CrystalMom: a new model for the evolution of crystal size distributions in magmas with the quadrature-based method of moments

  • Colucci SimoneEmail author
  • de’ Michieli Vitturi Mattia
  • Landi Patrizia
Original Paper


Nucleation and growth of crystals, and the resulting crystal size distribution, play a fundamental role in controlling the physical properties of magmas and consequently the dynamics of the eruptions. In the past decades, laboratory experiments demonstrated that size and shape of crystals strongly control the physical properties of magma and lava. Additionally, natural and experimental samples are usually characterized in terms of their crystal size distribution to link it with physical processes that are not directly observable, such as cooling or decompression mechanisms. In this paper, we present CrystalMoM, a new predictive model, based on the quadrature-based method of moments, developed for studying the kinetic of crystallization in volcanic systems. The quadrature-based method of moments, well established in the field of chemical engineering, represents a mesoscale modelling approach that rigorously simulates the space–time evolution of a distribution of particles, by considering its moments. The method is applied here, for the first time, for studying the equilibrium/disequilibrium crystallization in magma, modelling the temporal evolution of the moments of a crystal size distribution. The model, verified against numerical and experimental data, represents a valuable tool to infer the cooling and decompression rates from the crystal size distribution observed in natural samples.


Disequilibrium crystallization CSD Quadrature-based method of moments 



We would like to thank two anonymous reviewers for the helpful suggestions and the constructively critical reviews. Further data for this paper are available by contacting the corresponding author at

Supplementary material

Supplementary material 1 (MP4 1495 kb)

Supplementary material 2 (MP4 1674 kb)

Supplementary material 3 (MP4 1553 kb)

Supplementary material 4 (MP4 1507 kb)


  1. Agostini C, Fortunati A, Arzilli F, Landi P, Carroll M (2013) Kinetics of crystal evolution as a probe to magmatism at stromboli (aeolian archipelago, italy). Geochim Cosmochim Acta 110:135–151. CrossRefGoogle Scholar
  2. Armienti P (2009) Decryption of igneous rock textures: crystal size distribution tools. Rev Mineral Geochem 69(1):623–649. CrossRefGoogle Scholar
  3. Armienti P, Pareschi M, Innocenti F, Pompilio M (1994) Effects of magma storage and ascent on the kinetics of crystal growth. Contrib Mineral Petrol 115(4):402–414. CrossRefGoogle Scholar
  4. Armienti P, Francalanci L, Landi P (2007) Textural effects of steady state behaviour of the stromboli feeding system. J Volcanol Geotherm Res 160:86–98. CrossRefGoogle Scholar
  5. Arzilli F, Agostini C, Landi P, Fortunati A, Mancini L, Carroll MR (2015) Plagioclase nucleation and growth kinetics in a hydrous basaltic melt by decompression experiments. Contrib Mineral Petrol 170(5):55. CrossRefGoogle Scholar
  6. Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes. J Petrol 45(8):1565–1582. CrossRefGoogle Scholar
  7. Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443:76–80. CrossRefGoogle Scholar
  8. Bogacki P, Shampine L (1989) A 3(2) pair of Runge–Kutta formulas. Appl Math Lett 2:321–325CrossRefGoogle Scholar
  9. Brandeis G, Jaupart C (1986) On the interaction between convection and crystallization in cooling magma chambers. Earth Planet Sci Lett 345–361:888–896Google Scholar
  10. Brugger C, Hammer J (2010) Crystallization kinetics in continuous decompression experiments: implications for interpreting natural magma ascent processes. J Petrol 51(9):1941–1965. CrossRefGoogle Scholar
  11. Caricchi L, Burlini L, Ulmer P, Gerya T, Vassalli M, Papale P (2007) Non-newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet Sci Lett 264(34):402–419. CrossRefGoogle Scholar
  12. Cashman K, Thornber C, Kauahikaua JP (1999) Cooling and crystallization of lava in open channels, and the transition of pahoehoe lava to aa. Bull Volcanol 61:306–323. CrossRefGoogle Scholar
  13. Cashman KV, Marsh BD (1988) Crystal size distribution (csd) in rocks and the kinetics and dynamics of crystallization. 2. Makaopuhi lava lake. Contrib Mineral Petrol 99:292–305. CrossRefGoogle Scholar
  14. Castruccio A, Rust A, Sparks R (2010) Rheology and flow of crystal-bearing lavas: insights from analogue gravity currents. Earth Planet Sci Lett 297(34):471–480. CrossRefGoogle Scholar
  15. Castruccio A, Rust A, Sparks R (2014) Assessing lava flow evolution from post-eruption field data using herschel-bulkley rheology. J Volcanol Geotherm Res 275:71–84. CrossRefGoogle Scholar
  16. Chevrel MO, Platz T, Hauber E, Baratoux D, Lavallww Y, Dingwell DB (2013) Lava flow rheology: a comparison of morphological and petrological methods. Earth Planet Sci Lett 384:109–120. CrossRefGoogle Scholar
  17. Cimarelli C, Costa A, Mueller S, Mader HM (2011) Rheology of magmas with bimodal crystal size and shape distributions: Insights from analog experiments. Geochem Geophys Geosyst.
  18. Colucci S, de’ Michieli Vitturi M, Neri A, Palladino DM (2014) An integrated model of magma chamber, conduit and column for the analysis of sustained explosive eruptions. Earth Planet Sci Lett 404:98–110. CrossRefGoogle Scholar
  19. Conte A, Perinelli C, Trigila R (2006) Cooling kinetics experiments on different stromboli lavas: effects on crystal morphologies and phases composition. J Volcanol Geotherm Res 155(3):179–200. CrossRefGoogle Scholar
  20. Costa A, Melnik O, Sparks RSJ (2007) Controls of conduit geometry and wallrock elasticity on lava dome eruptions. Earth Planet Sci Lett 260:137–151. CrossRefGoogle Scholar
  21. Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem Geophys Geosyst 10(3):1525–2027. CrossRefGoogle Scholar
  22. Costa A, Suzuki Y, Cerminara M, Devenish B, Ongaro TE, Herzog M, Van Eaton A, Denby L, Bursik M, de’ Michieli Vitturi M et al (2016) Results of the eruptive column model inter-comparison study. J Volcanol Geotherm Res.
  23. D’Oriano C, Poggianti E, Bertagnini A, Cioni R, Landi P, Polacci M, Rosi M (2005) Changes in eruptive style during the a.d. 1538 monte nuovo eruption (phlegrean fields, italy): the role of syn-eruptive crystallization. Bull Volcanol 67(7):601–621. CrossRefGoogle Scholar
  24. D’Oriano C, Cioni R, Bertagnini A, Andronico D, Cole P (2011) Dynamics of ash-dominated eruptions at vesuvius: the post-512 ad as1a event. Bull Volcanol 73(6):699–715. CrossRefGoogle Scholar
  25. de’ Michieli Vitturi M, Clarke AB, Neri A, Voight B (2008) Effects of conduit geometry on magma ascent dynamics in dome-forming eruptions. Earth Planet Sci Lett 272:567–578. CrossRefGoogle Scholar
  26. de’ Michieli Vitturi M, Clarke AB, Neri A, Voight B (2010) Transient effects of magma ascent dynamics along a geometrically variable dome-feeding conduit. Earth Planet Sci Lett 295:541–553. CrossRefGoogle Scholar
  27. de’ Michieli Vitturi M, Clarke AB, Neri A, Voight B (2013) Extrusion cycles during dome-building eruptions. Earth Planet Sci Lett 371—-372:37–48CrossRefGoogle Scholar
  28. de’ Michieli Vitturi M, Neri A, Barsotti S (2015) Plume-mom 1.0: a new integral model of volcanic plumes based on the method of moments. Geosci Model Dev 8(8):2447–2463. CrossRefGoogle Scholar
  29. Finkel DE (2003) Direct optimization algorithm user guide. North Carolina State University, Center for Research in Scientific Computation, p 2Google Scholar
  30. Fornaciai A, Landi P, Armienti P (2009) Dissolution/crystallization kinetics recorded in the 2002–2003 lavas of stromboli (Italy). Bull Volcanol 71(6):631–641. CrossRefGoogle Scholar
  31. Fornaciai A, Perinelli C, Armienti P, Favalli M (2015) Crystal size distributions of plagioclase in lavas from the July–August 2001 mount etna eruption. Bull Volcanol 77(8):1–15. CrossRefGoogle Scholar
  32. Gaudio PD (2014) Rheology of bimodal crystals suspensions: results from analogue experiments and implications for magma ascent. Geochem Geophys Geosyst 15(1):284–291. CrossRefGoogle Scholar
  33. Ghiorso M, Hirschmann M, Reiners P, Kress V (2002) A revision of melts for improved calculation of phase relations and major element partitioning related to partial mel ting of the mantle to 3 gpa. Geochem Geophys Geosyst 3(5):112–126. CrossRefGoogle Scholar
  34. Higgins M (1996) Magma dynamics beneath kameni volcano, thera, greece, as revealed by crystal size and shape measurements. J Volcanol Geotherm Res 70(1–2):37–48. CrossRefGoogle Scholar
  35. Higgins MD (2006) Verification of ideal semi-logarithmic, lognormal or fractal crystal size distributions from 2d datasets. J Volcanol Geotherm Res 154(12):8–16. CrossRefGoogle Scholar
  36. Hodge KF, Carazzo G, Jellinek AM (2012) Experimental constraints on the deformation and breakup of injected magma. Earth Planet Sci Lett 325–326:52–62. CrossRefGoogle Scholar
  37. Jerram DA, Martin VM (2008) Understanding crystal populations and their significance through the magma plumbing syste. Geol Soc Spec Publ 304:133–148. CrossRefGoogle Scholar
  38. Karlstrom L, Dufek J, Manga M (2010) Magma chamber stability in arc and continental crust. J Volcanol Geotherm Res 190(3–4):249–270. CrossRefGoogle Scholar
  39. Kolzenburg S, Giordano D, Cimarelli C, Dingwell D (2016) In situ thermal characterization of cooling/crystallizing lavas during rheology measurements and implications for lava flow emplacement. Geochim Cosmochim Acta. Google Scholar
  40. Mader H, Llewellin E, Mueller S (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geotherm Res 257:135–158. CrossRefGoogle Scholar
  41. Marchisio D, Fox R (2013) Computational models for polydisperse particulate and multiphase systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  42. Marchisio D, Pikturna J, Fox R, Vigil R, Barresi A (2003) Quadrature method of moments for population-balance equations. AIChE J 49(5):1266–1276. CrossRefGoogle Scholar
  43. Marsh B (1988) Crystal size distribution (csd) in rocks and the kinetics and dynamics of crystallization i. Theory. Contrib Mineral Petrol 99:277–291. CrossRefGoogle Scholar
  44. Marsh B (1998) On the interpretation of crystal size distributions in magmatic systems. J Petrol 39(4):553–599CrossRefGoogle Scholar
  45. Melnik O, Sparks RSJ (1999) Nonlinear dynamics of lava dome extrusion. Nature 402:37–41. CrossRefGoogle Scholar
  46. Melnik O, Sparks RSJ (2002) Dynamics of magma ascent and lava extrusion at soufriere hills volcano, montserrat. Geol Soc Lond Mem 21:153–171. CrossRefGoogle Scholar
  47. Moitra P, Gonnermann H (2015) Effects of crystal shape- and size-modality on magma rheology. Geochem Geophys Geosyst 16(1):1–26. CrossRefGoogle Scholar
  48. Mueller S, Llewellin EW, Mader HM (2011) The effect of particle shape on suspension viscosity and implications for magmatic flows. Geophys Res Lett. Google Scholar
  49. Orlando A, D’Orazio M, Armienti P, Borrini D (2008) Experimental determination of plagioclase and clinopyroxene crystal growth rates in an anhydrous trachybasalt from mt etna (Italy). Eur J Mineral 20:653–664. CrossRefGoogle Scholar
  50. Piochi M, Mastrolorenzo G, Pappalardo L (2005) Magma ascent and eruptive processes from textural and compositional features of monte nuovo pyroclastic products, Campi Flegrei, Italy. Bull Volcanol 67(7):663–678. CrossRefGoogle Scholar
  51. Pistone M, Caricchi L, Ulmer P, Burlini L, Ardia P, Reusser E, Marone F, Arbaret L (2012) Deformation experiments of bubble- and crystal-bearing magmas: Rheological and microstructural analysis. J Geophys Res Solid Earth 117(B5).
  52. Pompilio M, Bertagnini A, Carlo PD, Roberto AD (2017) Magma dynamics within a basaltic conduit revealed by textural and compositional features of erupted ash: the December 2015 mt. Etna paroxysms. Sci Rep 7(4805):2322–2405. Google Scholar
  53. Pupier E, Duchene S, Toplis MJ (2008) Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid. Contrib Mineral Petrol 155(5):555–570. CrossRefGoogle Scholar
  54. Ramkrishna D (2000) Population balance. Academic Press, San DiegoGoogle Scholar
  55. Randolph A, Larson M (1971) Theory of particulate processes. Academic Press, New York, p 251Google Scholar
  56. Resmini RG (2007) Modeling of crystal size distributions (csds) in sills. J Volcanol Geotherm Res 161(1–2):118–130. CrossRefGoogle Scholar
  57. Salisbury M, Bohrson W, Clynne M, Ramos F, Hoskin P (2008) Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: implications for timescales of magma chamber processes associated with the 1915 eruption of lassen peak, ca. J Petrol 49(10):1755–1780. CrossRefGoogle Scholar
  58. Smith P, Asimow P (2005) A new public front-end to the melts, pmelts, and phmelts models. Geochem Geophys Geosyst 6(Q02):004. Google Scholar
  59. Spina L, Cimarelli C, Scheu B, Genova DD, Dingwell D (2016) On the slow decompressive response of volatile- and crystal-bearing magmas: an analogue experimental investigation. Earth Planet Sci Lett 433:44–53. CrossRefGoogle Scholar
  60. Spohn T, Hort M, Fischer H (1988) Numerical simulations of the crystallization of multicomponent melts in thin dikes or sill 1. The liquidus phase. J Geophys Res 93(B5):4880–4894CrossRefGoogle Scholar
  61. Szramek L, Gardner JE, Larsen J (2006) Degassing and microlite crystallization of basaltic andesite magma erupting at arenal volcano, costa rica. J Volcanol Geotherm Res 157(1):182–201. CrossRefGoogle Scholar
  62. Tarquini S, Favalli M (2010) A microscopic information system (mis) for petrographic analysis. Comput Geosci 36(5):665–674. CrossRefGoogle Scholar
  63. Vona A, Romano C, Dingwell D, Giordano D (2011) The rheology of crystal-bearing basaltic magmas from stromboli and etna. Geochim Cosmochim Acta 75(11):3214–3236. CrossRefGoogle Scholar
  64. Wheeler J (1974) Modified moments and gaussian quadratures. Rocky Mt J Math 4:287–296CrossRefGoogle Scholar
  65. Zieg MJ, Lofgren GE (2006) An experimental investigation of texture evolution during continuous cooling. J Volcanol Geotherm Res 154(12):74–88. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Istituto Nazionale di Geofisica e Vulcanologia INGVsezione di PisaPisaItaly

Personalised recommendations