Advertisement

Mantle sources and magma evolution of the Rooiberg lavas, Bushveld Large Igneous Province, South Africa

  • 553 Accesses

  • 2 Citations

Abstract

We report a new whole-rock dataset of major and trace element abundances and 87Sr/86Sr–143Nd/144Nd isotope ratios for basaltic to rhyolitic lavas from the Rooiberg continental large igneous province (LIP). The formation of the Paleoproterozoic Rooiberg Group is contemporaneous with and spatially related to the layered intrusion of the Bushveld Complex, which stratigraphically separates the volcanic succession. Our new data confirm the presence of low- and high-Ti mafic and intermediate lavas (basaltic—andesitic compositions) with > 4 wt% MgO, as well as evolved rocks (andesitic—rhyolitic compositions), characterized by MgO contents of < 4 wt%. The high- and low-Ti basaltic lavas have different incompatible trace element ratios (e.g. (La/Sm)N, Nb/Y and Ti/Y), indicating a different petrogenesis. MELTS modelling shows that the evolved lavas are formed by fractional crystallization from the mafic low-Ti lavas at low-to-moderate pressures (~ 4 kbar). Primitive mantle-normalized trace element patterns of the Rooiberg rocks show an enrichment of large ion lithophile elements (LILE), rare-earth elements (REE) and pronounced negative anomalies of Nb, Ta, P, Ti and a positive Pb anomaly. Unaltered Rooiberg lavas have negative εNdi (− 5.2 to − 9.4) and radiogenic εSri (6.6 to 105) ratios (at 2061 Ma). These data overlap with isotope and trace element compositions of purported parental melts to the Bushveld Complex, especially for the lower zone. We suggest that the Rooiberg suite originated from a source similar to the composition of the B1-magma suggested as parental to the Bushveld Lower Zone, or that the lavas represent eruptive successions of fractional crystallization products related to the ultramafic cumulates that were forming at depth. The Rooiberg magmas may have formed by 10–20% crustal assimilation by the fractionation of a very primitive mantle-derived melt within the upper crust of the Kaapvaal Craton. Alternatively, the magmas represent mixtures of melts from a primitive, sub-lithospheric mantle plume and an enriched sub-continental lithospheric mantle (SCLM) component with harzburgitic composition. Regardless of which of the two scenarios is invoked, the lavas of the Rooiberg Group show geochemical similarities to the Jurassic Karoo flood basalts, implying that the Archean lithosphere strongly affected both of these large-scale melting events.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1

(adapted from Cawthorn et al. 2006; Harmer and Sharpe 1985)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Arndt N (2013) The lithospheric mantle plays no active role in the formation of orthomagmatic ore deposits. Econ Geol 108(8):1953–1970. https://doi.org/10.2113/econgeo.108.8.1953

  2. Aulbach S, O’Reilly SY, Griffin WL, Pearson NJ (2008) Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites. Nat Geosci 1(7):468. https://doi.org/10.1038/ngeo226

  3. Barnes SJ, Maier WD, Curl EA (2010) Composition of the marginal rocks and sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa: implications for the formation of the platinum-group element deposits. Econ Geol 105(8):1491–1511. https://doi.org/10.2113/econgeo.105.8.1491

  4. Barth MG, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165(3):197–213. https://doi.org/10.1016/S0009-2541(99)00173-4

  5. Barth MG, Rudnick RL, Horn I, McDonough WF, Spicuzza MJ (2001) Geochemistry of xenolithic eclogites from West Africa, part I: a link between low MgO eclogites and Archean crust formation. Geochim Cosmochim Acta 65:1499–1527. https://doi.org/10.1016/S0016-7037(00)00626-8

  6. Bohrson WA, Spera FJ (2001) Energy-constrained open-system magmatic processes II: application of energy-constrained assimilation–fractional crystallization (EC-AFC) model to magmatic systems. J Petrol 42(5):1019–1041. https://doi.org/10.1093/petrology/42.5.1019

  7. Bryan SE, Ernst RE (2008) Revised definition of large igneous provinces (LIPs). Earth Sci Rev 86(1):175–202. https://doi.org/10.1016/j.earscirev.2007.08.008

  8. Buchanan DL (1977) Cryptic variation in minerals from the Bushveld Complex rocks in the Bethal area. S Afr J Geol 80:49–52

  9. Buchanan PC (2006) The rooiberg group. In: Johnson MR, Anhaeuser CR, Thomas RJ (eds) The Geology of South Africa. vol. Council for Geoscience, Pretoria, pp 283–289

  10. Buchanan PC, Koeberl C, Reimold WU (1999) Petrogenesis of the Dullstroom formation, Bushveld magmatic province, South Africa. Contrib Miner Petrol 137(1–2):133–146

  11. Buchanan PC, Reimold WU, Koeberl C, Kruger FJ (2002) Geochemistry of intermediate to siliceous volcanic rocks of the Rooiberg Group, Bushveld Magmatic Province, South Africa. Contrib Miner Petrol 144(2):131–143. https://doi.org/10.1007/s00410-002-0386-1

  12. Buchanan PC, Reimold WU, Koeberl C, Kruger FJ (2004) Rb–Sr and Sm–Nd isotopic compositions of the Rooiberg Group, South Africa: early Bushveld-related volcanism. Lithos 75(3):373–388. https://doi.org/10.1016/j.lithos.2004.03.007

  13. Buick IS, Maas R, Gibson R (2001) Precise U–Pb titanite age constraints on the emplacement of the Bushveld Complex, South Africa. J Geol Soc 158(1):3–6. https://doi.org/10.1144/jgs.158.1.3

  14. Cawthorn RG (1999) The platinum and palladium resources of the Bushveld Complex. S Afr J Sci 95(11/12):481–489

  15. Cawthorn RG (2011) Origin of Bushveld magmas. In: Geosynthesis. Cape Town. South African Geophysical Association, Geological Society of South Africa, Geostatistical Association of South Africa, vol., p 229

  16. Cawthorn RG (2013) The residual or roof zone of the Bushveld Complex, South Africa. J Petrol 54(9):1875–1900. https://doi.org/10.1093/petrology/egt034

  17. Cawthorn RG, Walraven F (1998) Emplacement and crystallization time for the Bushveld Complex. J Petrol 39(9):1669–1687. https://doi.org/10.1093/petroj/39.9.1669

  18. Cawthorn RG, Webb SJ (2001) Connectivity between the western and eastern limbs of the Bushveld Complex. Tectonophysics 330(3):195–209. https://doi.org/10.1016/S0040-1951(00)00227-4

  19. Cawthorn RG, Eales HV, Walraven F, Uken R, Watkeys MK (2006) The Bushveld complex. In: Johnson MR, Anhaeuser CR, Thomas RJ (eds) The geology of South Africa. vol. Council for Geoscience, Pretoria, pp 261–281

  20. Chenet A-L, Quidelleur X, Fluteau F, Courtillot V, Bajpai S (2007) 40 K–40 Ar dating of the Main Deccan large igneous province: further evidence of KTB age and short duration. Earth Planet Sci Lett 263(1):1–15

  21. Clarke B, Uken R, Reinhardt J (2009) Structural and compositional constraints on the emplacement of the Bushveld Complex, South Africa. Lithos 111(1):21–36. https://doi.org/10.1016/j.lithos.2008.11.006

  22. Davies G (1982) The petrogenesis of the peripheral zone of the Rustenburg layered suite and associated sills between Hartebeespoort and Buffelspoort dams, Western Bushveld Complex. Dissertation. University of the Witwatersrand

  23. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53(2):189–202. https://doi.org/10.1016/0012-821X(81)90153-9

  24. DePaolo D, Wasserburg G (1976) Nd isotopic variations and petrogenetic models. Geophys Res Lett 3(5):249–252

  25. Domnick U (2014) Geochemische Untersuchungen des Nebengesteins der Vergenoeg-Lagerstätte (Südafrika). Unpublished Master Thesis. University of Erlangen-Nürnberg

  26. Eales HV, Cawthorn RG (1996) The Bushveld Complex. Dev Petrol 15:181–229. https://doi.org/10.1016/S0167-2894(96)80008-X

  27. Eiler J (2003) Inside the subduction factory. Washington DC American Geophysical Union Geophysical Monograph Series 138:311

  28. Eriksson PG, Schreiber UM, Reczko BFF, Snyman CP (1994) Petrography and geochemistry of sandstones interbedded with the Rooiberg Felsite Group (Transvaal Sequence, South Africa): implications for provenance and tectonic setting. J Sediment Res 64(4):836–846

  29. Ernst RE, Bleeker W, Söderlund U, Kerr AC (2013) Large Igneous Provinces and supercontinents: toward completing the plate tectonic revolution. Lithos 174:1–14. https://doi.org/10.1016/j.lithos.2013.02.017

  30. Ferré EC, Wilson J, Gleizes G (1999) Magnetic susceptibility and AMS of the Bushveld alkaline granites, South Africa. Tectonophysics 307(1):113–133. https://doi.org/10.1016/S0040-1951(99)00122-5

  31. Fourie DS, Harris C (2011) O-isotope study of the Bushveld Complex granites and granophyres: constraints on source composition, and assimilation. J Petrol 52(11):2221–2242. https://doi.org/10.1093/petrology/egr045

  32. Freund S, Beier C, Krumm S, Haase KM (2013) Oxygen isotope evidence for the formation of andesitic–dacitic magmas from the fast-spreading Pacific–Antarctic Rise by assimilation–fractional crystallisation. Chem Geol 347:271–283. https://doi.org/10.1016/j.chemgeo.2013.04.013

  33. Frost CD, Frost BR (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52(1):39–53. https://doi.org/10.1093/petrology/egq070

  34. Ghiorso MS, Gualda GAR (2015) An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib Miner Petrol 169(6):1–30. https://doi.org/10.1007/s00410-015-1141-8

  35. Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64(1):133–147. https://doi.org/10.1016/S0016-7037(99)00343-9

  36. Griffin WL, O’Reilly SY, Natapov LM, Ryan CG (2003) The evolution of lithospheric mantle beneath the Kalahari Craton and its margins. Lithos 71(2–4):215–241. https://doi.org/10.1016/j.lithos.2003.07.006

  37. Griffin WL, Begg GC, O’Reilly SY (2013) Continental-root control on the genesis of magmatic ore deposits. Nat Geosci 6(11):905–910. https://doi.org/10.1038/ngeo1954

  38. Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53(5):875–890. https://doi.org/10.1093/petrology/egr080

  39. Hannah JL, Bekker A, Stein HJ, Markey RJ, Holland HD (2004) Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet Sci Lett 225(1):43–52. https://doi.org/10.1016/j.epsl.2004.06.013

  40. Harmer R, Farrow D (1995) An isotopic study on the volcanics of the Rooiberg Group: age implications and a potential exploration tool. Miner Deposita 30(2):188–195

  41. Harmer RE, Sharpe MR (1985) Field relations and strontium isotope systematics of the marginal rocks of the eastern Bushveld Complex. Econ Geol 80(4):813–837. https://doi.org/10.2113/gsecongeo.80.4.813

  42. Harmer RE, Von Gruenewaldt G (1991) A review of magmatism associated with the Transvaal Basin―implications for its tectonic setting. S Afr J Geol 94(1):104–121

  43. Harris C, Pronost JJM, Ashwal L, Cawthorn RG (2005) Oxygen and hydrogen isotope stratigraphy of the Rustenburg Layered Suite, Bushveld Complex: constraints on crustal contamination. J Petrol 46(3):579–601. https://doi.org/10.1093/petrology/egh089

  44. Harris C, le Roux P, Cochrane R, Martin L, Duncan AR, Marsh JS, le Roex AP, Class C (2015) The oxygen isotope composition of Karoo and Etendeka picrites: high δ18O mantle or crustal contamination? Contrib Miner Petrol 170(1):1–24. https://doi.org/10.1007/s00410-015-1164-1

  45. Hart RJ, Welke HJ, Nicolaysen LO (1981) Geochronology of the deep profile through Archean basement at Vredefort, with implications for early crustal evolution. J Geophys Res: Solid Earth 86(B11):10663–10680. https://doi.org/10.1029/JB086iB11p10663

  46. Hart RJ, Andreoli MAG, Tredoux M, De Wit MJ (1990) Geochemistry across an exposed section of Archaean crust at Vredefort, South Africa: with implications for mid-crustal discontinuities. Chem Geol 82:21–50. https://doi.org/10.1016/0009-2541(90)90072-F

  47. Hatton CJ, Schweitzer JK (1995) Evidence for synchronous extrusive and intrusive Bushveld magmatism. J Afr Earth Sc 21(4):579–594. https://doi.org/10.1016/0899-5362(95)00103-4

  48. Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F (1994) Destructive plate margin magmatism: geochemistry and melt generation. Lithos 33(1–3):169–188. https://doi.org/10.1016/0024-4937(94)90059-0

  49. Heinonen JS, Luttinen AV, Bohrson WA (2016) Enriched continental flood basalts from depleted mantle melts: modeling the lithospheric contamination of Karoo lavas from Antarctica. Contrib Miner Petrol 171(1):1–22. https://doi.org/10.1007/s00410-015-1214-8

  50. Henderson DR, Long LE, Barton JM (2000) Isotopic ages and chemical and isotopic composition of the Archaean Turfloop Batholith, Pietersburg granite—greenstone terrane, Kaapvaal Craton, South Africa. S Afr J Geol 103(1):38–46. https://doi.org/10.2113/103.1.38

  51. Hergt JM, Peate DW, Hawkesworth CJ (1991) The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth Planet Sci Lett 105(1–3):134–148. https://doi.org/10.1016/0012-821X(91)90126-3

  52. Herzberg C, O’Hara MJ (2002) Plume-associated ultramafic magmas of Phanerozoic age. J Petrol 43(10):1857–1883. https://doi.org/10.1093/petrology/43.10.1857

  53. Hill M, Barker F, Hunter D, Knight R (1996) Geochemical characteristics and origin of the Lebowa granite suite, Bushveld Complex. Int Geol Rev 38(3):195–227. https://doi.org/10.1080/00206819709465331

  54. Huppert HE, Stephen R, Sparks J (1985) Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. Earth Planet Sci Lett 74(4):371–386. https://doi.org/10.1016/S0012-821X(85)80009-1

  55. Irvine T, Baragar W (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8(5):523–548

  56. Irvine GJ, Pearson DG, Carlson RW (2001) Lithospheric mantle evolution of the Kaapvaal Craton: a Re-Os isotope study of peridotite xenoliths from Lesotho kimberlites. Geophys Res Lett 28(13):2505–2508. https://doi.org/10.1029/2000GL012411

  57. Ivanov AV, He H, Yan L, Ryabov VV, Shevko AY, Palesskii SV, Nikolaeva IV (2013) Siberian Traps large igneous province: evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth Sci Rev 122:58–76. https://doi.org/10.1016/j.earscirev.2013.04.001

  58. Ivanov AV, Meffre S, Thompson J, Corfu F, Kamenetsky VS, Kamenetsky MB, Demonterova EI (2017) Timing and genesis of the Karoo-Ferrar large igneous province: new high precision U-Pb data for Tasmania confirm short duration of the major magmatic pulse. Chem Geol 455:32–43. https://doi.org/10.1016/j.chemgeo.2016.10.008

  59. James DE, Fouch MJ (2002) Formation and evolution of Archaean cratons: insights from southern Africa. Geological Society, London, Special Publications 199(1):1–26 https://doi.org/10.1144/GSL.SP.2002.199.01.01

  60. James DE, Niu F, Rokosky J (2003) Crustal structure of the Kaapvaal craton and its significance for early crustal evolution. Lithos 71(2):413–429. https://doi.org/10.1016/j.lithos.2003.07.009

  61. Jourdan F, Bertrand H, Schärer U, Blichert-Toft J, Féraud G, Kampunzu AB (2007) Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana–Zimbabwe: lithosphere vs mantle plume contribution. J Petrol 48(6):1043–1077. https://doi.org/10.1093/petrology/egm010

  62. Kinnaird JA (2005) The Bushveld large igneous province. Review Paper. The University of the Witwatersrand, Johannesburg, p 39

  63. Kinnaird JA, Kruger FJ, Cawthorn RG (2004) Rb-Sr and Nd-Sm isotopes in fluorite related to the granites of the Bushveld Complex. S Afr J Geol 107(3):413–430. https://doi.org/10.2113/107.3.413

  64. Kleemann GJ, Twist D (1989) The compositionally-zoned sheet-like granite pluton of the Bushveld Complex: evidence bearing on the nature of A-type magmatism. J Petrol 30(6):1383–1414. https://doi.org/10.1093/petrology/30.6.1383

  65. Kruger FJ (1994) The Sr-isotopic stratigraphy of the western Bushveld Complex. S Afr J Geol 97(4):393–398

  66. Lana C, Gibson RL, Kisters AFM, Reimold WU (2003) Archean crustal structure of the Kaapvaal craton, South Africa–evidence from the Vredefort dome. Earth Planetary Science Letters 206(1):133–144. https://doi.org/10.1016/S0012-821X(02)01086-5

  67. Lana C, Reimold WU, Gibson RL, Koeberl C, Siegesmund S (2004) Nature of the Archean midcrust in the core of the Vredefort Dome, central Kaapvaal Craton, South Africa. Geochim Cosmochim Acta 68(3):623–642. https://doi.org/10.1016/S0016-7037(00)00447-2

  68. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750. https://doi.org/10.1093/petrology/27.3.745

  69. Le Maitre RWB, Dudek P, Keller A, Lameyre J, Le Bas J, Sabine M, Schmid P, Sorensen R, Streckeisen H, Woolley A (1989) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. International Union of Geological Sciences

  70. Lenhardt N, Eriksson PG (2012) Volcanism of the Palaeoproterozoic Bushveld Large Igneous Province: the Rooiberg Group, Kaapvaal Craton, South Africa. Precambr Res 214:82–94. https://doi.org/10.1016/j.precamres.2011.12.003

  71. Lenhardt N, Masango SM, Jolayemi OO, Lenhardt SZ, Peeters G-J, Eriksson PG (2017) The Palaeoproterozoic (∼ 2.06 Ga) Rooiberg Group, South Africa: dominated by extremely high-grade lava-like and rheomorphic ignimbrites? New observations and lithofacies analysis. J Afr Earth Sc 131:213–232

  72. Maier WD, Arndt NT, Curl EA (2000) Progressive crustal contamination of the Bushveld Complex: evidence from Nd isotopic analyses of the cumulate rocks. Contrib Miner Petrol 140(3):316–327. https://doi.org/10.1007/s004100000186

  73. Maier WD, Barnes SJ, Karykowski BT (2016) A chilled margin of komatiite and Mg-rich basaltic andesite in the western Bushveld Complex, South Africa. Contrib Miner Petrol 171(6):1–22. https://doi.org/10.1007/s00410-016-1257-5

  74. Mathez EA, VanTongeren JA, Schweitzer J (2013) On the relationships between the Bushveld Complex and its felsic roof rocks, part 1: petrogenesis of Rooiberg and related felsites. Contrib Miner Petrol 166(2):435–449. https://doi.org/10.1007/s00410-013-0884-3

  75. McDonough WF (1990) Constraints on the composition of the continental lithospheric mantle. Earth Planet Sci Lett 101(1):1–18. https://doi.org/10.1016/0012-821X(90)90119-I

  76. McNaughton N, Pollard P, Groves D, Taylor R (1993) A long-lived hydrothermal system in Bushveld granites at the Zaaiplaats tin mine; lead isotope evidence. Econ Geol 88(1):27–43

  77. Nguuri TK, Gore J, James DE, Webb SJ, Wright C, Zengeni TG, Gwavava O, Snoke JA (2001) Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons. Geophys Res Lett 28(13):2501–2504. https://doi.org/10.1029/2000GL012587

  78. Olsson JR, Söderlund U, Klausen MB, Ernst RE (2010) U–Pb baddeleyite ages linking major Archean dyke swarms to volcanic-rift forming events in the Kaapvaal craton (South Africa), and a precise age for the Bushveld Complex. Precambr Res 183(3):490–500. https://doi.org/10.1016/j.precamres.2010.07.009

  79. Pearce JA, Stern RJ, Bloomer SH, Fryer P (2005) Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components. Geochem Geophys Geosyst 6(7) https://doi.org/10.1029/2004GC000895

  80. Pearson DG, Nowell GM (2002) The continental lithospheric mantle: characteristics and significance as a mantle reservoir. Philos Trans R Soc Lond A: Math Phys Eng Sci 360(1800):2383–2410. https://doi.org/10.1098/rsta.2002.1074

  81. Pearson DG, Carlson RW, Shirey SB, Boyd FR, Nixon PH (1995) Stabilisation of Archaean lithospheric mantle: A ReOs isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet Sci Lett 134(3–4):341–357. https://doi.org/10.1016/0012-821X(95)00125-V

  82. Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Davis AD, Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 2. Elsevier Pergamon, pp 171–260

  83. Penniston-Dorland SC, Mathez EA, Wing BA, Farquhar J, Kinnaird JA (2012) Multiple sulfur isotope evidence for surface-derived sulfur in the Bushveld Complex. Earth Planet Sci Lett 337:236–242. https://doi.org/10.1016/j.epsl.2012.05.013

  84. Pfänder JA, Jung S, Münker C, Stracke A, Mezger K (2012) A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget—evidence from continental basalts from Central Germany. Geochim Cosmochim Acta 77:232–251. https://doi.org/10.1016/j.gca.2011.11.017

  85. Pirajno F, Santosh M (2014) Rifting, intraplate magmatism, mineral systems and mantle dynamics in central-east Eurasia: an overview. Ore Geol Rev 63:265–295. https://doi.org/10.1016/j.oregeorev.2014.05.014

  86. Pirajno F, Santosh M (2015) Mantle plumes, supercontinents, intracontinental rifting and mineral systems. Precambr Res 259:243–261. https://doi.org/10.1016/j.precamres.2014.12.016

  87. Prevec S, Ashwal L, Mkaza M (2005) Mineral disequilibrium in the Merensky Reef, western Bushveld Complex, South Africa: new Sm–Nd isotopic evidence. Contrib Miner Petrol 149(3):306–315

  88. Pronost J, Harris C, Pin C (2008) Relationship between footwall composition, crustal contamination, and fluid–rock interaction in the Platreef, Bushveld Complex, South Africa. Miner Deposita 43(8):825–848. https://doi.org/10.1007/s00126-008-0203-5

  89. Putirka KD (2005) Igneous thermometers and barometers based on plagioclase + liquid equilibria: Tests of some existing models and new calibrations. Am Miner 90(2–3):336–346. https://doi.org/10.2138/am.2005.1449

  90. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120. https://doi.org/10.2138/rmg.2008.69.3

  91. Rajesh HM, Chisonga BC, Shindo K, Beukes NJ, Armstrong RA (2013) Petrographic, geochemical and SHRIMP U–Pb titanite age characterization of the Thabazimbi mafic sills: Extended time frame and a unifying petrogenetic model for the Bushveld Large Igneous Province. Precambr Res 230:79–102. https://doi.org/10.1016/j.precamres.2013.02.002

  92. Richardson SH, Shirey SB (2008) Continental mantle signature of Bushveld magmas and coeval diamonds. Nature 453(7197):910–913. https://doi.org/10.1038/nature07073

  93. Richardson S, Gurney J, Erlank A, Harris J (1984) Origin of diamonds in old enriched mantle. Nature 310:198–202

  94. Richardson SH, Shirey SB, Harris JW, Carlson RW (2001) Archean subduction recorded by Re–Os isotopes in eclogitic sulfide inclusions in Kimberley diamonds. Earth Planet Sci Lett 191(3):257–266. https://doi.org/10.1016/S0012-821X(01)00419-8

  95. Riley TR, Leat PT, Curtis ML, Millar IL, Duncan RA, Fazel A (2005) Early–Middle Jurassic dolerite dykes from Western Dronning Maud Land (Antarctica): identifying mantle sources in the Karoo large igneous province. J Petrol 46(7):1489–1524. https://doi.org/10.1093/petrology/egi023

  96. Roelofse F, Ashwal LD (2012) The Lower Main Zone in the Northern Limb of the Bushveld Complex—a> 1· 3 km thick sequence of intruded and variably contaminated crystal mushes. J Petrol 53(7):1449–1476

  97. Rollinson H (1993) Using geochemical data. Longman, London

  98. SACS (1980) Stratigraphy of South Africa. Part 1 (Comp. L. E. Kent). Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia, and the Republics of Bophuthatswana, Transkei and Venda. Handbook Geol Surv S Afr 8:690

  99. Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5(5):1–27

  100. Schoenberg R, Kruger FJ, Nägler TF, Meisel T, Kramers JD (1999) PGE enrichment in chromitite layers and the Merensky Reef of the western Bushveld Complex; a Re–Os and Rb–Sr isotope study. Earth Planet Sci Lett 172(1):49–64

  101. Schoene B, Dudas FOL, Bowring SA, De Wit M (2009) Sm–Nd isotopic mapping of lithospheric growth and stabilization in the eastern Kaapvaal craton. Terra Nova 21(3):219–228

  102. Schweitzer JK (1998) The Dullstroom Basalt Formation and the Rooiberg Group: volcanic rocks associated with the Bushveld Complex. Dissertation, University of Pretoria

  103. Schweitzer JK, Hatton CJ (1995) Chemical alteration within the volcanic roof rocks of the Bushveld Complex. Econ Geol 90(8):2218–2231

  104. Schweitzer JK, Hatton CJ, De Waal SA (1995) Regional lithochemical stratigraphy of the Rooiberg Group, upper Transvaal Supergroup; a proposed new subdivision. S Afr J Geol 98(3):245–255

  105. Schweitzer JK, Hatton CJ, De Waal SA (1997) Link between the granitic and volcanic rocks of the Bushveld Complex, South Africa. J Afr Earth Sc 24(1):95–104

  106. Scoates JS, Friedman RM (2008) Precise age of the platiniferous Merensky Reef, Bushveld Complex, South Africa, by the U-Pb zircon chemical abrasion ID-TIMS technique. Econ Geol 103(3):465–471. https://doi.org/10.2113/gsecongeo.103.3.465

  107. Sharpe MR (1981) The chronology of magma influxes to the eastern compartment of the Bushveld Complex as exemplified by its marginal border groups. J Geol Soc 138(3):307–326

  108. Sharpe MR, Hulbert LJ (1985) Ultramafic sills beneath the eastern Bushveld Complex; mobilized suspensions of early lower zone cumulates in a parental magma with boninitic affinities. Econ Geol 80(4):849–871

  109. Shirey SB, Carlson RW, Richardson SH, Menzies A, Gurney JJ, Pearson DG, Harris JW, Wiechert U (2001) Archean emplacement of eclogitic components into the lithospheric mantle during formation of the Kaapvaal Craton. Geophys Res Lett 28(13):2509–2512

  110. Silver PG, Behn MD, Kelley K, Schmitz M, Savage B (2006) Understanding cratonic flood basalts. Earth Planet Sci Lett 245(1):190–201

  111. Simon NSC, Carlson RW, Pearson DG, Davies GR (2007) The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J Petrol 48(3):589–625

  112. Spera FJ, Bohrson WA (2001) Energy-constrained open-system magmatic processes I: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J Petrol 42(5):999–1018

  113. Stachel T, Viljoen KS, Brey G, Harris JW (1998) Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planetary Science Letters 159(1):1–12. https://doi.org/10.1016/S0012-821X(98)00064-8

  114. Storey M, Mahoney J, Kroenke L, Saunders A (1991) Are oceanic plateaus sites of komatiite formation? Geology 19(4):376–379

  115. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42(1):313–345

  116. Twist D (1985) Geochemical evolution of the Rooiberg silicic lavas in the Loskop Dam area, southeastern Bushveld. Econ Geol 80(4):1153–1165. https://doi.org/10.2113/gsecongeo.80.4.1153

  117. Twist D, French BM (1983) Voluminous acid volcanism in the Bushveld Complex: A review of the Rooiberg Felsite. Bulletin Volcanologique 46(3):225–242

  118. Twist D, Harmer R (1987) Geochemistry of contrasting siliceous magmatic suites in the Bushveld Complex: genetic aspects and implications for tectonic discrimination diagrams. J Volcanol Geoth Res 32(1):83–98

  119. VanTongeren JA, Mathez EA (2012) Large-scale liquid immiscibility at the top of the Bushveld Complex, South Africa. Geology 40(6):491–494. https://doi.org/10.1130/G32980.1

  120. Vantongeren JA, Mathez EA (2013) Incoming magma composition and style of recharge below the pyroxenite marker, eastern bushveld complex, South Africa. J Petrol 54(8):1585–1605. https://doi.org/10.1093/petrology/egt024

  121. VanTongeren JA, Mathez EA (2015) On the relationship between the Bushveld Complex and its felsic roof rocks, part 2: the immediate roof. Contrib Miner Petrol 170(5–6):1–17. https://doi.org/10.1007/s00410-015-1211-y

  122. Vantongeren JA, Mathez EA, Kelemen PB (2010) A felsic end to Bushveld differentiation. J Petrol 51(9):1891–1912. https://doi.org/10.1093/petrology/egq042

  123. VanTongeren JA, Zirakparvar NA, Mathez EA (2016) Hf isotopic evidence for a cogenetic magma source for the Bushveld Complex and associated felsic magmas. Lithos 248:469–477. https://doi.org/10.1016/j.lithos.2016.02.007

  124. Von Gruenewaldt G (1968) The Rooiberg felsite north of Middelburg and its relation to the layered sequence of the Bushveld Complex. S Afr J Geol 71:151–154

  125. Von Gruenewaldt G (1972) The origin of the roof-rocks of the Bushveld Complex between Tauteshoogte and Paardekop in the eastern Transvaal. S Afr J Geol 76:207–227

  126. Walker RJ, Carlson RW, Shirey SB, Boyd FR (1989) Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: implications for the chemical evolution of subcontinental mantle. Geochim Cosmochim Acta 53(7):1583–1595. https://doi.org/10.1016/0016-7037(89)90240-8

  127. Walraven F (1985) Genetic aspects of the granophyric rocks of the Bushveld Complex. Econ Geol 80(4):1166–1180. https://doi.org/10.2113/gsecongeo.80.4.1166

  128. Walraven F (1987) Textural, geochemical and genetic aspects of the granophyric rocks of the Bushveld Complex. Memoirs Geol Surv S Afr 72:145

  129. Walraven F (1997) Geochronology of the Rooiberg Group, Transvaal Supergroup, South Africa. Economic Geology Research Unit, University of the Witwatersrand, Information Circular

  130. Walraven F, Hattingh E (1993) Geochronology of the Nebo Granite, Bushveld Complex. S Afr J Geol 96(1–2):31–41

  131. Walraven F, Kleeman G, Allsopp H (1985) Disturbance of trace-element and isotope systems and its bearing on mineralisation in acid rocks of the Bushveld Complex, South Africa. In, vol.

  132. Webb SJ, Cawthorn RG, Nguuri T, James D (2004) Gravity modeling of Bushveld Complex connectivity supported by Southern African seismic experiment results. S Afr J Geol 107(1–2):207–218. https://doi.org/10.2113/107.1-2.207

  133. Westerlund KJ, Gurney JJ, Carlson RW, Shirey SB, Hauri EH, Richardson SH (2004) A metasomatic origin for late Archean eclogitic diamonds: Implications from internal morphology of diamonds and Re-Os and S isotope characteristics of their sulfide inclusions from the late Jurassic Klipspringer kimberlites. S Afr J Geol 107(1–2):119–130. https://doi.org/10.2113/107.1-2.119

  134. Westerlund K, Shirey S, Richardson S, Carlson R, Gurney J, Harris J (2006) A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re–Os isotope systematics. Contrib Miner Petrol 152(3):275

  135. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95(1):185–187. https://doi.org/10.2138/am.2010.3371

  136. Wilson AH (2012) A chill sequence to the Bushveld Complex: insight into the first stage of emplacement and implications for the parental magmas. J Petrol 53:1123–1168. https://doi.org/10.1093/petrology/egs011

  137. Wilson J, Ferre EC, Lespinasse P (2000) Repeated tabular injection of high-level alkaline granites in the eastern Bushveld, South Africa. J Geol Soc Lond 157(5):1077–1088

  138. Wilson AH, Zeh A, Gerdes A (2017) In situ Sr isotopes in plagioclase and trace element systematics in the lowest part of the Eastern Bushveld Complex: dynamic processes in an evolving magma Chamber. J Petrol 58(2):327–360. https://doi.org/10.1093/petrology/egx018

  139. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231(1):53–72

  140. Wronkiewicz DJ, Condie KC (1990) Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: cratonic evolution during the early Proterozoic. Geochim Cosmochim Acta 54(2):343–354. https://doi.org/10.1016/0016-7037(90)90323-D

  141. Xu Y, Chung SL, Jahn BM, Wu G (2001) Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China. Lithos 58(3):145–168. https://doi.org/10.1016/S0024-4937(01)00055-X

  142. Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107(2):305–317. https://doi.org/10.1016/0012-821X(91)90078-V

  143. Yaxley GM, Green DH, Kamenetsky V (1998) Carbonatite metasomatism in the southeastern Australian lithosphere. J Petrol 39(11–12):1917–1930. https://doi.org/10.1093/petroj/39.11-12.1917

  144. Zeh A, Ovtcharova M, Wilson AH, Schaltegger U (2015) The Bushveld Complex was emplaced and cooled in less than one million years–results of zirconology, and geotectonic implications. Earth Planet Sci Lett 418:103–114. https://doi.org/10.1016/j.epsl.2015.02.035

  145. Zirakparvar NA, Mathez EA, Scoates JS, Wall CJ (2014) Zircon Hf isotope evidence for an enriched mantle source for the Bushveld Igneous Complex. Contrib Miner Petrol 168(3):1–18. https://doi.org/10.1007/s00410-014-1050-2

Download references

Acknowledgements

The authors would like to thank E. Hegner from the LMU Munich and M. Regelous for help with the analytical work. We thank L. Fischer from the University Hannover and S. Brandt for help during the fieldwork. We are grateful for the constructive and insightful review of Lewis D. Ashwal, which significantly improved the quality of the manuscript. Franck Poitrasson is thanked for his comments and editorial help.

Author information

Correspondence to T. Günther.

Additional information

Communicated by Franck Poitrasson.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Günther, T., Haase, K.M., Klemd, R. et al. Mantle sources and magma evolution of the Rooiberg lavas, Bushveld Large Igneous Province, South Africa. Contrib Mineral Petrol 173, 51 (2018). https://doi.org/10.1007/s00410-018-1477-y

Download citation

Keywords

  • Bushveld Complex
  • Large igneous province (LIP)
  • Sub-continental lithospheric mantle (SCLM)
  • Assimilation fractional crystallization
  • Kaapvaal craton