Advertisement

The role and conditions of second-stage mantle melting in the generation of low-Ti tholeiites and boninites: the case of the Manihiki Plateau and the Troodos ophiolite

  • Roman Golowin
  • Maxim PortnyaginEmail author
  • Kaj Hoernle
  • Alexander Sobolev
  • Dimitry Kuzmin
  • Reinhard Werner
Original Paper

Abstract

High-Mg, low-Ti volcanic rocks from the Manihiki Plateau in the Western Pacific share many geochemical characteristics with subduction-related boninites such as high-Ca boninites from the Troodos ophiolite on Cyprus, which are believed to originate by hydrous re-melting of previously depleted mantle. In this paper we compare the Manihiki rocks and Troodos boninites using a new dataset on the major and trace element composition of whole rocks and glasses from these locations, and new high-precision, electron microprobe analyses of olivine and Cr-spinel in these rocks. Our results show that both low-Ti Manihiki rocks and Troodos boninites could originate by re-melting of a previously depleted lherzolite mantle source (20–25% of total melting with 8–10% melting during the first stage), as indicated by strong depletion of magmas in more to less incompatible elements (Sm/Yb < 0.8, Zr/Y < 2, Ti/V < 12) and high-Cr-spinel compositions (Cr# > 0.5). In comparison with Troodos boninites, the low-Ti Manihiki magmas had distinctively lower H2O contents (< 0.2 vs. > 2 wt% in boninites), ~ 100 °C higher liquidus temperatures at a given olivine Fo-number, lower fO2 (ΔQFM < + 0.2 vs. ΔQFM > + 0.2) and originated from deeper and hotter mantle (1.4–1.7 GPa, ~ 1440 °C vs. 0.8–1.0 GPa, ~ 1300 °C for Troodos boninites). The data provide new evidence that re-melting of residual upper mantle is not only restricted to subduction zones, where it occurs under hydrous conditions, but can also take place due to interaction of previously depleted upper mantle with mantle plumes from the deep and hotter Earth interior.

Keywords

Manihiki Plateau High-Ca boninite Mantle plume Second-stage melting Refractory lherzolite Troodos ophiolite 

Notes

Acknowledgements

We thank Captain Mallon, the crew and the scientific participants of the SO225 cruise for excellent collaboration. Furthermore, we are grateful to M. Thöner and U. Westernströer for assistance and supervision with the EMP and ICP-MS analyses. We also thank Vadim Kamenetsky and anonymous reviewer for constructive criticism and recommendations which helped us to improve our presentation. This study was funded as part of the MANIHIKI II project by the German Ministry of Education and Research (BMBF; Grant number 03G0225A) and by the Russian Science Foundation Grant number 14-17-00491 (to A.V.S.).

Supplementary material

410_2017_1424_MOESM1_ESM.xlsx (289 kb)
Supplementary material 1 (XLSX 288 kb)

References

  1. Almeev RR, Holtz F, Koepke J, Parat P, Botcharnikov RE (2007) The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa. Am Miner 92:670–674CrossRefGoogle Scholar
  2. Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem Geol 113:191–204CrossRefGoogle Scholar
  3. Ballhaus C, Berry RF, Green DH (1990) Oxygen fugacity controls in the earths upper mantle. Nature 348(6300):437–440CrossRefGoogle Scholar
  4. Benoit M, Ceuleneer G, Polve M (1999) The remelting of hydrothermally altered peridotite at mid-ocean ridges by intruding mantle diapirs. Nature 402:514–518CrossRefGoogle Scholar
  5. Brounce M, Kelley KA, Cottrell E, Reagan MK (2015) Temporal evolution of mantle wedge oxygen fugacity during subduction initiation. Geology 43(9):775–778CrossRefGoogle Scholar
  6. Cameron WE, Nisbet EG, Dietrich VJ (1979) Boninites, komatiites and ophiolitic basalts. Nature 280(5723):550–553CrossRefGoogle Scholar
  7. Cameron WE (1985) Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contrib Mineral Petrol 89:239–255CrossRefGoogle Scholar
  8. Coogan LA, Saunders AD, Wilson RN (2014) Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces. Chem Geol 368:1–10CrossRefGoogle Scholar
  9. Cooper LB, Plank T, Arculus RJ, Hauri EH, Hall PS, Parman SW (2010) High-Ca boninites from the active Tonga Arc. J Geophys Res 115:B10206.  https://doi.org/10.1029/2009JB006367
  10. Cottrell E, Kelley KA (2013) Redox heterogeneity in mid-ocean ridge basalts as a function of mantle source. Science 340(6138):1314–1317.  https://doi.org/10.1126/science.1233299 CrossRefGoogle Scholar
  11. Crawford AJ, Falloon TJ, Green DH (1989) Classification, petrogenesis and tectonic setting of boninites. In: Crawford AJ (ed) Boninites. Unwin Hyman, London, pp 1–49Google Scholar
  12. Danyushevsky LV, Plechov P (2011) Petrolog 3: integrated software for modeling crystallization processes. Geochem Geophys Geosyst 12:Q07021.  https://doi.org/10.1029/2011GC003516
  13. Danyushevsky LV, Falloon TJ, Sobolev AV, Crawford AJ, Carroll M, Price RC (1993) The H2O content of basalt glasses from southwest Pacific back-arc basins. Earth Planet Sci Lett 117:347–362CrossRefGoogle Scholar
  14. Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite+ CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48(11):2093–2124CrossRefGoogle Scholar
  15. De Hoog JCM, Gall L, Cornell DH (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol 270(1–4):196–215CrossRefGoogle Scholar
  16. Duncan RA, Green DH (1980) Role of multi-stage melting in the formation of oceanic crust. Geology 8:22–26CrossRefGoogle Scholar
  17. Duncan RA, Green DH (1987) The genesis of refractory melts in the formation of oceanic crust. Contrib Mineral Petrol 96:326–342CrossRefGoogle Scholar
  18. Falloon TJ, Crawford AJ (1991) The petrogenesis of high-calcium boninite lavas dredged from the north Tonga ridge. Earth Planet Sci Lett 102:375–394CrossRefGoogle Scholar
  19. Falloon TJ, Danyushevsky LV (2000) Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J Petrol 412:257–283CrossRefGoogle Scholar
  20. Falloon TJ, Danyushevsky LV, Crawford AJ, Meffre S, Woodhead JD, Bloomer SH (2008) Boninites and adakites from the northern termination of the Tonga Trench: implications for adakite petrogenesis. J Petrol 49(4):697–715CrossRefGoogle Scholar
  21. Fitton JG, Godard M (2004) Origin and evolution of magmas on the Ontong Java Plateau. In: Fitton JG, Mahoney JJ, Wallace PJ, Saunders AD (eds) Origin and evolution of the Ontong Java Plateau, vol 229. Geological Society, London, pp 151–178 (special publications) Google Scholar
  22. Flower MFJ, Levine HM (1987) Petrogenesis of a tholeiite-boninite sequence from Ayios Mamas, Troodos ophiolite: evidence for splitting of a volcanic arc? Contrib Mineral Petrol 97:509–524CrossRefGoogle Scholar
  23. Ford CE, Russel DG, Graven JA, Fisk MR (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24:256–265CrossRefGoogle Scholar
  24. Garbe-Schönberg D (1993) Simultaneous determination of 37 trace elements in 28 international rock standards by ICP-MS. Geostand Newsl 17:81–93CrossRefGoogle Scholar
  25. Gass IG (1968) Is the Troodos massif of Cyprus a fragment of Mesozoic ocean floor? Nature 220:39–42CrossRefGoogle Scholar
  26. Gavrilenko M, Herzberg C, Vidito C, Carr MJ, Tenner T, Ozerov A (2016) A calcium-in-olivine geohygrometer and its application to subduction zone magmatism. J Petrol 57(9):1811–1832Google Scholar
  27. Golowin R, Portnyagin M, Hoernle K, Hauff F, Gurenko A, Garbe-Schönberg D, Werner R, Turner S (2017) Boninite-like intraplate magmas from Manihiki Plateau require ultra-depleted and enriched source components. Nat Commun 8:14322.  https://doi.org/10.1038/ncomms14322 CrossRefGoogle Scholar
  28. Gurenko AA, Chaussidon M (1995) Enriched and depleted primitive melts included in olivine from Icelandic tholeiites: origin by continuous melting of single mantle column. Geochim Cosmochim Acta 59(14):2905–2917CrossRefGoogle Scholar
  29. Gurenko AA, Sobolev AV, Hoernle KA, Hauff F, Schmincke H-U (2009) Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: a mixed-up mantle. Earth Planet Sci Lett 277(3–4):514–524CrossRefGoogle Scholar
  30. Gurenko AA, Geldmacher J, Hoernle KA, Sobolev AV (2013) A composite, isotopically-depleted peridotite and enriched pyroxenite source for Madeira magmas: insights from olivine. Lithos 170:224–238CrossRefGoogle Scholar
  31. Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681CrossRefGoogle Scholar
  32. Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J Petrol 52(1):113–146CrossRefGoogle Scholar
  33. Herzberg C, Asimow PD (2015) PRIMELT3 MEGA.XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus. Geochem Geophys Geosyst 16(2):563–578.  https://doi.org/10.1002/2014GC005631
  34. Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM, Fitton JG, Cheadle MJ, Saunders AD (2007) Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem Geophys Geosyst 8(2):Q02006.  https://doi.org/10.1029/2006GC001390
  35. Hickey RL, Frey FA (1982) Geochemical characteristics of boninite series volcanics: implications for their source. Geochim Cosmochim Acta 46:2099–2115CrossRefGoogle Scholar
  36. Hochmuth K, Gohl K, Uenzelmann-Neben G (2015) Playing jigsaw with large igneous provinces—A plate tectonic reconstruction of Ontong Java Nui, West Pacific. Geochem Geophys Geosyst 16(11):3789–3807.  https://doi.org/10.1002/2015GC006036
  37. Hoernle K, Hauff F, van den Bogaard P, Werner R, Mortimer N, Geldmacher J, Garbe-Schönberg D, Davy B (2010) Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic Plateaus. Geochim Cosmochim Acta 74:7196–7219CrossRefGoogle Scholar
  38. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385(6613):219–229CrossRefGoogle Scholar
  39. Husen A, Kamenetsky VS, Everard JL, Kamenetsky MB (2016) Transition from ultra-enriched to ultra-depleted primary MORB melts in a single volcanic suite (Macquarie Island, SW Pacific): implications for mantle source, melting process and plumbing system. Geochim Cosmochim Acta 185:112–128CrossRefGoogle Scholar
  40. Imai N, Terashima S, Itoh S, Ando A (1995) 1994 compilation of analytical data for minor and trace elements in seventeen GSJ geochemical reference samples, “Igneous rock series”. Geostand Newsl 19(2):135–213CrossRefGoogle Scholar
  41. Ingle S, Mahoney JJ, Sato H, Coffin MF, Kimura J-I, Hirano N, Nakanishi M (2007) Depleted mantle wedge and sediment fingerprint in unusual basalts from the Manihiki Plateau, central Pacific Ocean. Geology 35(7):595–598CrossRefGoogle Scholar
  42. Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4(1):43–47CrossRefGoogle Scholar
  43. Jenner FE, O’Neill HSC (2012) Major and trace analysis of basaltic glasses by laser-ablation ICP-MS. Geochem Geophys Geosyst 13(3):Q03003.  https://doi.org/10.1029/2011GC004009
  44. Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29(3):333–338CrossRefGoogle Scholar
  45. Kamenetsky VS, Everard JL, Crawford AJ, Varne R, Eggins SM, Lanyon R (2000) Enriched end-member of primitive MORB melts: petrology and geochemistry of glasses from Macquarie island (SW Pacific). J Petrol 41(3):411–430CrossRefGoogle Scholar
  46. Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42(4):655–671CrossRefGoogle Scholar
  47. Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–607CrossRefGoogle Scholar
  48. Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727CrossRefGoogle Scholar
  49. König S, Münker C, Schuth S, Luguet A, Hoffmann JE, Kuduon J (2010) Boninites as windows into trace element mobility in subduction zones. Geochim Cosmochim Acta 74(2):684–704CrossRefGoogle Scholar
  50. Le Bas MJ (2000) IUGS reclassification of the high-Mg and picritic volcanic rocks. J Petrol 41(10):1467–1470CrossRefGoogle Scholar
  51. Lee C-TA, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279(1–2):20–33CrossRefGoogle Scholar
  52. Mahoney JJ, Spencer KJ (1991) Isotopic evidence for the origin of the Manihiki and Ontong Java oceanic plateaus. Earth Planet Sci Lett 104(2–4):196–210CrossRefGoogle Scholar
  53. Mahoney JJ, Storey M, Duncan RA, Spencer KJ, Pringle M (1993) Geochemistry and geochronology of Leg 130 basement lavas: nature and origin of the Ontong Java Plateau. In: Proceedings of the ocean drilling program, scientific results, vol 130, pp 3–22Google Scholar
  54. Michael PJ (2000) Implications for magmatic processes at Ontong Java Plateau from volatile and major element contents of Cretaceous basalt glasses. Geochem Geophys Geosyst 1(12):1–17CrossRefGoogle Scholar
  55. Miyashiro A (1973) The Troodos ophiolitic complex was probably formed in an island arc. Earth Planet Sci Lett 19:218–224CrossRefGoogle Scholar
  56. Nakanishi M, Nakamura Y, Coffin MF, Hoernle K, Werner R (2015) Topographic expression of the Danger Islands Troughs and implications for the tectonic evolution of the Manihiki Plateau, western equatorial Pacific Ocean. Geol Soc Am Spec Pap 511:195–220Google Scholar
  57. Pearce JA (1975) Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics 25:41–67CrossRefGoogle Scholar
  58. Pearce JA (2005) Mantle preconditioning by melt extraction during flow: theory and petrogenetic implications. J Petrol 46(5):973–997CrossRefGoogle Scholar
  59. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100(1–4):14–48CrossRefGoogle Scholar
  60. Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Ann Rev Earth Planet Sci 23:251–285CrossRefGoogle Scholar
  61. Pearce JA, Robinson PT (2010) The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Res 18(1):60–81CrossRefGoogle Scholar
  62. Portnyagin MV, Magakyan R, Schmincke H-U (1996) Geochemical variability of boninite magmas: evidence from magmatic inclusions in highly magnesian olivine from lavas of southwestern Cyprus. Petrology 4(3):231–246Google Scholar
  63. Portnyagin M, Hoernle K, Savelyev D (2009) Ultra-depleted melts from Kamchatkan ophiolites: evidence for the interaction of the Hawaiian plume with an oceanic spreading center in the Cretaceous? Earth Planet Sci Lett 287(1–2):194–204CrossRefGoogle Scholar
  64. Rautenschlein M, Jenner GA, Hertogen J, Hofmann AW, Kerrich R, Schmincke H-U, White WM (1985) Isotopic and trace element composition of volcanic glasses from the Akaki Canyon, Cyprus: implications for the origin of the Troodos ophiolite. Earth Planet Sci Lett 75:369–383CrossRefGoogle Scholar
  65. Reagan MK, Ishizuka O, Stern RJ, Kelley KA, Ohara Y, Blichert-Toft J, Bloomer SH, Cash J, Fryer P, Hanan BB, Hickey-Vargas R, Ishii T, Kimura J-I, Peate DW, Rowe MC, Woods M (2010) Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochem Geophys Geosyst 11(3):Q03X12CrossRefGoogle Scholar
  66. Reagan MK, Pearce JA, Petronotis K, Almeev RR, Avery AJ, Carvallo C, Chapman T, Christeson GL, Ferre EC, Godard M, Heaton DE, Kirchenbaur M, Kurz W, Kutterolf S, Li H, Li YB, Michibayashi K, Morgan S, Nelson WR, Prytulak J, Python M, Robertson AHF, Ryan JG, Sager WW, Sakuyama T, Shervais JW, Shimizu K, Whattam SA (2017) Subduction initiation and ophiolite crust: new insights from IODP drilling. Int Geol Rev 59(11):1439–1450CrossRefGoogle Scholar
  67. Regelous M, Haase KM, Freund S, Keith M, Weinzierl CG, Beier C, Brandl PA, Endres T, Schmidt H (2014) Formation of the Troodos Ophiolite at a triple junction: evidence from trace elements in volcanic glass. Chem Geol 386:66–79CrossRefGoogle Scholar
  68. Roberge J, White RV, Wallace PJ (2004) Volatiles in submarine basaltic glasses from the Ontong Java Plateau (ODP Leg 192): implications for magmatic processes and source region compositions. In: Fitton JG, Mahoney JJ, Wallace PJ, Saunders AD (eds) Origin and evolution of the Ontong Java Plateau, vol 229. Geological Society, London, pp 239–257 (special publications) Google Scholar
  69. Robinson PT, Melson WG, Ohearn T, Schmincke HU (1983) Volcanic glass compositions of the Troodos ophiolite, Cyprus. Geology 11(7):400–404CrossRefGoogle Scholar
  70. Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5(5):Q05004.  https://doi.org/10.1029/2003GC000597
  71. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962CrossRefGoogle Scholar
  72. Søager N, Portnyagin M, Hoernle K, Holm PM, Hauff F, Garbe-Schönberg D (2015) Olivine major and trace element compositions in southern Payenia basalts, Argentina: evidence for pyroxenite–peridotite melt mixing in a back-arc setting. J Petrol 56(8):1495–1518CrossRefGoogle Scholar
  73. Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137(1–4):45–55CrossRefGoogle Scholar
  74. Sobolev AV, Danyushevsky LV (1994) Petrology and geochemistry of boninites from the north termination of the Tonga Trench—constraints on the generation conditions of primary high-Ca boninite magmas. J Petrol 35(5):1183–1211CrossRefGoogle Scholar
  75. Sobolev AV, Naumov VB (1985) First direct evidence of the presence of H2O in ultrabasic melt and assessment of its concentration. Dokl Akad Nauk Sssr 280:458–461Google Scholar
  76. Sobolev AV, Shimizu N (1993) Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature 363:151–154CrossRefGoogle Scholar
  77. Sobolev AV, Tsamerian OP, Dmitriev LV, Kononkova NN (1986) Water-containing komatiites as a new type of komatiite melts and the origin of ultrabasic lavas of the Troodos massif (Cyprus). Dokl Akad Nauk Sssr 286:422–425Google Scholar
  78. Sobolev AV, Portnyagin MV, Dmitriev LV, Tsameryan OP, Danyushevsky LV, Kononkova NN, Shimizu N, Robinson PT (1993) Petrology of ultramafic lavas and associated rocks of the Troodos massif, Cyprus. Petrology 1(4):331–361Google Scholar
  79. Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316(5823):412–417CrossRefGoogle Scholar
  80. Spiegelman M, Kelemen PB (2003) Extreme chemical variability as a consequence of channelized melt transport. Geochem Geophys Geosyst 4(7):1055.  https://doi.org/10.1029/2002GC000336
  81. Stern RJ (2004) Subduction initiation: spontaneous and induced. Earth Planet Sci Lett 226(3–4):275–292CrossRefGoogle Scholar
  82. Straub SM, LaGatta AB, Martin-Del Pozzo AL, Langmuir CH (2008) Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochem Geophys Geosyst 9:Q03007.  https://doi.org/10.1029/2007GC001583
  83. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345CrossRefGoogle Scholar
  84. Sun SS, Nesbitt RW (1978) Geochemical regularities and genetic significance of ophiolitic basalts. Geology 6(11):689–693CrossRefGoogle Scholar
  85. Tejada MLG, Mahoney JJ, Dungan RA, Hawkins MF (1996) Age and geochemistry of basement and alkalic rocks of Malaita and Santa Isabel, Solomon Islands, southern margin of Ontong Java Plateau. J Petrol 37(2):361–394CrossRefGoogle Scholar
  86. Tejada MLG, Mahoney JJ, Neal CR, Duncan RA, Petterson MG (2002) Basement geochemistry and geochronology of central Malaita, Solomon islands, with implications for the origin and evolution of the Ontong Java Plateau. J Petrol 43(3):449–484CrossRefGoogle Scholar
  87. Timm C, Hoernle K, Werner R, Hauff F, van den Bogaard P, Michael P, Coffin MF, Koppers A (2011) Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: new evidence for a plume origin. Earth Planet Sci Lett 304:135–146CrossRefGoogle Scholar
  88. Umino S (1986) Magma mixing in the boninite sequence of Chichijima, Bonin Islands. J Volcanol Geotherm Res 29:125–157CrossRefGoogle Scholar
  89. Wan Z, Coogan LA, Canil D (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am Miner 93(7):1142–1147CrossRefGoogle Scholar
  90. Werner R, Nürnberg D, Hauff F (eds) and SO225 Shipboard Scientific Party (2013) RV SONNE Fahrtbericht/Cruise Report SO225, Manihiki II Leg 2, The Manihiki Plateau—origin, structure and effects of oceanic plateaus and Pleistocene dynamic of the West Pacific warm water pool; 19.11.2012 - 06.01.2013, Suva/Fiji - Auckland/New Zealand. GEOMAR Report Nr. 6 (N. Ser.), Kiel.  http://dx.doi.org/10.3289/GEOMAR_REP_NS_6_2013
  91. Winterer EL, Lonsdale PF, Matthews JL, Rosendahl BR (1974) Structure and acoustic stratigraphy of the Manihiki Plateau. Deep Sea Res 21:793–814Google Scholar
  92. Woodhead J, Eggins S, Gamble J (1993) High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet Sci Lett 114(4):491–504CrossRefGoogle Scholar
  93. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231(1–2):53–72CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Roman Golowin
    • 1
  • Maxim Portnyagin
    • 1
    • 2
    Email author
  • Kaj Hoernle
    • 1
    • 3
  • Alexander Sobolev
    • 2
    • 4
  • Dimitry Kuzmin
    • 5
    • 6
  • Reinhard Werner
    • 1
  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.V.I. Vernadsky Institute of Geochemistry and Analytical ChemistryMoscowRussia
  3. 3.Institute of GeosciencesChristian-Albrechts-University of KielKielGermany
  4. 4.Institute Science de la Terre (ISTerre), CNRS, IRD, IFSTTARUniversité Grenoble AlpesGrenobleFrance
  5. 5.V.S. Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  6. 6.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations