Advertisement

Exhumation rates in the Gran Paradiso Massif (Western Alps) constrained by in situ U–Th–Pb dating of accessory phases (monazite, allanite and xenotime)

  • Paola Manzotti
  • Valérie Bosse
  • Pavel Pitra
  • Martin Robyr
  • Federica Schiavi
  • Michel Ballèvre
Original Paper

Abstract

Exhumation rates for high-pressure metamorphic rocks need to be carefully estimated to decipher tectonic processes in subduction/collision belts. In the Gran Paradiso Massif (Western Alps), the Money Unit crops out as a tectonic window below the Gran Paradiso Unit. According to previous studies, the Gran Paradiso and Money Units reached peak pressure conditions at ~ 18 to 20 kbar, 480–520 °C and ~ 17 to 18 kbar, 500–550 °C, respectively. This yields a maximum difference of ~ 9 to 10 km in the subduction depth reached by these two units during the Alpine history. Thrusting of the Gran Paradiso Unit over the Money Unit led to the simultaneous development of the main foliation under the same metamorphic conditions (~ 12.5 to 14.5 kbar and 530–560 °C) in both units. The thrust contact was subsequently folded and then both units were exhumed together. The relative timing of the growth and dissolution of the accessory phases was assessed by combining thermodynamic modelling with inclusion, textural and chemical (major and trace element) data from both major and accessory phases. The age of monazite constrained the high-pressure metamorphism in both the Gran Paradiso Unit and the Money Unit at 41.5 ± 0.3 and 42.0 ± 0.6 Ma, respectively. Allanite replacing monazite in the matrix has been dated at 32.7 ± 4.2 Ma. The late growth of xenotime associated with the crystallization of biotite pseudomorphs at the expense of garnet (at about 10 kbar) was dated at 32.3 ± 1.0 Ma. Our petrochronological data indicate about 10 m.y. between the peak pressure conditions and the crystallization of xenotime leading to an exhumation rate of the order of 2.2–5 mm/year. The new ages allow to better constrain the timing of the displacement of the thrust defining the lower boundary of the extruding wedge of eclogite-facies rocks.

Keywords

Monazite Allanite Xenotime Exhumation rates High pressure Alps 

Notes

Acknowledgements

This work was financially supported by the Swiss National Science Foundation (Project PZ00P2_161202). ‘Ente Parco Nazionale Gran Paradiso’ is thanked for allowing fieldwork and rock sampling in the Valnontey valley. ‘Villaggio Alpino Don Bosco’ is thanked for providing accommodation at the Alpe Money hut. X. Le Coz and L. Nicod are acknowledged for making the numerous thin sections required for our study on the Gran Paradiso Massif. We thank P. Vonlanthen for help in using the SEM and J.-L. Devidal for help with the EMPA analyses on the accessory phases. We are grateful to D. Tinkham for making available the conversion of the Thermocalc mixing models for the Theriak-Domino software. We have much appreciated discussions and exchanges with L.P. Baumgartner, S. Schmalholz and J.P. Brun. We thank also Dr. Sara Mullin for revising our English language. Finally, K. Mottram and an anonymous reviewer are thanked for their constructive and helpful reviews which significantly improved this paper. The careful editorial work of S. Reddy is gratefully acknowledged.

Supplementary material

410_2018_1452_MOESM1_ESM.pdf (5.8 mb)
Supplementary material 1 (PDF 5894 KB)

References

  1. Agard P, Monié P, Jolivet L, Goffé B (2002) Exhumation of the Schistes Lustrés complex: in situ laser probe 40Ar/39Ar constraints and implications for the Western Alps. J Metamorph Geol 20:599–618CrossRefGoogle Scholar
  2. Agard P, Yamato P, Jolivet L, Burov E (2009) Exhumation of oceanic blueschist and eclogites in subduction zones: timing and mechanisms. Earth Sci Rev 92:53–79CrossRefGoogle Scholar
  3. Andersen TB, Jamtveit B, Dewey JF, Swensson E (1991) Subduction and eduction of continental crust: major mechanisms during continent-continent collision and orogenic collapse, a model based on the south Norwegian Caledonides. Terra Nova 3:303–310CrossRefGoogle Scholar
  4. Argand E (1924) La tectonique de l’Asie. XIIIème Congrès Géologique International (Bruxelles). Comptes-rendus 1:171–372Google Scholar
  5. Ashley KT, Steele-MacInnis M, Caddick MJ (2014) QuiB Calc: A MATLAB® script for geobarometry based on Raman spectroscopy and elastic modeling of quartz inclusions in garnet. Comput Geosci 66:155–157CrossRefGoogle Scholar
  6. Babist J, Handy MR, Konrad-Schmolke M, Hammerschmidt K (2006) Precollisional, multistage exhumation of subducted continental crust: The Sesia Zone, western Alps. Tectonics 25:TC6008.  https://doi.org/10.1029/2005TC001927 CrossRefGoogle Scholar
  7. Ballèvre M, Merle O (1993) The Combin Fault: compressional reactivation of a Late Cretaceous-Early Tertiary detachment fault in the Western Alps. Schweiz Mineral Petrog Mittei 73:205–227Google Scholar
  8. Bertrand JM, Paquette JL, Guillot F (2005) Permian zircon U–Pb ages in the Gran Paradiso massif: revisiting post-Variscan events in the Western Alps. Schweiz Mineral Petrog Mittei 85:15–29Google Scholar
  9. Beyssac O, Goffé B, Chopin C, Rouzaud JN (2002) Raman spectra of carbonaceous material in metasediments: a new geothermometer. J Metamorph Geol 20:859–871CrossRefGoogle Scholar
  10. Beyssac O, Goffé B, Petitet JP, Froigneux E, Moreau M, Rouzaud JN (2003) On the characterization of disordered and heterogeneous carbonaceuous materials using Raman spectroscopy. Spectrochimica Acta A 59:2267–2276CrossRefGoogle Scholar
  11. Brun JP, Faccenna C (2008) Exhumation of high-pressure rocks driven by slab rollback. Earth Planet Sci Lett 272:1–7CrossRefGoogle Scholar
  12. Burov E, Francois T, Agard P, Le Pourhiet L, Meyer B, Tirel C, Lebedev S, Yamato P, Brun J-P (2014) Rheological and geodynamic controls on the mechanisms of subduction and HP/UHP exhumation of crustal rocks during continental collision: insights from numerical models. Tectonophysics 631:212–250CrossRefGoogle Scholar
  13. Butler JP, Beaumont C, Jamieson RA (2013) The Alps 1: a working geodynamic model for burial and exhumation of (ultra)high-pressure rocks in Alpine-type orogens. Earth Planet Sci Lett 377–378:114–131CrossRefGoogle Scholar
  14. Butler JP, Beaumont C, Jamieson RA (2014) The Alps 2: controls on crustal subduction and (ultra)high-pressure rock exhumation in Alpine-type orogens. J Geophy Res Solid Earth 119:5987–6022CrossRefGoogle Scholar
  15. Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials, BR, DRN, UB-N, AN-G and GH. Geostandards Newslett 25:187–198CrossRefGoogle Scholar
  16. Carswell DA, Brueckner HK, Cuthbert SJ, Mehta K, O’Brien PJ (2003) The timing of stabilisation and the exhumation rate for ultra-high pressure rocks in the Western Gneiss Region of Norway. J Metamorph Geol 21:602–612CrossRefGoogle Scholar
  17. Compagnoni R, Elter G, Lombardo B (1974) Eterogeneita stratigrafica del complesso degli «gneiss minuti» nel massicio cristallino del Gran Paradiso. Mem Soc Geol Ital Supplemento 13:227–239Google Scholar
  18. Dal Piaz GV, Lombardo B (1986) Early Alpine eclogite metamorphism in the Penninic Monte Rosa-Gran Paradiso basement of the northwestern Alps. In: Evans BW, Brown EH (eds) Blueschists and eclogites, vol 164. Geol Soc Amer Mem, Boulder, CO, pp 249–265CrossRefGoogle Scholar
  19. de Capitani C, Brown TH (1987) The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim Cosmochim Acta 51:2639–2652CrossRefGoogle Scholar
  20. de Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95:1006–1016CrossRefGoogle Scholar
  21. de Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Luais B, Guillot S, Cosca M, Mascle G (2000) Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: multichronology of Tso Morari eclogites. Geology 28:487–490CrossRefGoogle Scholar
  22. de Sigoyer J, Guillot S, Dick P (2004) Exhumation rate of the ultrahigh-pressure Tso Morari unit in eastern Ladakh (NW Himalaya): a case study. Tectonics 23:TC3003CrossRefGoogle Scholar
  23. de Meyer CMC, Baumgartner LP, Beard BL, Johnson CM (2014) Rb–Sr ages from phengite inclusions in garnets from high pressure rocks of the Swiss Western Alps. Earth Planet Sci Lett 395:205–216CrossRefGoogle Scholar
  24. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194CrossRefGoogle Scholar
  25. Dewey JF, Bird JM (1970) Mountain belts and the new global tectonics. J Geophys Res 75:2625–2647CrossRefGoogle Scholar
  26. Di Vincenzo G, Tonarini S, Lombardo B, Castelli D, Ottolini L (2006) Comparison of 40Ar–39Ar and Rb–Sr data on phengites from the UHP Brossasco-Isasca Unit (Dora Maira Massif, Italy): implications for dating white mica. J Petrol 47:1439–1465CrossRefGoogle Scholar
  27. Dobretsov NL, Sobolev NL, Shatsky VS, Coleman RG, Ernst WG (1995) Geotectonic evolution of diamondiferous parageneses Kokchetav Complex, Northern Kazakhstan – the geologic enigma of ultrahigh-pressure crustal rocks within Phanerozoic foldbelt. Isl Arc 4:267–279CrossRefGoogle Scholar
  28. Duchêne S, Blichert-Toft J, Luais B, Télouk P, Lardeaux J-M, Albarède F (1997a) The Lu–Hf dating of garnets and the ages of the Alpine high-pressure metamorphism. Nature 387:586–589CrossRefGoogle Scholar
  29. Duchêne S, Lardeaux J-M, Albarède F (1997b) Exhumation of eclogites: insights from depth-time path analysis. Tectonophysics 280:125–140CrossRefGoogle Scholar
  30. Engi M, Scherrer NC, Burri T (2001) Metamorphic evolution of pelitic rocks of the Monte Rosa nappe: constraints from petrology and single grain monazite age data. Schweiz Mineral Petrog Mitt 81:305–328Google Scholar
  31. Epard JL, Steck A (2008) Structural development of the Tso Morari ultra-high pressure nappe of the Ladakh Himalaya. Tectonophysics 451:242–264CrossRefGoogle Scholar
  32. Fitzsimons I, Kinny P, Wetherley S, Hollingsworth D (2005) Bulk chemical control on metamorphic monazite growth in pelitic schists and implications for U–Pb age data. J Metamorph Geol 23:261–277CrossRefGoogle Scholar
  33. Freeman SR, Inger S, Butler RWH, Cliff RA (1997) Dating deformation using Rb–Sr in white mica: greenschist facies deformation ages from the Entrelor shear zone, Italian Alps. Tectonics 16:55–76CrossRefGoogle Scholar
  34. Gasco I, Borghi A, Gattiglio M (2010) Metamorphic evolution of the Gran Paradiso Massif: a case study of an eclogitic metagabbro and a polymetamorphic glaucophane–garnet micaschist. Lithos 115:101–120CrossRefGoogle Scholar
  35. Gauthiez-Putallaz L, Rubatto D, Hermann J (2016) Dating prograde fluid pulses during subduction by in situ U–Pb and oxygen isotope analysis. Contrib Mineral Petrol 171:15CrossRefGoogle Scholar
  36. Gebauer D, Schertl HP, Brix M, Schreyer W (1997) 35 Ma old ultra-high-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos 41:5–24CrossRefGoogle Scholar
  37. Gerya TV, Perchuk LL, Burg JP (2008) Transient hot channels: Perpetrating and regurgitating ultrahigh-pressure, high-temperature crust-mantle associations in collision belts. Lithos 103:236–256CrossRefGoogle Scholar
  38. Grand’Homme A, Janots E, Seydoux-Guillaume AM, Guillaume D, Bosse V, Magnin V (2016) Partial resetting of the U–Th–Pb systems in experimentally altered monazite: nanoscale evidence of incomplete replacement. Geology 44:431–434CrossRefGoogle Scholar
  39. Groppo C, Castelli D, Compagnoni R (2006) Late chloritoid–staurolite assemblage in a garnet–kyanite-bearing metapelite from the ultrahigh-pressure Brossasco-Isasca unit (Dora-Maira Massif, Western Alps): new petrological constraints for a portion of the decompressional path. Geol Soc Spec Pap 403:127–138Google Scholar
  40. Groppo C, Beltrando M, Compagnoni R (2009a) The P–T path of the ultra-high pressure Lago di Cignana and adjoining high-pressure meta-ophiolitic units: insights into the evolution of the subducting Tethyan slab. J Metamorph Geol 27:207–231CrossRefGoogle Scholar
  41. Groppo C, Rolfo F, Lombardo B (2009b) P–T evolution across the Main Central Thrust Zone (Eastern Nepal): hidden discontinuities revealed by petrology. J Petrol 50:1149–1180CrossRefGoogle Scholar
  42. Guiraud M, Powell R (2006) P–V–T relationships and mineral equilibria in inclusions in minerals. Earth Planet Sci Lett 244:683–694CrossRefGoogle Scholar
  43. Guiraud M, Powell R, Rebay G (2001) H2O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages. J Metam Geol 19:445–454CrossRefGoogle Scholar
  44. Henry DJ, Guidotti CV, Thomson JA (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. Am Min 90:316–328CrossRefGoogle Scholar
  45. Hermann J, Rubatto D, Korsakov A, Shatsky VS (2001) Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contrib Mineral Petrol 141:66–82CrossRefGoogle Scholar
  46. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343CrossRefGoogle Scholar
  47. Hurford AJ, Hunziker JC (1989) A revised thermal history for the Gran Paradiso massif. Schweiz Mineral Petrog Mitt 69:319–329Google Scholar
  48. Johnson RW, Harley SL (2012) Orogenesis. The making of mountains. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  49. Kohn M (2014) “Thermo-Raman-try”: Calibration of spectroscopic barometers and thermometers for mineral inclusions. Earth Planet Sci Let 388:187–196CrossRefGoogle Scholar
  50. Kohn M, Engi M, Lanari P (2017) Petrochronology: methods and applications. Rev Mineral Geoch, Chantilly, VA, p 83CrossRefGoogle Scholar
  51. Kylander-Clark ARC, Hacker BR, Mattinson JM (2008) Slow exhumation of UHP terranes: titanite and rutile ages of the Western Gneiss Region, Norway. Earth Planet Sci Lett 272:531–540CrossRefGoogle Scholar
  52. Kylander-Clark ARC, Hacker BR, Mattinson CG (2012) Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth Planet Sci Lett 321–322:115–120CrossRefGoogle Scholar
  53. Lapen TJ, Johnson CM, Baumgartner LP, Dal Piaz GV, Skora S, Beard BL (2007) Coupling of oceanic and continental crust during Eocene eclogite-facies metmorphism: evidence from the Monte Rosa nappe, western Alps. Contrib Mineral Petrol 153:139–157CrossRefGoogle Scholar
  54. Le Bayon B, Ballèvre M (2004a) Field and petrological evidence for a late Palaeozoic (Permian) age of the Erfaulet oorthogneiss. CR Geosci 336:1079–1089CrossRefGoogle Scholar
  55. Le Bayon B, Ballèvre M (2004b) Field and petrological evidence for a late Palaeozoic (Permian) age of the Erfaulet orthogneiss. CR Geoscience 336:1079–1089CrossRefGoogle Scholar
  56. Le Bayon B, Ballèvre M (2006) Deformation history of a subducted continental crust (Gran Paradiso, Western Alps): continuing crustal shortening during exhumation. J Structural Geol 28:793–815CrossRefGoogle Scholar
  57. Le Bayon B, Pitra P, Ballèvre M, Bohn M (2006) Reconstructing P–T paths during continental collision using multi-stage garnet (Gran Paradiso nappe, Western Alps). J Metam Geol 24:477–496CrossRefGoogle Scholar
  58. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Maresch WV, Nickel EH, Rock NMS (1997) Nomenclature of amphiboles. Report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names. Eur J Mineral 9:623–651CrossRefGoogle Scholar
  59. López-Carmona A, Pitra P, Abati J (2013) Blueschist-facies metapelites from Malpica-Tui Unit (NW Iberian Massif): phase equilibria modelling and H2O and Fe2O3 influence in high-pressure assemblages. J Metamorph Geol 31:263–280CrossRefGoogle Scholar
  60. Malusà MG, Vezzoli G (2006) Interplay between erosion and tectonics in the Western Alps. Terra Nova 18:104–108CrossRefGoogle Scholar
  61. Malusà MG, Polino R, Zattin M, Bigazzi G, Martin S, Piana F (2005) Miocene to present differential exhumation in the Western Alps: insights from fission-track thermochronology. Tectonics 24:1–23CrossRefGoogle Scholar
  62. Malusà MG, Faccenna C, Garzanti E, Polino R (2011) Divergence in subduction zones and exhumation of high pressure rocks (Eocene Western Alps). Earth Planet Sci Lett 310:21–32CrossRefGoogle Scholar
  63. Manzotti P, Ballèvre M (2013) Multi-stage garnet in high-pressure metasediments: Alpine overgrowths on Variscan detrital grains. Geology 41:1151–1154CrossRefGoogle Scholar
  64. Manzotti P, Ballèvre M, Zucali M, Robyr M, Engi M (2014a) The tectonometamorphic evolution of the Sesia-Dent Blanche nappes (internal Western Alps): review and synthesis. Swiss J Geosci 107:309–336CrossRefGoogle Scholar
  65. Manzotti P, Le Carlier de Veslud C, Le Bayon B, Ballèvre M (2014b) Petro-structural map of the Money Unit (Gran Paradiso Massif, Valnontey valley, Western Alps). J Maps 10:324–340CrossRefGoogle Scholar
  66. Manzotti P, Poujol M, Ballèvre M (2015a) Detrital zircon in blueschist-facies-metaconglomerates from the Western Alps: implications for the late Carboniferous to early Permian palaeogeography. Int J Earth Sci 104:703–731CrossRefGoogle Scholar
  67. Manzotti P, Pitra P, Langlade J, Ballèvre M (2015b) Constraining P–T conditions during thrusting of a higher pressure unit over a lower pressure one (Gran Paradiso, Western Alps). J Metamorph Geol 33:981–1002CrossRefGoogle Scholar
  68. Massonne HJ (2015) Derivation of P–T paths from high-pressure metagranites—examples from the Gran Paradiso Massif, Western Alps. Lithos 226:265–279CrossRefGoogle Scholar
  69. Meffan-Main S, Cliff RA, Barnicoat AC, Lombardo B, Compagnoni R (2004) A Tertiary age for Alpine high-pressure metamorphisms in the Gran Paradiso massif, Western Alps: a Rb–Sr microsampling study. J metamorph Geol 22:267–281CrossRefGoogle Scholar
  70. Perchuk LL (1991) Derivation of a thermodynamically consistent set of geothermometers and geobarometers for metamorphic and magmatic rocks. In: Perchuk LL (ed) Progress in metamorphic and magmatic petrology, a memorial volume in honor of DS Korzhinskiy. Cambridge Univ Press, Cambridge, pp 93–112CrossRefGoogle Scholar
  71. Petrík I, Broska I, Lipka J, Siman P (1995) Granitoid allanite-(Ce): substitution relations redox conditions and REE distributions (on an example of I-type granitoids, western Carpathians, Slovakia). Geol Carpath 46:79–94Google Scholar
  72. Pfiffner OA (2014) Geology of the Alps. Wiley-Blackwell, Oxford, 376pGoogle Scholar
  73. Pitra P, Kouamelan AN, Ballèvre M, Peucat JJ (2010) Palaeoproterozoic high-pressure granulite overprint of the Archean continental crust: evidence for homogeneous crustal thickening (Man Rise, Ivory Coast). J Metamorph Geol 28:41–58CrossRefGoogle Scholar
  74. Platt JP (1993) Exhumation of high-pressure rocks: a review of concepts and processes. Terra Nova 5:119–133CrossRefGoogle Scholar
  75. Powell R, Holland TJB (1988) An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J Metamorph Geol 6:173–204CrossRefGoogle Scholar
  76. Proyer A (2003) The preservation of high-pressure rocks during exhumation: metagranites and metapelites. Lithos 70:183–194CrossRefGoogle Scholar
  77. Pyle JM, Spear FS (1999) Yttrium zoning in garnet: coupling of major and accessory phases during metamorphic reactions. Geol Mat Res 1:1–49Google Scholar
  78. Radulescu IG, Rubatto D, Gregory C, Compagnoni R (2009) The age of HP metamorphism in the Gran Paradiso Massif, Western Alps: a petrological and geochronological study of “silvery micaschists”. Lithos 110:95–108CrossRefGoogle Scholar
  79. Reddy SM, Wheeler J, Cliff RA (1999) The geometry and timing of orogenic extension: an example from the Western Italian Alps. J Metam Geol 17:573–589CrossRefGoogle Scholar
  80. Regis D, Rubatto D, Darling J, Cenki-Tok B, Zucali M, Engi M (2014a) Multiple metamorphic stages within an eclogite-facies terrane (Sesia Zone, Western Alps) revealed by Th–U–Pb petrochronology. J Petrol 55:1429–1456CrossRefGoogle Scholar
  81. Regis D, Warren CJ, Young D, Roberts NMW (2014b) Tectono-metamorphic evolution of the Jomolhari massif: variations in timing of syn-collisional metamorphism across western Bhutan. Lithos 190:449–466CrossRefGoogle Scholar
  82. Regis D, Warren CJ, Mottram CM, Roberts NMW (2016) Using monazite and zircon petrochronology to constrain the PTt evolution of the middle crust in the Bhutan Himalaya. J Metam Geol 34:617–639CrossRefGoogle Scholar
  83. Ring U, Collins AS, Kassem OK (2005) U–Pb SHRIMP data on the crystallization age of the Gran Paradiso augengneiss, Italian Western Alps: Further evidence for Permian magmatic activity in the Alps during break-up of Pangea. Eclogae Geol Helv 98:363–370CrossRefGoogle Scholar
  84. Rosenbaum G, Menegon L, Glodny J, Vasconcelos P, Ring U, Massironi M, Thiede D, Nasipuri P (2012) Dating deformation in the Gran Paradiso Massif (NW Italian Alps): Implications for the exhumation of high-pressure rocks in an collisional belt. Lithos 144–145:130–134CrossRefGoogle Scholar
  85. Rubatto D, Gebauer D (1999) Eo/Oligocene (35 Ma) high-pressure metamorphism in the Gornegrat Zone (Monte Rosa, Western Alps): implications for paleogeography. Schweiz Mineral Petrog Mittei 79:353–362Google Scholar
  86. Rubatto D, Hermann J (2001) Exhumation as fast as subduction? Geology 29:3–6CrossRefGoogle Scholar
  87. Scaillet S (1996) Excess 40Ar transport scale and mechanism in high-pressure phengites: a case study from an eclogitized metabasite of the Dora-Maira nappe, western Alps. Geochim Cosmochim Acta 60:1075–1090CrossRefGoogle Scholar
  88. Scaillet S, Féraud G, Lagabrielle Y, Ballèvre M, Ruffet G (1990) 40Ar/39Ar laser-probe dating by step-heating and spot-fusion of phengites from the Dora-Maira nappe of the western Alps, Italy. Geology 18:741–744CrossRefGoogle Scholar
  89. Schärer U (1984) The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204CrossRefGoogle Scholar
  90. Schellart WP, Freman J, Stegman DR, Moresi L, May D (2007) Evolution and diversity of subduction zones controlled by slab width. Nature 446:308–311CrossRefGoogle Scholar
  91. Schenker FL, Schmalholz SM, Moulas E, Pleuger J, Baumgartner LP, Podladchikov Y, Vrijmoed J, Buchs N, Müntener O (2015) Current challenges for explaining (ultra)high-pressure tectonism in the Pennine domain of the Central and Western Alps. J Metamorph Geol 33:869–886CrossRefGoogle Scholar
  92. Schlunegger F, Kissling E (2015) Slab rollback orogeny in the Alps and evolution of the Swiss Molasse basin. Nat Commun 6:8605.  https://doi.org/10.1038/ncomms9605 CrossRefGoogle Scholar
  93. Schlup M, Carter A, Steck A (2001) Exhumation history revealed by fission track cooling ages in the North Himalayan Crystalline zone of eastern Ladakh, NW Himalaya. J Asian Earth Sci 19:57–58Google Scholar
  94. Schmalholz SM, Schenker FL (2015) Exhumation of the Dora Maira ultrahigh-pressure unit by buoyant uprise within a low-viscosity mantle oblique-slip shear zone. Terra Nova 28:348–355CrossRefGoogle Scholar
  95. Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogeny. Eclogae Geol Helv 97:93–117CrossRefGoogle Scholar
  96. Schmid SM, Kissling E, Diehl T, van Hinsberger DJJ, Molli G (2017) Ivrea mantle wedge, arc of the western Alps, and kinematic evolution of the Alps-Apennines orogenic system. Swiss J Geoscience.  https://doi.org/10.1007/s0015-016-0237-0 Google Scholar
  97. Shatsky VS, Jagoutz E, Sobolev NV, Kozmenko OA, Parkhomenko VS, Troesch M (1999) Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif (Northern Kazakhstan). Contrib Mineral Petrol 137:185–205CrossRefGoogle Scholar
  98. Smith HA, Barreiro (1990) Monazite U–Pb dating of staurolite grade metamorphism in pelitic schists. Contrib Mineral Petrol 105:602–615CrossRefGoogle Scholar
  99. Spear FS (2010) Monazite–allanite phase relations in metapelites. Chem Geol 279(1–2):55–62CrossRefGoogle Scholar
  100. Spear FS, Pyle JM (2002) Apatite, monazite, and xenotime in metamorphic rocks. Rev Mineral Geochem 48:295–335CrossRefGoogle Scholar
  101. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  102. Steck A, Masson H, Robyr M (2015) Tectonics of the Monte Rosa and surrounding nappes (Switzerland and Italy): Tertiary phases of subduction, thrusting and folding in the Pennine Alps. Swiss J Geosci 108:3–34CrossRefGoogle Scholar
  103. St-Onge MR, Rayner N, Palin RM, Searle MP, Waters DJ (2013) Integrated pressure–temperature–time constraints for the Tso Morari dome (Northwest India): implications for the burial and exhumation path of UHP units in the western Himalaya. J Metamorph Geol 31:469–504CrossRefGoogle Scholar
  104. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins, vol 42. Geol Soc London Spec Publ, London, pp 313–345Google Scholar
  105. Taylor RJM, Clark C, Harley SL, Kylander-Clark ARC, Hacker BR, Kinny PD (2017) Interpreting granulite facies events through rare earth element partitioning arrays. J Metamorph Geol.  https://doi.org/10.1111/jmg.12254 Google Scholar
  106. Thompson AB, Connolly JAD (1990) Metamorphic fluids and anomalous porosities in the lower crust. Tectonophysics 182:47–55CrossRefGoogle Scholar
  107. Vernon RH (2004) A practical guide to rock microstructure. Cambridge University Press, Cambridge, p 594CrossRefGoogle Scholar
  108. Warren CJ (2013) Exhumation of (ultra-)high-pressure terranes: concepts and mechanisms. Solid Earth 4:75–92CrossRefGoogle Scholar
  109. Yamato P, Burov E, Agard P, Le Pourhiet L, Jolivet L (2008) HP–UHP exhumation during slow continental subduction: self-consistent thermodynamically and thermomechanically coupled model with application to the Western Alps. Earth Planet Sci Lett 271:63–74CrossRefGoogle Scholar
  110. Yang P, Rivers T (2001) Chromium and manganese zoning in pelitic garnet and kyanite: spiral, overprint, and oscillatory (?) zoning patterns and the role of growth rate. J Metamorph Geol 19:455–574CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Earth SciencesUniversity of LausanneLausanneSwitzerland
  2. 2.Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et VolcansClermont-FerrandFrance
  3. 3.University of Rennes, CNRS, Géosciences Rennes, UMR 6118RennesFrance
  4. 4.Česká geologická službaPrague 1Czech Republic

Personalised recommendations