Skip to main content

Advertisement

Log in

Shallow-level differentiation of phonolitic lavas from Sumaco Volcano, Ecuador

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Sumaco Volcano is located in the rear-arc of Ecuador and produces phonolitic alkaline lavas hosting a unique assemblage of minerals including haüyne and titanaugite. The most mafic lavas are picrobasalts that contain titanaugite as the primary mineral phase; the most evolved tephri-phonolite lavas contain titanaugite + anorthoclase + haüyne. Titanaugite forms at middle to deep crustal pressures, whereas haüyne is only stable at shallow depths in highly oxidizing conditions. The Sumaco mineral assemblages and geochemistry indicate that fractionation of the titanaugite- and haüyne-bearing assemblage took place over a range of pressures from 5 to 25 kbar (14–75 km), with at least 50% of differentiation taking place at shallow crustal levels. Minerals record multiple cycles of recharge and mixing accompanied by an increase in fO2 and sulfur concentration during differentiation. Mantle-like Sr and Nd isotope values (87Sr/86Sr = 0.70406–0.70423; 143Nd/144Nd = 0.512880–0.512913) indicate minimal crustal assimilation. Sumaco’s unique geochemical composition is not observed in the nearby volcanoes Antisana, Pan de Azucar or El Reventador suggesting that its unique magma source is confined to this volcano. The high temperature and sulfate-saturated conditions at shallow depths suggest that magma ascends rapidly to a shallow reservoir where the majority of crystallization and recharge takes place prior to eruption. An important conclusion of this research is that Sumaco does not represent typical rear-arc subduction processes, and caution should be used when using Sumaco as an end-member to evaluate across-arc processes in the Northern Volcanic Zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Albarède F, Michaud A (1986) Transfer of continental Mg, S, O and U to the mantle through hydrothermal alteration of the oceanic crust. Chem Geol 57:1–15. https://doi.org/10.1016/0009-2541(86)90090-2

    Article  Google Scholar 

  • Albarède F, Luais B, Fitton G, Semet M, Kaminski E, Upton B, Bachelery P, Cheminee J-L (1997) The Geochemical Regimes of Piton de la Fournaise Volcano (Réunion) During the Last 530 000 Years. J Petrol 38:171–201

    Article  Google Scholar 

  • Alt JC, Burdett JW (1992) Sulphur content and stable isotope ratios of ODP Leg 129 holes. PANGAEA, https://doi.org/10.1594/PANGAEA.779034, Supplement to: Alt JC, Burdett JW (1992) Sulfur in pacific deep-sea sediments (Leg 129) and implications for cycling of sediment in subduction zones. In: Larson RL, Lancelot Y, et al. (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 129, 283–294. https://doi.org/10.2973/odp.proc.sr.129.125.1992

  • Ancellin M-A, Samaniego P, Vlastélic I, Nauret F, Gannoun A, Hidalgo S (2017) Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc. Geochem Geophys Geosyst 5:1249–1279

    Google Scholar 

  • Andújar J, Scaille B (2012) Relationships between pre-eruptive conditions and eruptive styles of phonolite-trachyte magmas. Lithos 152:122–132

    Article  Google Scholar 

  • Andújar J, Costa F, Marti J, Wolff JA, Carroll MR (2008) Experimental constraints on pre-eruptive conditions of phonolitic magma from the caldera-forming El Abrigo eruption, Tenerife (Canary Islands.). Chem Geol 257:173–191

    Article  Google Scholar 

  • Arce J-L, Walker J. Keppie JD (2014) Petrology of two contrasting Mexican volcanoes, the Chiapanecan (El Chichón) and Central American (Tacaná) volcanic belts: the result of rift- versus subduction-related volcanism. Int Geol Rev 56:4 501–524

    Article  Google Scholar 

  • Assumpção M, Feng M, Tassara A, Julià J (2013) Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave tomography. Tectonophysics 609:82–96

    Article  Google Scholar 

  • Balassone G, Bellatreccia F, Ottolini L, Mormone A, Petti C, Ghiara MR, Altomare M, Saviano R, Roasanna R (2015) Sodalite-group minerals from Somma-Vesuvius Volcano (Naples, Italy): a compined EPMA, SIMS and FTIR crystal chemical study. Can Mineral Vol 0:1–19. https://doi.org/10.3749/canmin.1500083

    Google Scholar 

  • Barragan R, Geist D, Hall M, Larson P, Kurz M (1998) Subduction controls on the compositions of lavas from the Ecuadorian Andes. Earth Plan Sci Lett 154:153–166

    Article  Google Scholar 

  • Berndt J, Holtz F, Koepke J (2001) Experimental constraints on storage conditions in the chemically zoned phonolitic magma chamber of the Laacher See volcano. Contrib Miner Petrol 140:469–486

    Article  Google Scholar 

  • Blatter DL, Carmichael ISE (1998) Plagioclase-free andesites from Zitácuaro (Michoacán), Mexico: petrology and experimental constraints. Contrib Mineral Petrol 132:121–138

    Article  Google Scholar 

  • Bourdon B, Sims KWW (2003) U-series constraints on intraplate magmatism, In Uranium Series Geochemistry. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Rev Mineral Geochem 52:215–253. https://doi.org/10.2113/0520215

    Article  Google Scholar 

  • Bourdon E, Eissen J-P, Cutscher M-A, Monzier M, Hall ML, Cotton J (2001) Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). Earth Plan Sci Lett 205:123–138

    Article  Google Scholar 

  • Bryan S (2006) Petrology and geochemistry of the quaternary Caldera-forming, Phonolitic

  • Bryant J, Yogodzinski G, Hall M, Lewicki L, Bailey G (2008) Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone, Ecuador. J Petrol 47:1147–1175

    Article  Google Scholar 

  • Carroll MR, Rutherford MJ (1987) The stability of igneous anhydrite: experimental results and implications for sulfur behavior in the 1982 El Chichón trachyandesite and other evolved magmas. J Petrol 28:781–801

    Article  Google Scholar 

  • Carroll MR, Rutherford MJ (1988) Sulfur speciation in hydrous experimental glasses of varying oxidation states: results from measured wavelength shifts of sulfur X-rays. Am Miner 73:845–849

    Google Scholar 

  • Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, Van Calstereren PW, Davidson JP (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U–Th and U–Pb systematics in zircons. J Petrol 46:3–32

    Article  Google Scholar 

  • Chiaradia M (2009) Adakite-like magmas from fractional crystallization and melting-assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador). Chem Geol 265:3–4468-487

    Article  Google Scholar 

  • Chulick GS, Detweiler S, Mooney WD (2013) Seismic structure of the crust and uppermost

  • Colony R, Sinclair J (1928) The lavas of the volcano Sumaco, eastern Ecuador, South America. Am J Sci 16:299–312

    Article  Google Scholar 

  • Davidson JP, Morgan DJ, Charlier BLA, Harlou R, Hora JM (2007) Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Annu Rev Earth Planet Sci. 35, 273–311. https://doi.org/10.1146/annurev.earth.35.031306.140211

    Article  Google Scholar 

  • de Hoog J, Taylor B, van Bergen M (2001) Sulfur isotope systematics of basaltic lavas from Indonesia: implications for the sulfur cycle in subduction zones. Earth Plan Sci Lett 237–252

  • Dowty E (1976) Crystal structure and crystal growth: II. Sector zoning in minerals. Am Miner 61:460–469

    Google Scholar 

  • Elkins LJ, Gaetani GA, Sims KWW (2008) Partitioning of U and Th during garnet pyroxenite melting: constraints on sources of alkaline ocean island basalts. Earth Planet Sci Lett 265:270–286. https://doi.org/10.1016/j.epsl.2007.10.034

    Article  Google Scholar 

  • Escobar RD, Garrison JM, Sims KWW, Matthews TP, Yogodzinski GM (2012) Geochemistry and petrogenetic history of lavas from Sumaco Volcano, Northern Volcanic Zone, Ecuador. AGU Fall meeting

  • Feininger T, Seguin MK (1983) Bouguer gravity anomaly field and inferred crustal structure of continental Ecuador. Geology 11:40–44

    Article  Google Scholar 

  • Foden J (1986) The petrology of Tambora volcano, Indonesia: a model for the 1815 eruption. J Vol Geotherm Res 27:1–41

    Article  Google Scholar 

  • Fuhrman M, Lindsley D (1988) Ternary feldspar modelling and thermometry. Am Min 7:201–215

    Google Scholar 

  • Garcia M, Frey F, Grooms D (1986) Petrogenesis of volcanic rocks from Kaula Island, Hawaii: Implications for the origin of Hawaiian phonolites. Contrib Mineral Petrol 94:461–471

    Article  Google Scholar 

  • Garrison JM, Davidson JP, Hall MH, Mothes P (2012) Geochemistry and Petrology of the Most Recent Deposits from Cotopaxi Volcano, Northern Volcanic Zone, Ecuador. J Petrol 61:1–38

    Google Scholar 

  • Gazel E, Hoernle K, Carr MJ, Herzberg C, Saginor I, van den Bogaard P, Hauff F, Feigenson M, Swisher IIC (2011) Plume–subduction interaction in southern Central America: Mantle upwelling and slab melting. Lithos 121:117–134

    Article  Google Scholar 

  • Graindorge D, Calahorrano A, Charvis P, Collot J, Bethoux N (2004) Deep structure of the Ecuador convergent margin and the Carnegie Ridge, possible consequences on great earthquakes recurrence interval. Geophy Res Lett 31:L04603. https://doi.org/10.1029/2003GL018803

    Article  Google Scholar 

  • Granadilla, Eruption, Tenerife (Canary Islands). J Petrol 47:1557–1589 https://doi.org/10.1093/petrology/egl020

  • Grove TL, Chatterjee N, Parman SW, Me´dard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89

    Article  Google Scholar 

  • Grove TL, Till CB, Krawczybski MJ (2012) The role of H2O in subduction zone magmatism. Annu Rev Earth Planet Sci 40:413–439

    Article  Google Scholar 

  • Guillier B, Chatelain J-L, Jaillard É, Yepes H, Poupinet G, Fels J-F (2001) Seismological evidence on the geometry of the Orogenic System in central-northern Ecuador (South America). Geophys Res Lett 28:3749–3752. https://doi.org/10.1029/2001GL013257

    Article  Google Scholar 

  • Harmon R, Barreiro B, Moorbath S, Hoefs F, Francis P, Thorpe R, Deruelle B, McHugh J, Viglino A (1984) Regional O-, Sr-, and Pb-isotope relationships in late Cenozoic calc-alkaline lavas of the Andean Cordillera. J Geol Soc Lond 141:803–822

    Article  Google Scholar 

  • Harms E, Gardner JE, Schmincke H-U (2004) Phase equilibria of the Lower Laacher See Tephri (East Eifel, Germany): constraints on pre-eruptive storage conditions of a phonolitic magma reservoir. J Vol Geotherm Res 134:125–138

    Article  Google Scholar 

  • Harpp KS, White WM (2001) Tracing a mantle plume: isotopic and trace element variations of Galapagos seamounts. Geochem, Geophys, pp 1525–2027

  • Hettman K, Wenzel T, Marks M, Markl G (2012) The sulfur speciation in S-bearing minerals: new constraints by a combination of electron microprobe analysis and DFT calculations with special reference to sodalite-group minerals. Am Mineral 97:1653–1661. https://doi.org/10.2138/am.2012.40311653l

    Article  Google Scholar 

  • Hildago S, Gerbe MC, Martin H, Samaniego P, Bourdon E (2012) Role of crustal and slab components in the Northern Volcanic Zone of the Andes (Ecuador) constrained by Sr–Nd–O isotopes. Lithos 132–133:180–192

    Google Scholar 

  • Hildreth W, Wilson CJN (2007) Compositional zoning of the Bishop Tuff. J Petrol 48(5):951–999. https://doi.org/10.1093/petrology/egm007

    Article  Google Scholar 

  • Hildreth W, Fierstein J, Siems DF, Budahn JR, Ruíz J (2004) Rear-arc vs arc-front volcanoes in the Katmai reach of the Alaska Peninsula: a critical appraisal of across-arc compositional variation. Contrib Miner Petrol 147:243–275

    Article  Google Scholar 

  • Hildreth W, Fierstein J, Calvert AT (2007) Blue Mountain and The Gas Rocks; rear-arc dome clusters on the Alaska Peninsula. In: Haeussler PJ, Galloway JP (eds) Studies by the U.S. Geological Survey in Alaska, 2006: U.S. Geological Survey Professional Paper 1739-A, p 27

  • Hirschmann MM, Kogiso T, Baker MB, Stolper EM (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31:481–484

    Article  Google Scholar 

  • Hoffer G, Eissen JP, Beate B, Bourdon E, Fornari M, Cotton J (2008) Geochemical and petrological constraints on rear-arc magma genesis processes in Ecuador: the Puyo cones and Mera lavas volcanic formations. J Vol Geotherm Res 176:107–118

    Article  Google Scholar 

  • Hollister LS, Gancarz AJ (1971) Compositional sector zoning in clinopyroxene from the Narce area, Italy. Am Mineral 56:959–979

    Google Scholar 

  • Hughes RA, Pilatsig LF (2002) Cretaceous and Tertiary terrane accretion in the Cordillera Occidental of the Andes of Ecuador. Tectonophys 345:29–48

    Article  Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Article  Google Scholar 

  • Jaillard E, Lapierre H, Ordonez M, Alava J-T, Amortegui A (2009) Accreted oceanic terranes in Ecuador: Southern edge of the Caribbean plate ? Geol Soc Spec Pub 328:469–485

    Article  Google Scholar 

  • Jenner GA, Cawood PA, Rautenschlein M, White WM (1987) Composition of back-arc basin volcanics, Valu Fa ridge, Lau Basin: evidence for a slab-derived component in their mantle source. J Volcanol Geotherm Res 32:209–222

    Article  Google Scholar 

  • Johnson DM, Hooper PR, Conrey RM (1999) XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Adv X-ray Anal 41:843–867

    Google Scholar 

  • Kagoshima T, Sano Y, Takahata N, Maruoka T, Fischer T, Hattori K (2015) Sulphur geodynamic cycle. Sci Rep 5:1–6

    Article  Google Scholar 

  • Kamenetsky VS, Crawford AJ, Eggins S, Muhe R (1997) Phenocryst and melt inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into mantle wedge melting and the addition of subduction components. Earth Plan Sci Lett 151:205–223

    Article  Google Scholar 

  • Kelly PJ, Kyle PR, Dunbar NW, Sims KWW (2008) Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972–2004 and comparison with older lavas. J Volcan Geotherm Res 177:589–605

    Article  Google Scholar 

  • Knaak C, Cornelius SB, Hooper PR (1994) Technical notes: trace element analyses of rocks and minerals by ICP-MS. GeoAnalytical Lab,Washington State University, Pullman

    Google Scholar 

  • Kogiso T, Hirschmann MM, Pertermann M (2004) High-pressure-partial melting of mafic lithologies in the mantle. J Petrology 45(12):2407–2422. https://doi.org/10.1093/petrology/egh057

    Article  Google Scholar 

  • Kundu B, Gahalaut V (2011) Slab detachment of subducted Indo-Australian plate beneath Sunda arc, Indonesia. Earth Syst Sci 120:193–204

    Article  Google Scholar 

  • Kuritani T, Yokoyama T, Nakamura E (2008) Generation of rear-arc magmas induced by influx of slab-derived supercritical liquids: implications from alkali basalt lavas from Rishiri Volcano, Kurile Arc. J Petrol 49:1319–1342

    Article  Google Scholar 

  • Kyle PR, Moore JA, Thirwall MF (1992) Petrologic Evolution of Anorthoclase Phonolite Lavas at Mount Erebus, Ross Island, Antarctica. J Petrol 4:849–875

    Article  Google Scholar 

  • Kyte FT (2011) Chromium-isotopes in Late Eocene impact spherules indicate a likely asteroid belt provenance. Earth Plan Sci Lett 302.3:279–286

    Article  Google Scholar 

  • Le Maitre RW, Streckeisen, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lamere J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks: a classification and glossary of terms, recommendations of the International Union of geological sciences, subcommission of the systematics of igneous rocks. Cambridge University Press (ISBN: 0-521-66215-X)

  • Lebas MJ, Lemaitre RW, Streckeisen A. Zanettin B (1986) A chemical classification of volcanic-rocks based on the total alkali silica diagram

  • Leung I (1974) Sector-zoned titanian augites: morphology, crystal chemistry and growth. Am Min 59:127–138

    Google Scholar 

  • Liu Y, Samaha N, Baker D (2007) Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts. Geochim Cosmochim Acta 71:1783–1799

    Article  Google Scholar 

  • Lloyd F, Woolley A, Stoppa F, Eby G (1999) Rift Valley magmatism—is there evidence for laterally variable alkali clinopyroxenite mantle? GeoLines 9:76–83

    Google Scholar 

  • Lonsdale P (2005) Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404:237–264

    Article  Google Scholar 

  • Luhr JF (1997) Extensional tectonics and the diverse primitive rocks in the western Mexican Volcanic Belt. Can Miner 35:473–500

    Google Scholar 

  • Luhr JF, Carmichael ISE, Varekamp JC (1984) The 1982 eruptions of El Chichon volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices. J Volcanol Geoth Res 23:69–108

    Article  Google Scholar 

  • Mamberti M. Lapierre H, Bosch D, Jaillard ER, Hernandez J, Polve M (2003) Accreted fragments of the Late Cretaceous Caribbean-Colombian Plateau in Ecuador. Lithos 66:173–199

    Article  Google Scholar 

  • mantle of South America and surrounding oceanic basins. J S Am Earth Sci 42:260–276

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geo 120:223–253

    Article  Google Scholar 

  • Métricha N, Schianob P, Clocchiattia R, Mauryc RC (1999) Transfer of sulfur in subduction settings: an example from Batan Island (Luzon volcanic arc, Philippines). Earth Plan Sci Lett 67:1–14

    Article  Google Scholar 

  • Michaud F, Witt C, Royer JY (2009) Influence of the subduction of the Carnegie volcanic ridge on Ecuadorian geology: reality and fiction. Geol Soc America Memoirs 204:217–228

    Article  Google Scholar 

  • Moore JG, Fabbi BP (1971) An estimate of the juvenile sulfur content of basalt. Cont Min Pet 33:118–127

    Article  Google Scholar 

  • Moussallami Y, Oppenheimer C, Scaillet B, Kyle P (2013) Experimental Phase-equilibrium Constraints on the Phonolite Magmatic System of Erebus Volcano, Antarctica. J Petrol 54:1285–1307

    Article  Google Scholar 

  • Niu Y (2008) The Origin of Alkaline Lavas. Science 320:883–884

    Article  Google Scholar 

  • O’Connor JM, Stoffers P, Wijbrans JR, Worthington TJ (2007) Migration of widespread long-lived volcanism across the Galápagos Volcanic Province: evidence for a broad hotspot melting anomaly? Earth Plan Sci Lett 263:339–354

    Article  Google Scholar 

  • O’Hara MJ (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth-Sci Rev 4:69–133

    Article  Google Scholar 

  • Oceanic Mantle. J Petrol 52:279–313

  • Ohba T, Matsuoka K, Kimura Y, Ishikawa H, Fujimaki H (2009) Deep crystallization differentiation of arc Tholeiite Basalt magmas from Northern Honshu Arc, Japan. J Petrol 50(6):1025–1046

    Article  Google Scholar 

  • Oppenheimer C, Moretti R, Kyle PR, Eschenbacher A, Lowenstern JB, Hervig RL, Dunbar NW (2011) Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. Earth Plan Sci Lett 306(3):261–271

    Article  Google Scholar 

  • Parat F, Holtz F, Klugel A (2011) S-rich apatite-hosted glass inclusions in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas. Contrib Min Pet 162(3):463–478

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM (2003) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J Petrology 44(12):2173–2201. https://doi.org/10.1093/petrology/egg074

    Article  Google Scholar 

  • Putirka K, Ryerson FJ, Perfit M, Ridley WI (2011) Mineralogy and Composition of the

  • Ramos FR, Reid MR (2005) Distinguishing melting of heterogeneous mantle sources from crustal contamination: insights from Sr isotopes at the phenocryst scale, Pisgah Crater, California. J Petrol 46:999–1012

    Article  Google Scholar 

  • Righter K, Elguera HR (2001) Alkaline lavas in the volcanic front of the Western Mexican Volcanic Belt: geology and petrology of the Ayutla and Tapalpa Volcanic Fields. J Petrol 42:2333

    Article  Google Scholar 

  • Ringwood AE (1966) The chemical composition and origin of the earth. In: Hurley PM (ed) Advances in earth science. MIT, Cambridge, pp 287–356

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contr Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Salters VJM, Hart SR (1989) The Hf-paradox, and the role of garnet in the MORB source. Nature 342:420–422

    Article  Google Scholar 

  • Schneiber B, Heumann A, Worner G, Civetta L (2008) Crustal residence times of explosive phonolite magmas: U–Th ages of magmatic Ca-Garnets of Mt. Somma-Vesuvius (Italy). Earth Plan Sci Lett 276:293–301

    Article  Google Scholar 

  • Simkin T, Siebert L (1994) Volcanoes of the world, 2nd edn. Geoscience Press, Tucson, p 349

    Google Scholar 

  • Sims KWW, Hart SR (2006a) Comparison of Th, Sr, Nd and Pb isotopes in oceanic basalts: implications for mantle heterogeneity and magma genesis. Earth Plan Sci Lett 245:743–761. https://doi.org/10.1016/j.epsl.2006.02.030

    Article  Google Scholar 

  • Sims KWW, DePaolo DJ, Murrrell MT, Baldridge WS, Goldstein SJ, Clague, D, (1995) Mechanisms of magma generation beneath Hawaii and Mid-Ocean ridges: U-Th and Sm-Nd isotopic evidence. Science: 267, 508–512, https://doi.org/10.1126/science.267.5197.508

  • Sims KWW, Murrell MT, DePaolo DJ, Baldridge WS, Goldstein SJ, Clague D, Jull M (1999) Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: inferences from 238U–230Th–226Ra and 235U-231Pa disequilibria. Geochim et Cosmochim Acta 63:23, 4119–4138. https://doi.org/10.1016/S0016-7037(99)00313-0

    Article  Google Scholar 

  • Sims KWW, Goldstein SJ, Blichert-Toft J, Perfit MR, Kelemen P, Fornari DJ, Michael P, Murrell MT, Hart SJ, DePaolo DJ, Layne GD, Jull M (2002) Chemical and isotopic constraints on the generation and transport of melt beneath the East Pacific Rise. Geochim et Cosmochim Acta 66(19):3481–3504. https://doi.org/10.1016/S0016-7037(02)00909-2

    Article  Google Scholar 

  • Sims KWW, Blichert-Toft J, Kyle PR, Pichat S, Bluzstajn J, Kelly PJ, Ball LA, Layne GD (2008a) A Sr, Nd, Hf, and Pb isotope perspective on the genesis and long-term evolution of alkaline magmas from Erebus volcano, Antarctica. Invited article to special volume on Mt. Erebus J Volcanol Geother Res 177:606–618. https://doi.org/10.1016/j.jvolgeores.2007.08.006

    Article  Google Scholar 

  • Sims KWW, Hart SR, Reagan MK, Blusztajn J, Staudigel H, Sohn RA, Layne GD, Ball LA, Andrews J (2008b) 238U-230Th-226Ra-210Pb-210Po, 232Th-228Ra and 235U-231Pa constraints on the ages and petrogenesis of Vailulu and Malumalu Lavas, Samoa. Geochem Geophys Geosyst 9:Q04003. https://doi.org/10.1029/2007GC001651

    Article  Google Scholar 

  • Sims KWW, Maclennan J, Blichert-Toft J, Mervine EM, Blusztajn J, Grönvolde K (2013a) Short length scale mantle heterogeneity beneath Iceland probed by glacial modulation of melting. Earth Plan Sci Lett: 379:146–157

    Article  Google Scholar 

  • Sims KWW, Pichat S, Reagan MK, Kyle PR, Dulaiova H, Dunbar N, Prytulak J, Sawyer G, Layne G, Blichert-Toft J, Gauthier PJ, Charrette MA, Elliott TR (2013b) On the timescales of magma genesis, melt evolution, crystal growth rates and magma degassing in the Erebus volcano magmatic system using the 238U, 235U- and 232Th-decay series. J Petrol 54(2):235–271. https://doi.org/10.1093/petrology/egs068

    Article  Google Scholar 

  • Sisson TW, Bronto S (1998) Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature 391:883–886

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calcalkaline differentiation and subduction zone magmatism. Contrib Miner Petrol 113(2):143–166

    Article  Google Scholar 

  • Spikings RA, Winkler TW, Hughes RA, Handler R (2005) Thermochronology of allochthonous terranes in Ecuador: unravelling the accretionary and post-accretionary history of the Northern Andes. Tectonophysics 399:195–220

    Article  Google Scholar 

  • Stracke A, Salters VJM, Sims KWW (1999) Assessing the role of pyroxenite in the source of Hawaiian basalts: Hf-Nd-Th isotope evidence. Geochemistry, Geophysics, Geosystems, 1, 1999GC0000013. https://doi.org/10.1029/1999GC000013

  • Takahashi E, Kushiro I (1983) Melting of a dry peridotite at high pressures and basalt magma genesis. Am Min 68:859–879

    Google Scholar 

  • Tepley FJ, Davidson JP, Tilling J, Arth G (2000) Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichón Volcano. Mexico J Petrol 41:1397–1411

    Article  Google Scholar 

  • Tracy R, Robinson P (1977) Zoned titanian augite in alkali olivine basalt from Tahiti and the nature of titanium substitutions in augite. Am Miner 62:634–645

    Google Scholar 

  • Ubide T, Galéa C, Larrea P, Arranz E, Lago M (2014) Antecrysts and their effect on rock compositions: the Cretaceous lamprophyre suite in the Catalonian Coastal Ranges (NE Spain). Lithos 206–207:214–233

    Article  Google Scholar 

  • Ubide T, McKenna C, Chew DM, Kamber BS (2015) High-resolution LA-ICP-MS trace element mapping of igneous minerals: In search of magma histories. Chem Geol 409:57–168

    Article  Google Scholar 

  • van Hunen J, van den Berg AP, Vlaar NJ (2002) The impact of the South-American plate motion and the Nazca Ridge subduction on the flat subduction below South Peru. Geophys Res Lett 29:issn: 0094–8276. https://doi.org/10.1029/2001GL014004

    Google Scholar 

  • Van Hoose AE, Streck MJ, Pallister JS, Wälle M (2013) Sulfur evolution of the 1991 Pinatubo magmas based on apatite. J Volcanol Geoth Res 257:72–89

    Article  Google Scholar 

  • Van Horne A, Sato H, Ishiyama T (2016) Evolution of the Sea of Japan back-arc and some unsolved issues. Tectonophysics 710–711:6–20

    Google Scholar 

  • Verhoogen J (1962) Distribution of titanium between silicates and oxides in igneous rocks. Am Sci 260:210–220

    Google Scholar 

  • Volynets AO, Churikova TG, Worner G, Gordeychik BN, Layer P (2010) Mafic late miocene-quaternary volcanic rocks in the Kamchatka Back Arc region: implications for subduction geometry and slab history at the Pacific-Aleutian Junction. Contrib Miner Petrol 159:659–687

    Article  Google Scholar 

  • Wallace P, Edmonds M (2011) The sulfur budget in magmas: evidence from melt inclusions, submarine glasses, and volcanic gas emissions. Rev Min Geochem 73:215–246

    Article  Google Scholar 

  • Wallrabe-Adams H-J (1990) Petrology and geotectonic development of the Western Ecuadorian Andes: the Basic Igneous Complex. Tectonophysics 185:163–182

  • Watson EB, Green TH (1981) Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet Sci Lett 56:405–421

    Article  Google Scholar 

  • Weber MBI, Tarney J, Kempton PD, Kent RW (2002) Crustal make-up of the northern Andes: evidence based on deep crustal xenolith suites, Mercaderes. SW ColombiaTectonophys 345:49–82

    Google Scholar 

  • White H, Skopec F, Ramirez J, Rodas H, Bonilla G (1995) Reservoir characteristics of the Hollin and Napo formations, western Oriente basin, Ecuador. In: Tankard R, Suárez S, Welsink A eds. Petroleum basins of South America. Am Ass Pet Geol Mem 62:573–596

    Google Scholar 

  • Wood B, Trigila R (2001) Experimental determination of aluminour clinopyroxene-melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas. Chem Geol 172:213–223

    Article  Google Scholar 

  • Yagi K, Onuma K (1967) The join CaMgSiO-CaTiAl2O8 and its bearing on the titanaugites. I Fac Sci Hokkoido Uniu Ser IV 13:463483

    Google Scholar 

  • Yagi K, Onuma K (1969) An experimental study on titanium in alkali basalts in light of the system akermanite-nephelene-CaTiAl2O6. Am J Sci 267:509–549

    Google Scholar 

  • Elburg M, Vroon B, van der Wagt B, Tchalikian A (2005) Sr and Pb isotopic composition of five USGS glasses (BHVO-2G, BIR-1G, BCR-2G, TB-1G, NKT-1G). Chem Geol 223:196–207

    Article  Google Scholar 

  • Jweda J, Bolge L, Class C, Goldstein SL (2015) High precision Sr–Nd–Hf–Pb isotopic compositions of USGS Reference Material BCR-2. Geostand Geoanal Res. https://doi.org/10.1111/j.1751-908X.2015.00342.x

    Google Scholar 

  • Li C, Li X, Li Q, Guo J, Yang Y (2012) Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme. Analytica Chimica Act (77):54–60

  • Li C, Wang X, Guo J, Chu Z, Feng L (2016) Rapid separation scheme of Sr, Nd, Pb, and Hf from a single rock digest using tandem chromatography column prior to isotope ratio measurements by mass spectrometry. J Anal Atomic Spectrom. https://doi.org/10.1039/c5ja00477b

    Google Scholar 

  • Raczek I, Jochum P, Hofmann K (2003) Neodymium and Strontium isotope data for USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP-2 and eight MPI-DING reference glasses. Geostand Newslett 27:173–179

    Article  Google Scholar 

  • Weis D, Kieffer B, Maerschalk C, Pretorius W, Barling J (2005) High-precision Pb-Sr-Nd-Hf isotopic characterization of USGS BVHO-1 and BHVO-2 reference materials. Geochem Geophys Geosyst 6:Q02002. https://doi.org/10.1029/2004GC000852

    Article  Google Scholar 

  • Weis D, Kieffer B, Maerschalk C, Barling J, de Jong J, Williams GA, Hanano D, Pretorius W, Mattieli N, Scoates JS, Goolaerts A, Friedman RM, Mahoney JB (2006) High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS: Geochemistry, Geophysics. Geosystems 7:Q08006. https://doi.org/10.1029/2006GC001283

    Google Scholar 

  • Yang Y, Zhang Z, Chu Z, Xie L, Wu F (2010) Combined chemical separation of Lu, Hf, Rb, Sr, Sm, and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr, and Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS. Int J Mass Spectrom 290:120–126

    Article  Google Scholar 

Appendix references

  • Balcean L, De Schrijver I, Moens L, Vanhaecke F (2005) Determination of the 87Sr/86Sr isotope ratio in USGS silicate reference materials by multi-collector ICP-mass spectrometry. Int J Mass Spectrom 242:251–255

    Article  Google Scholar 

Download references

Acknowledgements

The National Science Foundation provided funding for this collaborative research through NSF EAR 1019545 (KWWS) and NSF EAR- 1019546 (JMG) as well as supplemental funding (EAR-1135007) to cover expenses related to sample collection on the summit of Sumaco Volcano. We also received funding from the Office of International Science and Engineering (OISE) for which we are very grateful. This work was also supported by NSF grants EAR0509922 and OCE0728077 to GMY. We also thank the members of our Ecuador field team for their hard work and help with sample collecting, including Chris Waters (UWyo), Jessica Seemeyer (CSULA), the students from the IGEPN in Quito and the helicopter pilot Captain Mario Acosta with Avioandes. This paper was much improved by the thoughtful and thorough reviews by Pablo Sameniego and Abigail Barker and the editorial handling of Jayagopal Subramaniam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer M. Garrison.

Additional information

Communicated by Jochen Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrison, J.M., Sims, K.W.W., Yogodzinski, G.M. et al. Shallow-level differentiation of phonolitic lavas from Sumaco Volcano, Ecuador. Contrib Mineral Petrol 173, 6 (2018). https://doi.org/10.1007/s00410-017-1431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1431-4

Keywords

Navigation