Middle Ordovician subduction of continental crust in the Scandinavian Caledonides: an example from Tjeliken, Seve Nappe Complex, Sweden

  • Kathrin Fassmer
  • Iwona Klonowska
  • Katarzyna Walczak
  • Barbro Andersson
  • Nikolaus Froitzheim
  • Jarosław Majka
  • Raúl O. C. Fonseca
  • Carsten Münker
  • Marian Janák
  • Martin Whitehouse
Original Paper

Abstract

The Seve Nappe Complex of the Scandinavian Caledonides is thought to be derived from the distal passive margin of Baltica which collided with Laurentia in the Scandian Phase of the Caledonian Orogeny at 430–400 Ma. Parts of the Seve Nappe Complex were affected by pre-Scandian high- and ultrahigh-pressure metamorphism, in a tectonic framework that is still unclear, partly due to uncertainties about the exact timing. Previous age determinations yielded between ~ 505 and ~ 446 Ma, with a general trend of older ages in the North (Norrbotten) than in the South (Jämtland). New age determinations were performed on eclogite and garnet–phengite gneiss at Tjeliken in northern Jämtland. Thermodynamic modelling yielded peak metamorphic conditions of 25–27 kbar/680–760 °C for the garnet–phengite gneiss, similar to published peak metamorphic conditions of the eclogite (25–26 kbar/650–700 °C). Metamorphic rims of zircons from the garnet–phengite gneiss were dated using secondary ion mass spectrometry and yielded a concordia age of 458.9 ± 2.5 Ma. Lu–Hf garnet-whole rock dating yielded 458 ± 1.0 Ma for the eclogite. Garnet in the eclogite shows prograde major-element zoning and concentration of Lu in the cores, indicating that this age is related to garnet growth during pressure increase, i.e. subduction. The identical ages from both rock types, coinciding with published Sm–Nd ages from the eclogite, confirm subduction of the Seve Nappe Complex in Northern Jämtland during the Middle Ordovician in a fast subduction–exhumation cycle.

Keywords

Scandinavian Caledonides Seve Nappe Complex Subduction Eclogite U–Pb zircon Lu–Hf garnet 

Notes

Acknowledgements

We thank F. Corfu and an anonymous reviewer for their constructive comments on the manuscript. This research was supported by the National Science Centre (Poland) CALSUB project no. 2014/14/E/ST10/00321 to J. M. and K. W., and DFG-Grant FR700/18-1 to N. F. This is NORDSIM publication no. 529 and contribution no. 47 of the DFG-funded LA-ICP-MS Laboratory at the Steinmann Institute for Geosciences, University of Bonn, Germany.

References

  1. Andersen TB, Jamtveit B, Dewey JF, Swensson E (1991) Subduction and eduction of continental crust: major mechanisms during continent–continent collision and orogenic extensional collapse, a model based on the south Norwegian Caledonides. Terra Nova 3:303–310CrossRefGoogle Scholar
  2. Andréasson PG (1986) Seve terranes, Swedish Caledonides. Geol Fören Stockh Förh 108:261–263CrossRefGoogle Scholar
  3. Andréasson PG (1994) The Baltoscandian Margin in Neoproterozoic–Early Paleozoic time. Some constraints and terrane derivation and accretion in the Arctic Scandinavian Caledonides. Tectonophysics 231:1–32CrossRefGoogle Scholar
  4. Andréasson PG, Svenningsen OM, Albrecht LG (1998) Dawn of Phanerozoic orogeny in the North Atlantic tract; evidence from the Seve-Kalak Superterrane, Scandinavian Caledonides. GFF 120:159–172CrossRefGoogle Scholar
  5. Be’eri-Shlevin Y, Gee DG, Claesson S, Ladenberger A, Majka J, Kirkland C, Robinson P, Frei D (2011) Provenance of Neoproterozoic sediments in the Särv nappes (Middle Allochthon) of the Scandinavian Caledonides: LA-ICP-MS and SIMS U–Pb dating of detrital zircons. Precambr Res 187:181–200CrossRefGoogle Scholar
  6. Beckman V, Möller C, Söderlund U, Corfu F, Pallon J, Chamberlain KR (2013) Metamorphic zircon formation at the transition from gabbro to eclogite in Trollheimen–Surnadalen, Norwegian Caledonides. In: Corfu F, Gasser D, Chew DM (eds) New perspectives on the Caledonides of Scandinavia and related areas, vol 390. Geological Society, Special Publications, London, pp 369–384Google Scholar
  7. Bingen B, Davis WJ, Austrheim H (2001) Zircon U–Pb geochronology in the Bergen arc eclogites and their proterozoic protoliths, and implications for the pre-Scandian evolution of the Caledonides in western Norway. Geol Soc Am Bull 113:640–649CrossRefGoogle Scholar
  8. Bingen B, Austrheim H, Whitehouse MJ, Davis WJ (2004) Trace element signature and U–Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway. Contrib Miner Petrol 147:671–683CrossRefGoogle Scholar
  9. Boundy TM, Mezger K, Essene EJ (1997) Temporal and tectonic evolution of the granulite–eclogite association from the Bergen Arcs, western Norway. Lithos 39:159–178CrossRefGoogle Scholar
  10. Brueckner HK, Van Roermund HLM (2007) Concurrent HP metamorphism on both margins of Iapetus: Ordovician ages for eclogites and garnet pyroxenites from the Seve Nappe Complex, Swedish Caledonides. J Geol Soc Lond 164:117–128CrossRefGoogle Scholar
  11. Brueckner HK, Van Roermund HLM, Pearson N (2004) An Archean to Paleozoic evolution for a garnet peridotite lens with sub-Baltic Shield affinity within the Seve Nappe Complex of Jämtland, Sweden, Central Scandinavian Caledonides. J Petrol 45:415–437CrossRefGoogle Scholar
  12. Brueckner HK, van Roermund HLM (2004) Dunk tectonics: A multiple subduction/eduction model for the evolution of the Scandinavian Caledonides. Tectonics 23(2)Google Scholar
  13. Bukała M, Klonowska I, Barnes C, Majka J, Kośmińska K, Janák M, Fassmer K, Broman C, Luptáková J (in review) UHP metamorphism recorded by phengite eclogite from the Caledonides of northern Sweden: P–T path and tectonic implications. J Metamorph GeolGoogle Scholar
  14. Carlson WD (2012) Rates and mechanism of Y, REE, and Cr diffusion in garnet. Am Miner 97:1598–1618CrossRefGoogle Scholar
  15. Carswell DA, Brueckner HK, Cuthbert SJ, Mehta K, O’Brien PJ (2003a) The timing of stabilisation and the exhumation rate for ultra-high pressure rocks in the Western Gneiss Region of Norway. J Metamorph Geol 21:601–612CrossRefGoogle Scholar
  16. Carswell DA, Tucker RD, O’Brien PJ, Krogh TE (2003b) Coesite micro-inclusions and the U–Pb age of zircons from the Hareidland eclogite in the Western Gneiss Region of Norway. Lithos 67:181–190CrossRefGoogle Scholar
  17. Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib Miner Petrol 86:107–118CrossRefGoogle Scholar
  18. Claesson S (1987) Isotopic evidence for the precambrian provenance and Caledonian metamorphism of high-grade paragneisses from the Seve Nappes, Scandinavian Caledonides. I. Conventional U– Pb zircon and Sm–Nd whole rock data. Contrib Miner Petrol 97:196–204CrossRefGoogle Scholar
  19. Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet–phengite thermobarometers. J Metamorph Geol 20:683–696CrossRefGoogle Scholar
  20. Connolly JAD (1990) Multivariable phase diagrams: an algorithm based on generalized thermodynamics. Am J Sci 290:666–718CrossRefGoogle Scholar
  21. Connolly JAD (2005) Computation of phase-equilibria by linear programming: a tool for geodynamic modelling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541CrossRefGoogle Scholar
  22. Corfu F, Ravna EJK, Kullerud K (2003) A late Ordovician U–Pb age for the Tromsø Nappe eclogites, Uppermost Allochthon of the Scandinavian Caledonides. Contrib Miner Petrol 145:502–513CrossRefGoogle Scholar
  23. Corfu F, Andersen TB, Gasser D (2014) The Scandinavian Caledonides: main features, conceptual advances and critical questions. In: Corfu F, Gasser D, Chew DM (eds) New perspectives on the Caledonides of Scandinavia and related areas, vol 390. Geological Society, Special Publications, London, pp 9–43Google Scholar
  24. Dallmeyer RD, Gee DG (1986) 40Ar/39Ar mineral dates from retrogressed eclogites within the Baltoscandian miogeocline: implications for a polyphase Caledonian orogenic evolution. Geol Soc Am Bull 87:26–34CrossRefGoogle Scholar
  25. DesOrmeau JW, Gordon SM, Kylander-Clark ARC, Hacker BR, Bowring SA, Schoene B, Samperton KM (2015) Insights into (U)HP metamorphism of the Western Gneiss Region, Norway: a high-spatial resolution and high-precision zircon study. Chem Geol 414:138–155CrossRefGoogle Scholar
  26. Dobrzhinetskaya LF, Eide EA, Larsen RB, Sturt BA, Tronnes RG, Smith DC, Taylor WR, Posukhova TV (1995) Microdiamonds in high-grade metamorphic rocks of the Western Gneiss Region, Norway. Geology 23:597–600CrossRefGoogle Scholar
  27. Essex RM, Gromet LP, Andréasson P-G, Albrecht LG (1997) Early Ordovician U–Pb metamorphic ages of the eclogite-bearing Seve Nappes, Northern Scandinavian Caledonides. J Metamorph Geol 15:665–676CrossRefGoogle Scholar
  28. Fassmer K, Obermüller G, Nagel TJ, Kirst K, Froitzheim N, Sandmann S, Miladinova I, Fonseca ROC, Münker C (2016) High-pressure metamorphic age and significance of eclogite-facies continental fragments associated with oceanic lithosphere in the Western Alps (Etirol-Levaz Slice, Valtournenche, Italy). Lithos 252:145–159CrossRefGoogle Scholar
  29. Fossen H (2010) Extensional tectonics in the North Atlantic Caledonides: a regional view. In: Law R, Butler R, Holdsworth B, Krabbendam RA, Strachan M (eds) Continental tectonics and mountain building: the legacy of Peach and Horn, vol 335. Geological Society Special Publication, London, pp 767–793Google Scholar
  30. Froitzheim N, Miladinova I, Janák M, Kullerud K, Krogh Ravna E, Majka J, Fonseca ROC, Münker C, Nagel TJ (2016) Devonian subduction and syncollisional exhumation of continental crust in Lofoten, Norway. Geology 44:223–226CrossRefGoogle Scholar
  31. Ganguly J, Cheng W, Tirone M (1996) Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications. Contrib Miner Petrol 126:137–151CrossRefGoogle Scholar
  32. Gee DG, Kumpulainen R, Roberts D, Stephens MB, Thon A, Zachrisson E (1985) Scandinavian Caledonides, tectonostratigraphic map, scale 1:2 000 000. In: Gee DG, Sturt BA (eds) The Caledonide Orogen: Scandinavia and related areas. Whiley, ChichesterGoogle Scholar
  33. Gee DG, Fossen H, Henriksen N, Higgins AK (2008) From the early Paleozoic platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland. Episodes 31(1):44–51Google Scholar
  34. Gee DG, Juhlin C, Pascal C, Robinson P (2010) Collisional orogeny in the Scandinavian Caledonides (COSC). GFF 132:29–44CrossRefGoogle Scholar
  35. Gee DG, Janak M, Majka J, Robinson P, van Roermund H (2013) Subduction along and within the Baltoscandian margin during closing of the Iapetus Ocean and Baltica–Laurentia collision. Lithosphere 5:169–178CrossRefGoogle Scholar
  36. Gee DG, Ladenberger A, Dahlqvist P, Majka J, Be’eri-Shlevin Y, Frei D, Thomsen T (2014) The Baltoscandian margin detrital zircon signatures of the central Scandes. In: Corfu F, Gasser D, Chew DM (eds) New perspectives on the Caledonides of Scandinavia and related areas, vol 390. Geological Society, Special Publications, London, pp 131–155Google Scholar
  37. Gee DG, Andréasson PG, Lorenz H, Frei D, Majka J (2015) Detrital zircon signatures of the Baltoscandian margin along the Arctic Circle Caledonides in Sweden: the Sveconorwegian connection. Precambr Res 265:40–56CrossRefGoogle Scholar
  38. Gilio M, Clos F, Van Roermund HLM (2015) The Friningen Garnet Peridotite (central Swedish Caledonides). A good example of the characteristic P–T–t path of a cold mantle wedge garnet peridotite. Lithos 230:1–16CrossRefGoogle Scholar
  39. Glodny J, Kühn A, Austrheim H (2008) Geochronology of fluid induced eclogite and amphibolite facies metamorphic reactions in a subduction–collision system, Bergen Arcs, Norway. Contrib Miner Petrol 156:27–48CrossRefGoogle Scholar
  40. Green E, Holland T, Powell R (2007) An order-disorder model for omphacitic pyroxenes in the system jadeite–diopside–hedenbergite–acmite, with applications to eclogitic rocks. Am Miner 92:1181–1189CrossRefGoogle Scholar
  41. Griffin WL, Brueckner HK (1980) Caledonian Sm–Nd ages and a crustal origin for Norwegian eclogites. Nature 285:319–321CrossRefGoogle Scholar
  42. Grimmer JC, Glodny J, Drüuppel K, Greiling RO, Kotny A (2015) Early- to mid-Silurian extrusion wedge tectonics in the central Scandinavian Caledonides. Geology 43:347–350CrossRefGoogle Scholar
  43. Gromet LP, Sjöström H, Bergman S, Claesson S, Essex RM, Andréasson P-G, Albrecht L (1996) Contrasting ages of metamorphism in the Seve Nappes: U–Pb results from the central and northern Swedish Caledonides. GFF 118:A36–A37CrossRefGoogle Scholar
  44. Hacker BR, Andersen TB, Johnston S, Kylander-Clark ARC, Peterman EM, Walsh EO, Young D (2010) High-temperature deformation during continental-margin subduction and exhumation: the ultrahigh-pressure Western Gneiss Region of Norway. Tectonophysics 480:149–171CrossRefGoogle Scholar
  45. Ingalls M, Rowley DB, Currie B, Colman AS (2016) Large-scale subduction of continental crust implied by India-Asia mass-balance calculation. Nat Geosci 9:848–853CrossRefGoogle Scholar
  46. Jamtveit B, Carswell DA, Mearns EW (1991) Chronology of the high-pressure metamorphism of Norwegian garnet peridotites/pyroxenites. J Metamorph Geol 9:125–139CrossRefGoogle Scholar
  47. Janák M, Ravna EJK, Kullerud K (2012) Constraining peak P–T conditions in UHP eclogites: calculated phase equilibria in kyanite- and phengite-bearing eclogite of the Tromsø Nappe, Norway. J Metamorph Geol 30:377–396CrossRefGoogle Scholar
  48. Janák M, Krogh Ravna EJ, Kullerud K, Yoshida K, Milovsky R, Hirajima T (2013a) Discovery of diamond in the Tromsø Nappe, Scandinavian Caledonides (N. Norway). J Metamorph Geol 31:691–703CrossRefGoogle Scholar
  49. Janák M, Van Roermund HLM, Majka J, Gee DG (2013b) UHP metamorphism recorded by kyanite-bearing eclogite in the Seve Nappe Complex of northern Jämtland, Swedish Caledonides. Gondwana Res 23:865–879CrossRefGoogle Scholar
  50. Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4:43–47CrossRefGoogle Scholar
  51. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429CrossRefGoogle Scholar
  52. Kirkland CL, Daly JS, Whitehouse MJ (2007) Provenance and terrane evolution of the Kalak Nappe Complex, Norwegian Caledonides: implications for Neoproterozoic palaeogeography and tectonics. J Geol 115:21–41CrossRefGoogle Scholar
  53. Klonowska I, Janák M, Majka J, Froitzheim N, Kosminska K (2016) Eclogite and garnet pyroxenite from Stor Jougdan, Seve Nappe Complex, Sweden: implications for UHP metamorphism of allochthons in the Scandinavian Caledonides. J Metamorph Geol 34:103–119CrossRefGoogle Scholar
  54. Klonowska I, Janák M, Majka J, Petrík I, Froitzheim Gee DG, Sasinková V (2017) Microdiamond on Åreskutan confirms regional UHP metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides. J Metamorph Geol 35:541–564CrossRefGoogle Scholar
  55. Kohn MJ (2009) Models of garnet differential geochronology. Geochim Cosmochim Ac 73:170–182CrossRefGoogle Scholar
  56. Kohn MJ, Corrie SL, Markley C (2015) The fall and rise of metamorphic zircon. Am Miner 100:897–908CrossRefGoogle Scholar
  57. Krogh TE, Mysen BO, Davis GL (1975) A paleozoic age for the primary minerals of a Norwegian eclogite. Carnegie Inst Wash Year Book 73:575–576Google Scholar
  58. Krogh TE, Kamo SL, Robinson P, Terry MP, Kwok K (2011) U–Pb zircon geochronology of eclogites from the Scandian Orogen, northern Western Gneiss Region, Norway: 14–20 million years between eclogite crystallization and return to amphibolite facies conditions. Can J Earth Sci 48:441–472CrossRefGoogle Scholar
  59. Kylander-Clark ARC, Hacker BR, Johnson CM, Beard BL, Mahlen NJ, Lapen TJ (2007) Coupled Lu–Hf and Sm–Nd geochronology constrains prograde and exhumation histories of high- and ultrahigh-pressure eclogites from western Norway. Chem Geol 242:137–154CrossRefGoogle Scholar
  60. Kylander-Clark ARC, Hacker BR, Johnson CM, Beard BL, Mahlen NJ (2009) Slow subduction of a thick ultrahigh-pressure terrane. Tectonics 28:14CrossRefGoogle Scholar
  61. Lagos M, Scherer EE, Tomaschek F, Münker C, Keiter M, Berndt J, Ballhaus C (2007) High precision Lu–Hf geochronology of Eocene eclogite-facies rocks from Syros, Cyclades, Greece. Chem Geol 243:16–35CrossRefGoogle Scholar
  62. Lapen TJ, Johnson CM, Baumgartner LP, Mahlen NJ, Beard BL, Amato JM (2003) Burial rates during prograde metamorphism of ultrahigh-pressure terrane: an example from Lago di Cignana, Western Alps, Italy. Earth Planet Sci Lett 215:57–72CrossRefGoogle Scholar
  63. Lapen TJ, Johnson CM, Baumgartner LP, Dal Piaz GV, Skora S, Beard BL (2007) Coupling of oceanic and continental crust during Eocene eclogite-facies metamorphism: evidence from the Monte Rosa nappe, western Alps. Contrib Miner Petrol 153:139–157CrossRefGoogle Scholar
  64. Litjens A (2002) PT estimates of high-pressure metamorphic rocks from the Seve Nappe Complex, Jämtland, Central Scandinavian Caledonides. M.Sc. thesis, University of UtrechtGoogle Scholar
  65. Longerich HP, Jackson SE, Günther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal Atom Spectrom 11:899–904CrossRefGoogle Scholar
  66. Lorenz H, Gee DG, Larionov AN, Majka J (2012) The Grenville–Sweconorwegian orogeny in the high Arctic. Geol Mag 149:875–891CrossRefGoogle Scholar
  67. Ludwig KR (2001) Isoplot/Ex version 2.49, Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publications 1aGoogle Scholar
  68. Ludwig KR (2012) User’s manual for Isoplot 3.75 a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication no. 5. http://www.bgc.org/isoplot_etc/isoplot.html. Accessed 02 June 2015
  69. Majka J, Béeri-Shlevin Y, Gee DG, Ladenberger A, Claesson S, Konečný P, Klonowska I (2012) Multiple monazite growth in the Åreskutan migmatites: evidence for a polymetamorphic Late Ordovician to Late Silurian evolution in the Seve Nappe Complex of the west-central Jämtland, Sweden. J Geosci 57:3–23CrossRefGoogle Scholar
  70. Majka J, Janák M, Andersson B, Klonowska I, Gee DG, Rosen Å, Kosminska K (2014) Pressure–temperature estimates on the Tjeliken eclogite: new insights into the (ultra)-high pressure evolution of the Seve Nappe Complex in the Scandinavian Caledonides. In: Corfu F, Gasser D, Chew DM (eds) New perspectives on the Caledonides of Scandinavia and related areas, vol 390. Geological Society, Special Publications, London, pp 369–384Google Scholar
  71. Mearns EW (1986) Sm–Nd ages for Norwegian garnet peridotite. Lithos 19:269–278CrossRefGoogle Scholar
  72. Mørk MBE, Mearns EW (1986) Sm–Nd isotope systematics of a gabbro–eclogite transition. Lithos 19:255–267CrossRefGoogle Scholar
  73. Münker C, Weyer S, Scherer E, Mezger K (2001) Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochemistry, Geophysics, Geosystems 2(12).  https://doi.org/10.1029/2001GC000183
  74. Mørk MBE, Kullerud K, Stabel A (1988) Sm–Nd dating of Seve eclogites, Norrbotten, Sweden—evidence for early Caledonian (505 Ma) subduction. Contrib Miner Petrol 99:344–351CrossRefGoogle Scholar
  75. Newton RC, Charlu TV, Kleppa OJ (1980) Thermochemistry of high structural state plagioclases. Geochim Cosmochim Acta 44:933–941CrossRefGoogle Scholar
  76. Noack NN, Kleinschrodt R, Kirchenbaur M, Fonseca ROC, Münker C (2013) Lu–Hf isotope evidence for Paleoproterozoic metamorphism and deformation of Archean oceanic crust along the Dharwar Craton margin, southern India. Precambr Res 233:206–222CrossRefGoogle Scholar
  77. Otamendi JE, de la Rosa JD, Patino Douce AE, Castro A (2002) Rayleigh fractionation of heavy rare earths and yttrium during metamorphic garnet growth. Geology 30:159–162CrossRefGoogle Scholar
  78. Peterman EM, Hacker BR, Baxter EF (2009) Restricted access phase transformations of continental crust during subduction and exhumation: Western Gneiss Region, Norway. Eur J Miner 21:1097–1118CrossRefGoogle Scholar
  79. Ravna EJK, Roux MRM (2006) Metamorphic evolution of the Tønsvika eclogite, Tromsø Nappe—evidence for a new UHPM province in the Scandinavian Caledonides. Int Geol Rev 48:861–881CrossRefGoogle Scholar
  80. Roberts D (2003) The Scandinavian Caledonides: event chronology, palaeographic settings and likely modern analogues. Tectonophysics 365:283–299CrossRefGoogle Scholar
  81. Root DB, Corfu F (2012) U-Pb geochronology of two discrete Ordovician high-pressure metamorphic events in the Seve Nappe Complex, Scandinavian Caledonides. Contrib Miner Petrol 163:769–788CrossRefGoogle Scholar
  82. Rubatto D (2017) Zircon—the metamorphic mineral. RiMG 83:261–295Google Scholar
  83. Scambelluri M, Pettke T, Van Roermund HLM (2008) Majoritic garnets monitor deep subduction fluid flow and mantle dynamics. Geology 36:59–62CrossRefGoogle Scholar
  84. Scherer EE, Cameron KL, Blichert-Toft J (2000) Lu–Hf garnet geochronology: closure temperature relative to the Sm–Nd system and the effects of trace mineral inclusions. Geochim Cosmochim Acta 64:3413–3432CrossRefGoogle Scholar
  85. Scherer E, Münker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687CrossRefGoogle Scholar
  86. Schneider FM, Yuan X, Schurr B, Mechie J, Sippl C, Haberland C, Minaev V, Oimahmadov I, Gadoev M, Radjabov N, Abdybachaev U, Orunbaev S, Negmatullaev S (2013) Seismic imaging of subducting continental lower crust beneath the Pamir. Earth Planet Sci Lett 375:101–112CrossRefGoogle Scholar
  87. Skora S, Baumgartner LP, Mahlen NJ, Johnson CM, Pilet S, Hellebrand E (2006) Diffusion-limited REE uptake by eclogite garnets and its consequences for Lu–Hf and Sm–Nd geochronology. Contrib Miner Petrol 152:703–720CrossRefGoogle Scholar
  88. Skora S, LapenTJ Baumgartner LP, Johnson CM, Hellebrand E, Mahlen NJ (2009) The duration of prograde garnet crystallization in the UHP eclogites at Lago di Cignana, Italy. Earth Planet Sci Lett 287:402–411CrossRefGoogle Scholar
  89. Smit MA, Scherer EE, Bröcker M, Van Roermund HLM (2010) Timing of eclogite facies metamorphism in the southernmost Scandinavian Caledonides by Lu–Hf and Sm–Nd geochronology. Contrib Miner Petrol 159:521–539CrossRefGoogle Scholar
  90. Smith DC (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310:641–644CrossRefGoogle Scholar
  91. Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324CrossRefGoogle Scholar
  92. Spengler D, Brueckner HK, Van Roermund HLM, Drury MR, Mason PRD (2009) Long-lived, cold burial of Baltica to 200 km depth. Earth Planet Sci Lett 281:27–35CrossRefGoogle Scholar
  93. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–226CrossRefGoogle Scholar
  94. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention of the use of decay constants in geo- and cosmo-chronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  95. Strand T, Kulling O (1972) Scandinavian Caledonides. Whiley Interscience, ChichesterGoogle Scholar
  96. Suppe J (1984) Kinematics of arc–continent collision, flipping of subduction, and back-arc spreading near Taiwan. Mem Geol Soc China 6:21–33Google Scholar
  97. Terry MP, Robinson P, Hamilton MA, Jercinovinic MJ (2000) Monazite geochronology of UHP and HP metamorphism, deformation, and exhumation, Nordøyane, Western Gneiss Region, Norway. Am Miner 85:1651–1664CrossRefGoogle Scholar
  98. Thompson JB, Hovis GL (1979) Entropy of mixing in sanidine. Am Miner 64:57–65Google Scholar
  99. Tucker RD, Robinson P, Solli A, Gee DG, Thorsnes T, Krogh TE, Nordgulen Ø, Bickford ME (2004) Thrusting and extension in the Scandian hinterland, Norway: new U–Pb ages and tectonostratigraphic evidence. Am J Sci 304:477–532CrossRefGoogle Scholar
  100. Van Roermund HLM (1982) On eclogites from the Seve Nappe, Jämtland, Central Scandinavian Caledonides. Ph.D. thesis, University of Utrecht, The NetherlandsGoogle Scholar
  101. Van Roermund HLM (1985) Eclogites of the Seve nappe, central Scandinavian Caledonides. In: Gee DG, Sturt BA (eds) The Caledonide Orogen—Scandinavia and related areas. Wiley, Chichester, pp 873–886Google Scholar
  102. Van Roermund HLM (1989) High-pressure ultramafic rocks from the allochthonous nappes of the Swedish Caledonides. In: Gayer RA (ed) The Caledonide geology of Scandinavia. Graham and Trotman, Norwell, pp 205–219CrossRefGoogle Scholar
  103. Van Roermund HLM, Bakker E (1984) Structure and metamorphism of the Tången-Inviken area, Seve Nappes, Central Scandinavian Caledonides. Geol Fören Stockholm Förh 105:301–319CrossRefGoogle Scholar
  104. Van Roermund HLM, Drury MR (1998) Ultra-high pressure (P > 6 GPa) garnet peridotites in Western Norway: exhumation of mantle rocks from > 185 km depth. Terra Nova 10:295–301CrossRefGoogle Scholar
  105. Vervoort JD, Patchett PJ, Soderlund U, Baker M (2004) Isotopic composition of Yb and the determination of Lu concentrations and Lu–Hf ratios by isotope dilution using MC-ICPMS. Geochem Geophys Geosys 5:Q11002CrossRefGoogle Scholar
  106. Whitehouse MJ, Kamber BS (2005) Assigning dates to thin gneissic veins in high-grade metamorphic terranes: a cautionary tale from Akilia, southwest Greenland. J Petrol 46:291–318CrossRefGoogle Scholar
  107. Wiedenbeck M (1995) An example of reverse discordance during ion microprobe zircon dating: an artifact of enhanced ion yields from a radiogenic labile Pb. Chem Geol 125:197–218CrossRefGoogle Scholar
  108. Young DJ, Hacker BR, Andersen TB, Corfu F (2007) Prograde amphibolite facies to ultrahigh-pressure transition along Nordfjord, western Norway: implications for exhumation tectonics. Tectonics.  https://doi.org/10.1029/2004TC001781 Google Scholar
  109. Zachrisson E (1997) Bedrock map 22F Risbäck SV, 1:50 000. SGU Uppsala Ai 103Google Scholar
  110. Zachrisson E, Sjöstrand T (1990) Bedrock map 22E Frostviken, 1:50 000. SGU Uppsala Ai 44Google Scholar
  111. Zwart HJ (1974) Structure and metamorphism in the Seve–Köli Nappe Complex (Scandinavian Caledonides) and its implications concerning the formation of metamorphic nappes. In: Centenaire de la Société Géologique de Belgique, ‘Géologie des domainesCristallins’. Liège, pp 129–144Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Kathrin Fassmer
    • 1
  • Iwona Klonowska
    • 2
  • Katarzyna Walczak
    • 3
  • Barbro Andersson
    • 2
  • Nikolaus Froitzheim
    • 1
  • Jarosław Majka
    • 2
    • 3
  • Raúl O. C. Fonseca
    • 1
  • Carsten Münker
    • 4
  • Marian Janák
    • 5
  • Martin Whitehouse
    • 6
  1. 1.Steinmann InstitutUniversity of BonnBonnGermany
  2. 2.Department of Earth SciencesUniversity of UppsalaUppsalaSweden
  3. 3.Faculty of Geology, Geophysics and Environmental ProtectionAGH University of Science and TechnologyKrakówPoland
  4. 4.Institut für Geologie und MineralogieUniversity of CologneCologneGermany
  5. 5.Geological InstituteSlovak Academy of SciencesBratislavaSlovak Republic
  6. 6.Laboratory for Isotope GeologySwedish Museum of Natural HistoryStockholmSweden

Personalised recommendations