultze (University of Helsinki) is thanked for her help with the CL imaging and useful comments on the interpretation of CL effects in carbonates. We acknowledge the smooth editorial handling by Hans Keppler and thank Michael Marks and an anonymous reviewer for their constructive comments which helped to improve the manuscript.

Supplementary material

410_2018_1505_MOESM1_ESM.pdf (152 kb)
Supplementary material 1 (PDF 151 KB)
410_2018_1505_MOESM2_ESM.pdf (591 kb)
Supplementary material 2 (PDF 590 KB)
410_2018_1505_MOESM3_ESM.xlsx (200 kb)
Supplementary material 3 (XLSX 200 KB)


  1. Andersen T (1984) Secondary processes in carbonatites: petrology of “rødberg” (hematite–calcite–dolomite carbonatite) in the Fen central complex, Telemark (South Norway). Lithos 17:227–245CrossRefGoogle Scholar
  2. Andersen T (1989) Carbonatite-related contact metasomatism in the Fen complex, Norway: effects and petrogenetic implications. Mineral Mag 53:395–414CrossRefGoogle Scholar
  3. Bartels A, Nielsen TF, Lee SR, Upton BG (2015) Petrological and geochemical characteristics of Mesoproterozoic dyke swarms in the Gardar Province, South Greenland: evidence for a major sub-continental lithospheric mantle component in the generation of the magmas. Mineral Mag 79:909–940CrossRefGoogle Scholar
  4. Bartels A, Nilsson MKM, Klausen MB, Söderlund U (2016) Mesoproterozoic dykes in the Timmiarmiit area, Southeast Greenland: evidence for a continuous Gardar dyke swarm across Greenland’s North Atlantic Craton. GFF 138:255–275CrossRefGoogle Scholar
  5. Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333CrossRefGoogle Scholar
  6. Bau M, Möller P (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Miner Petrol 45:231–246CrossRefGoogle Scholar
  7. Bedford CM (1989) The mineralogy, geochemistry and petrogenesis of the Grønnedal-Íka complex, south west Greenland. PhD thesis, University of DurhamGoogle Scholar
  8. Bell K, Simonetti A (2010) Source of parental melts to carbonatites–critical isotopic constraints. Miner Petrol 98:77–89CrossRefGoogle Scholar
  9. Bell K, Tilton GR (2002) Probing the mantle: the story from carbonatites. EOS Trans Am Geophys Union 83:273–277CrossRefGoogle Scholar
  10. Berthelsen A, Henriksen N (1975) Geological map of Greenland, 1:100 000, Ivigtut 61 V. 1 syd, descriptive text. Geological Survey of Greenland, Copenhagen (also Meddelelser om Grønland 186.1) Google Scholar
  11. Bøgvad R (1951) Rapport over diamantboringerne ved jernmalmsforekomsten i Grønnedal ved Ivigtut i 1950. Kryolitselskabed Øresund, Copenhagen, Denmark, DB nr. 886Google Scholar
  12. Bondam J (1992) The Grønnedal-Ika alkaline complex in South Greenland: review of geoscientific data relevant to exploration. Open File Ser Grønlands Geologiske Undersøgelse 92Google Scholar
  13. Brøgger WC (1921) Die Eruptivegesteine des Kristianiagebietes. IV. Das Fengebiet in Telemarken, Norwegen. Norske Vidensk. Skrift. Mat-Naturv. Kl. nr. 9Google Scholar
  14. Broom-Fendley S, Styles MT, Appleton JD, Gunn G, Wall F (2016) Evidence for dissolution-reprecipitation of apatite and preferential LREE mobility in carbonatite-derived late-stage hydrothermal processes. Am Mineral 101:596–611CrossRefGoogle Scholar
  15. Broom-Fendley S, Brady AE, Horstwood MS, Woolley AR, Mtegha J, Wall F, Dawes W, Gunn G (2017) Geology, geochemistry and geochronology of the Songwe Hill carbonatite, Malawi. J Afr Earth Sci 134:10–23CrossRefGoogle Scholar
  16. Callisen K (1943) Igneous rocks of the Ivigtut region,Greenland, part I. The nepheline syenites of the Grønne Dal-Íka area. Meddelser om Grønland 131:1–243Google Scholar
  17. Chadwick B, Garde AA (1996) Palaeoproterozoic oblique plate convergence in South Greenland: a reappraisal of the Ketilidian orogen. Geol Soc Spec Publ 112:179–196CrossRefGoogle Scholar
  18. Chakhmouradian AR (2006) High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem Geol 235:138–160CrossRefGoogle Scholar
  19. Chakhmouradian AR, Reguir EP, Kamenetsky VS, Sharygin VV, Golovin AV (2013) Trace-element partitioning in perovskite: implications for the geochemistry of kimberlites and other mantle-derived undersaturated rocks. Chem Geol 353:112–131CrossRefGoogle Scholar
  20. Chakhmouradian AR, Reguir EP, Zaitsev AN (2015a) Calcite and dolomite in intrusive carbonatites. I. Textural variations. Miner Petrol 110:333–360CrossRefGoogle Scholar
  21. Chakhmouradian AR, Reguir EP, Couëslan C, Yang P (2015b) Calcite and dolomite in intrusive carbonatites. II. Trace-element variations. Miner Petrol 110:361–377CrossRefGoogle Scholar
  22. Chakhmouradian AR, Reguir EP, Zaitsev AN, Couëslan C, Xu C, Kynický J, Mumin AH, Yang P (2017) Apatite in carbonatitic rocks: compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 274:188–213CrossRefGoogle Scholar
  23. Chang LLY, Howie RA, Zussman J (1996) Rock-forming minerals (2nd edition): non-silicates: sulphates, carbonates, phosphates, halides, vol 5B. Longman Group, EssexGoogle Scholar
  24. Coulson IM, Goodenough KM, Pearce NJG, Leng MJ (2003) Carbonatites and lamprophyres of the Gardar Province-a’window’to the sub-Gardar mantle? Mineral Mag 67:855–872CrossRefGoogle Scholar
  25. Dare SA, Barnes SJ, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Miner Deposita 49:785–796CrossRefGoogle Scholar
  26. Dawson JB, Hinton RW (2003) Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Mineral Mag 67:921–930CrossRefGoogle Scholar
  27. Dawson JB, Garson MS, Roberts B (1987) Altered former alkalic carbonatite lava from Oldoinyo Lengai, Tanzania: inferences for calcite carbonatite lavas. Geology 15:765–768CrossRefGoogle Scholar
  28. Dawson JB, Steele IM, Smith JV, Rivers ML (1996) Minor and trace element chemistry of carbonates, apatites and magnetites in some African carbonatites. Mineral Mag 60:415–425CrossRefGoogle Scholar
  29. Dobson DP, Jones AP, Rabe R, Sekine T, Kurita K, Taniguchi T, Kondo T, Kato T, Shimomura O, Urakawa S (1996) In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet Sci Lett 143:207–215CrossRefGoogle Scholar
  30. Drüppel K, Wagner T, Boyce AJ (2006) Evolution of sulfide mineralization in ferrocarbonatite, Swartbooisdrif, Northwestern Namibia: constraints from mineral compositions and sulfur isotopes. Can Mineral 44:877–894CrossRefGoogle Scholar
  31. Dupuis C, Beaudoin (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Deposita 46:319–335CrossRefGoogle Scholar
  32. Elliott HAL, Wall F, Chakhmouradian AR, Siegfried PR, Dahlgren S, Weatherley S, Finch AA, Marks MAW, Dowman E, Deady E (2017) Fenites associated with carbonatite complexes: a review. Ore Geol Rev 93:38–59CrossRefGoogle Scholar
  33. Emeleus CH (1964) The Grønnedal-Íka alkaline complex, South Greenland. Grønlands Geologiske Undersøgelse Bulletin 45:75 ppGoogle Scholar
  34. Ernst RE, Bell K (2010) Large igneous provinces (LIPs) and carbonatites. Miner Petrol 98:55–76CrossRefGoogle Scholar
  35. Essene EJ (1983) Solid solutions and solvi among metamorphic carbonates with applications to geologic thermobarometry. Rev Mineral Geochem 11:77–96Google Scholar
  36. French BM (1971) Stability relations of siderite (FeCO3) in the system Fe–C–O. Am J Sci 271:37–78CrossRefGoogle Scholar
  37. Garde AA, Hamilton MA, Chadwick B, Grocott J, McCaffrey KJ (2002) The Ketilidian orogen of South Greenland: geochronology, tectonics, magmatism, and fore-arc accretion during Palaeoproterozoic oblique convergence. Can J Earth Sci 39:765–793CrossRefGoogle Scholar
  38. Genge MJ, Price GD, Jones AP (1995) Molecular dynamics simulations of CaCO3 melts to mantle pressures and temperatures: implications for carbonatite magmas. Earth Planet Sci Lett 131:225–238CrossRefGoogle Scholar
  39. Gill RCO (1972) The geochemistry of the Grønnedal-Íka alkaline complex, South Greenland. PhD thesis, Durham UniversityGoogle Scholar
  40. Gittins J (1979) Problems inherent in the application of calcite-dolomite geothermometry to carbonatites. Contrib Mineral Petrol 69:1–4CrossRefGoogle Scholar
  41. Gittins J, Harmer RE (1997) What is ferrocarbonatite? A revised classification. J Afr Earth Sci 25:159–168CrossRefGoogle Scholar
  42. Golubev SV, Bénézeth P, Schott J, Dandurand JL, Castillo A (2009) Siderite dissolution kinetics in acidic aqueous solutions from 25 to 100 °C and 0 to 50 atm pCO2. Chem Geol 265:13–19CrossRefGoogle Scholar
  43. Goodenough K (1997) Geochemistry of Gardar intrusions in the Ivigtut area, South Greenland. PhD thesis, University of EdinburghGoogle Scholar
  44. Green TH (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem Geol 120:347–359CrossRefGoogle Scholar
  45. Guillong M, Pettke T (2012) Depth dependent element ratios in fluid inclusion analysis by laser ablation ICP–MS. J Anal Atom Spectrom 27:505–508CrossRefGoogle Scholar
  46. Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BW (2008) SILLS: a MATLAB-based program for the reduction of laser ablation ICP–MS data of homogeneous materials and inclusions. Mineral Assoc Can Short Course Ser 40:328–333Google Scholar
  47. Haggerty SE (1976) Opaque mineral oxides in terrestrial igneous rocks. In: Rumble D III (ed) Oxide minerals: reviews in mineralogy, vol 3. Mineralogical Society of America, Chantilly, pp 101–300Google Scholar
  48. Halama R, Vennemann T, Siebel W, Markl G (2005) The Grønnedal-Ika carbonatite-syenite complex, South Greenland: carbonatite formation by liquid immiscibility. J Petrol 46:191–217CrossRefGoogle Scholar
  49. Halter WE, Pettke T, Heinrich CA, Rothen-Rutishauser B (2002) Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification. Chem Geol 183:63–86CrossRefGoogle Scholar
  50. Hellebrandt SE, Hofmann S, Jordan N, Barkleit A, Schmidt M (2016) Incorporation of Eu(III) into calcite under recrystallization conditions. Sci Rep 6:33137CrossRefGoogle Scholar
  51. Ionov D, Harmer RE (2002) Trace element distribution in calcite–dolomite carbonatites from Spitskop: inferences for differentiation of carbonatite magmas and the origin of carbonates in mantle xenoliths. Earth Planet Sci Lett 198:495–510CrossRefGoogle Scholar
  52. Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical Characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA–ICP–MS. Geostand Geoanal Res 29:285–302CrossRefGoogle Scholar
  53. Jones AP, Genge M, Carmody L (2013) Carbonate melts and carbonatites. Rev Mineral Geochem 75:289–322CrossRefGoogle Scholar
  54. Le Bas MJ (1981) Carbonatite magmas. Mineral Mag 44:133–140CrossRefGoogle Scholar
  55. Le Bas MJ (2008) Fenites associated with carbonatites. Can Mineral 46:915–932CrossRefGoogle Scholar
  56. Le Maitre RW (ed) (2002) Igneous rocks: IUGS classification and glossary. Recommendations of the international union of geological sciences, subcommission on the systematics of igneous rocks. 2nd ed. Cambridge University Press, Cambridge, p 236Google Scholar
  57. Loges A, Migdisov AA, Wagner T, Williams-Jones AE, Markl G (2012) Fluoride complexation of hafnium under hydrothermal conditions. Mineral Mag 76:2030Google Scholar
  58. Loges A, Migdisov AA, Wagner T, Williams-Jones AE, Markl G (2013) An experimental study of the aqueous solubility and speciation of Y(III) fluoride at temperatures up to 250 °C. Geochim Cosmochim Acta 123:403–415CrossRefGoogle Scholar
  59. MacLean WH, Kranidiotis P (1987) Immobile elements as monitors of mass transfer in hydrothermal alteration; Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ Geol 82:951–962CrossRefGoogle Scholar
  60. Marks MAW, Coulson AM, Schilling J, Jacob DE, Schmitt AK, Markl G (2008) The effect of titanite and other HFSE-rich mineral (Ti-bearing andradite, zircon, eudialyte) fractionation on the geochemical evolution of silicate melts. Chem Geol 257:153–172CrossRefGoogle Scholar
  61. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  62. Migdisov AA, Williams-Jones AE (2007) An experimental study of the solubility and speciation of neodymium(III) fluoride in F-bearing aqueous solutions. Geochim Cosmochim Acta 71:3056–3069CrossRefGoogle Scholar
  63. Migdisov AA, Williams-Jones AE, Wagner T (2009) An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 °C. Geochim Cosmochim Acta 73:7087–7109CrossRefGoogle Scholar
  64. Migdisov AA, Williams-Jones AE, Van Hinsberg V, Salvi S (2011) An experimental study of the solubility of baddeleyite (ZrO2) in fluoride-bearing solutions at elevated temperature. Geochim Cosmochim Acta 75:7426–7434CrossRefGoogle Scholar
  65. Milani L, Bolhar R, Cawthorn RG, Frei D (2017a) In situ LA–ICP–MS and EPMA trace element characterization of Fe–Ti oxides from the phoscorite–carbonatite association at Phalaborwa, South Africa. Miner Deposita 52:747–768CrossRefGoogle Scholar
  66. Milani L, Bolhar R, Frei D, Harlov DE, Samuel VO (2017b) Light rare earth element systematics as a tool for investigating the petrogenesis of phoscorite-carbonatite associations, as exemplified by the Phalaborwa Complex, South Africa. Miner Deposita 52:1105–1125CrossRefGoogle Scholar
  67. Mitchell RH (2005) Carbonatites and carbonatites and carbonatites. Can Mineral 43:2049–2068CrossRefGoogle Scholar
  68. Moore M, Chakhmouradian AR, Mariano AN, Sidhu R (2015) Evolution of rare-earth mineralization in the Bear Lodge carbonatite, Wyoming: mineralogical and isotopic evidence. Ore Geol Rev 64:499–521CrossRefGoogle Scholar
  69. Morteani G, Möller P, Ackermand D, Dulski P, Kronimus B, Spiegel W (1986) Development of petrological and geochemical indicators for the discovery of niobium and phosphorus rich carbonatites. Final report EEC-project MSM-005-D(B), Technische Universität MünchenGoogle Scholar
  70. Mücke A, Cabral AR (2005) Redox and nonredox reactions of magnetite and hematite in rocks. Chem Erde Geochem 65:271–278CrossRefGoogle Scholar
  71. Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32CrossRefGoogle Scholar
  72. Nash WP (1972) Mineralogy and petrology of the Iron Hill carbonatite complex, Colorado. Geol Soc Am Bull 83:1361–1382CrossRefGoogle Scholar
  73. Nielsen RL, Beard JS (2000) Magnetite-melt HFSE partitioning. Chem Geol 164:21–34CrossRefGoogle Scholar
  74. Olin PH, Wolff JA (2012) Partitioning of rare earth and high field strength elements between titanite and phonolitic liquid. Lithos 128–131:46–54CrossRefGoogle Scholar
  75. Palme H, O’Neill HSC (2014) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) Treatise on geochemistry. The mantle and core, vol. 3.1, 2nd edn. Elsevier, Amsterdam, pp 1–39Google Scholar
  76. Pearce NJG, Leng MJ, Emeleus CH, Bedford CM (1997) The origins of carbonatites and related rocks from the Grønnedal-Íka nepheline syenite complex, South Greenland: C-O-Sr isotope evidence. Mineral Mag 61:515–529CrossRefGoogle Scholar
  77. Pettke T, Oberli F, Audétat A, Guillong M, Simon AC, Hanley JJ, Klemm LM (2012) Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP–MS. Ore Geol Rev 44:10–38CrossRefGoogle Scholar
  78. Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70:87–124CrossRefGoogle Scholar
  79. Reguir EP, Chakhmouradian AR, Halden NM, Yang P, Zaitsev AN (2008) Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. Can Mineral 46:879–900CrossRefGoogle Scholar
  80. Schönenberger J, Köhler J, Markl G (2008) REE systematics of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland. Chem Geol 247:16–35CrossRefGoogle Scholar
  81. Shannon RT (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767CrossRefGoogle Scholar
  82. Shikina ND, Tagirov BR, Volchenkova VA, Bychkova YV (2015) Zr/Hf ratio in supercritical fluids: experimental study of zirconium and hafnium complexation at 450 °C and 0.6-1 kbar. Petrology 23:93–101CrossRefGoogle Scholar
  83. Simonetti A, Bell K (1994) Isotopic and geochemical investigation of the Chilwa Island carbonatite complex, Malawi: evidence for a depleted mantle source region, liquid immiscibility, and open-system behaviour. J Petrol 35:1597–1621CrossRefGoogle Scholar
  84. Stockmann G, Karlsson A, Lewerentz A, Thomsen TB, Kokfelt TF, Tollefsen E, Sturkell E, Lundqvist L (2018) New Rb–Sr and zircon U–Pb dating of the Grønnedal-Íka igneous complex, SW Greenland. In: Nordic geological winter meeting 2018, Copenhagen, Denmark. Abstract volume. p 38Google Scholar
  85. Taubald H, Morteani G, Satir M (2004) Geochemical and isotopic (Sr, C, O) data from the alkaline complex of Grønnedal-ĺka (South Greenland): evidence for unmixing and crustal contamination. Int J Earth Sci 93:348–360CrossRefGoogle Scholar
  86. Thompson R, Smith P, Gibson S, Mattey D, Dickin A (2002) Ankerite carbonatite from Swartbooisdrif, Namibia: the first evidence for magmatic ferrocarbonatite. Contrib Mineral Petrol 143:377–396CrossRefGoogle Scholar
  87. Timofeev A, Migdisov AA, Williams-Jones AE (2015) An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature. Geochim Cosmochim Acta 158:103–111CrossRefGoogle Scholar
  88. Timofeev A, Migdisov AA, Williams-Jones AE (2017) An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature. Geochim Cosmochim Acta 197:294–304CrossRefGoogle Scholar
  89. Upton BGJ (2013) Tectono-magmatic evolution of the younger Gardar southern rift, South Greenland. Geol Surv Den Greenl Bull 29:124 ppGoogle Scholar
  90. Upton BGJ, Emeleus CH (1987) Mid-Proterozoic alkaline magmatism in southern Greenland: the Gardar province. Geol Soc Spec Publ 30:449–471CrossRefGoogle Scholar
  91. Upton BGJ, Emeleus CH, Heaman LM, Goodenough KM, Finch AA (2003) Magmatism of the mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting. Lithos 68:43–65CrossRefGoogle Scholar
  92. Waychunas GA (1991) Crystal chemistry of oxides and oxyhydroxides. Rev Mineral Geochem 25:11–68Google Scholar
  93. Wegmann CE (1938) Geological investigations in southern Greenland. Part 1: on the structural divisions of southern Greenland. Meddelser om Grønland 113:148 ppGoogle Scholar
  94. Weidendorfer D, Schmidt MW, Mattsson HB (2017) A common origin of carbonatite magmas. Geology 45:507–510CrossRefGoogle Scholar
  95. Woolley AR (1982) A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites. Mineral Mag 46:13–17CrossRefGoogle Scholar
  96. Woolley AR, Church AA (2005) Extrusive carbonatites: a brief review. Lithos 85:1–14CrossRefGoogle Scholar
  97. Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 1–14Google Scholar
  98. Woolley AR, Kjarsgaard BA (2008) Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. Can Mineral 46:741–752CrossRefGoogle Scholar
  99. Wyllie PJ (1965) Melting relationships in the system CaO–MgO–CO2–H2O, with petrological applications. J Petrol 6:101–123CrossRefGoogle Scholar
  100. Xu C, Campbell IH, Allen CM, Huang Z, Qi L, Zhang H, Zhang G (2007) Flat rare earth element patterns as an indicator of cumulate processes in the Lesser Qinling carbonatites, China. Lithos 95:267–278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • E. Ranta
    • 1
    • 2
    Email author
  • G. Stockmann
    • 3
  • T. Wagner
    • 4
  • T. Fusswinkel
    • 4
  • E. Sturkell
    • 5
  • E. Tollefsen
    • 6
  • A. Skelton
    • 6
  1. 1.Nordic Volcanological Center, Institute of Earth SciencesUniversity of IcelandReykjavíkIceland
  2. 2.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
  3. 3.Institute of Earth SciencesUniversity of IcelandReykjavíkIceland
  4. 4.Institute of Applied Mineralogy and Economic GeologyRWTH Aachen UniversityAachenGermany
  5. 5.Department of Earth SciencesUniversity of GothenburgGothenburgSweden
  6. 6.Department of Geological SciencesStockholm UniversityStockholmSweden

Personalised recommendations