Monazite behaviour during isothermal decompression in pelitic granulites: a case study from Dinggye, Tibetan Himalaya

  • Jia-Min WangEmail author
  • Fu-Yuan Wu
  • Daniela Rubatto
  • Shi-Ran Liu
  • Jin-Jiang Zhang
  • Xiao-Chi Liu
  • Lei Yang
Original Paper


Monazite is a key accessory mineral for metamorphic geochronology, but interpretation of its complex chemical and age zoning acquired during high-temperature metamorphism and anatexis remains a challenge. We investigate the petrology, pressure–temperature and timing of metamorphism in pelitic and psammitic granulites that contain monazite from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent isothermal decompression from pressure of >10 kbar to ~5 kbar at temperatures of 750–830 °C, and recorded three metamorphic stages at kyanite (M1), sillimanite (M2) and cordierite-spinel grade (M3). Monazite and zircon crystals were dated by microbeam techniques either as grain separates or in thin sections. U–Th–Pb ages are linked to specific conditions of mineral growth on the basis of zoning patterns, trace element signatures, index mineral inclusions (melt inclusions, sillimanite and K-feldspar) in dated domains and textural relationships with co-existing minerals. The results show that inherited domains (500–400 Ma) are preserved in monazite even at granulite-facies conditions. Few monazites or zircon yield ages related to the M1-stage (~30–29 Ma), possibly corresponding to prograde melting by muscovite dehydration. During the early stage of isothermal decompression, inherited or prograde monazites in most samples were dissolved in the melt produced by biotite dehydration-melting. Most monazite grains crystallized from melt toward the end of decompression (M3-stage, 21–19 Ma) and are chemically related to garnet breakdown reactions. Another peak of monazite growth occurred at final melt crystallization (~15 Ma), and these monazite grains are unzoned and are homogeneous in composition. In a regional context, our pressure–temperature–time data constrains peak high-pressure metamorphism within the GHC to ~30–29 Ma in Dinggye Himalaya. Our results are in line with a melt-assisted exhumation of the GHC rocks.


U–Th–Pb geochronology Monazite Isothermal decompression Granulite-facies Himalaya 



The authors thank X.-H. Li, X.-X. Ling, Y.-H. Yang and Q. Mao for analytical help with the SIMS, LA-ICP-MS and EPMA. S. Chakraborty and S. Dasgupta are thanked for discussion. We appreciate two anonymous reviewers and editor F. Poitrasson for constructive comments. This work was supported by the National Natural Science Foundation of China (Grant Numbers 41602054, 41402055 and 41130313), China Postdoctoral Science Foundation (Grant Numbers 2015LH0002 and 2016M600126) and China Geological Survey (Grant Number 201306010046).

Supplementary material

410_2017_1400_MOESM1_ESM.pdf (705 kb)
Supplementary material 1 (PDF 705 kb)
410_2017_1400_MOESM2_ESM.xls (498 kb)
Supplementary material 2 (XLS 498 kb)


  1. Akers WT, Grove M, Harrison TM, Ryerson FJ (1993) The instability of rhabdophane and its unimportance in monazite paragenesis. Chem Geol 110(1):169–176. doi: 10.1016/0009-2541(93)90252-E CrossRefGoogle Scholar
  2. Aleinikoff JN, Schenck WS, Plank MO, Srogi L, Fanning CM, Kamo SL, Bosbyshell H (2006) Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U–Pb geochronology of zircon and monazite. Geol Soc Am Bull 118(1–2):39–64. doi: 10.1130/b25659.1 CrossRefGoogle Scholar
  3. Arita K (1983) Origin of the inverted metamorphism of the lower Himalayas, Central Nepal. Tectonophysics 95(1–2):43–60. doi: 10.1016/0040-1951(83)90258-5 CrossRefGoogle Scholar
  4. Beaumont C, Jamieson RA, Nguyen M, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742. doi: 10.1038/414738a CrossRefGoogle Scholar
  5. Bhowmik SK, Wilde SA, Bhandari A, Basu Sarbadhikari A (2014) Zoned monazite and zircon as monitors for the thermal history of granulite terranes: an example from the Central Indian Tectonic Zone. J Petrol 55:585–621. doi: 10.1093/petrology/egt078 CrossRefGoogle Scholar
  6. Borghi A, Castelli D, Lombardo B, Visonà D (2003) Thermal and baric evolution of garnet granulites from the Kharta region of S Tibet, E Himalaya. Eur J Miner 15(2):401–418. doi: 10.1127/0935-1221/2003/0015-0401 CrossRefGoogle Scholar
  7. Burchfiel B, Royden LH (1985) North-south extension within the convergent Himalayan region. Geology 13(10):679–682. doi: 10.1130/0091-7613(1985)13<679:newtch>;2 CrossRefGoogle Scholar
  8. Burchfiel BC, Zhiliang C, Hodges KV, Yuping L, Royden LH, Changrong D, Jiene X (1992) The South Tibetan Detachment System, Himalayan Orogen: extension contemporaneous with and parallel to shortening in a Collisional Mountain Belt. Geol Soc Am Spec Pap 269:1–41. doi: 10.1130/SPE269-p1 Google Scholar
  9. Carosi R, Montomoli C, Rubatto D, Visonà D (2010) Late Oligocene high-temperature shear zones in the core of the Higher Himalayan Crystallines (Lower Dolpo, western Nepal). Tectonics 29:TC4029. doi: 10.1029/2008tc002400 CrossRefGoogle Scholar
  10. Carosi R, Montomoli C, Rubatto D, Visonà D (2013) Leucogranite intruding the South Tibetan Detachment in western Nepal: implications for exhumation models in the Himalayas. Terra Nova 25(6):478–489. doi: 10.1111/ter.12062 CrossRefGoogle Scholar
  11. Carosi R, Montomoli C, Iaccarino S, Massonne H-J, Rubatto D, Langone A, Gemignani L, Visonà D (2016) Middle to late Eocene exhumation of the Greater Himalayan Sequence in the Central Himalayas: progressive accretion from the Indian plate. Geol Soc Am Bull 128(11–12):1571–1592. doi: 10.1130/b31471.1 CrossRefGoogle Scholar
  12. Carson CJ, Ague JJ, Grove M, Coath CD, Harrison TM (2002) U–Pb isotopic behaviour of zircon during upper-amphibolite facies fluid infiltration in the Napier Complex, east Antarctica. Earth Planet Sci Lett 199(3–4):287–310. doi: 10.1016/S0012-821X(02)00565-4 CrossRefGoogle Scholar
  13. Catlos EJ, Gilley LD, Harrison TM (2002) Interpretation of monazite ages obtained via in situ analysis. Chem Geol 188(3–4):193–215. doi: 10.1016/S0009-2541(02)00099-2 CrossRefGoogle Scholar
  14. Cawood PA, Johnson MRW, Nemchin AA (2007) Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly. Earth Planet Sci Lett 255(1–2):70–84. doi: 10.1016/j.epsl.2006.12.006 CrossRefGoogle Scholar
  15. Cesare B, Ferrero S, Salvioli-Mariani E, Pedron D, Cavallo A (2009) “Nanogranite” and glassy inclusions: the anatectic melt in migmatites and granulites. Geology 37(7):627–630. doi: 10.1130/g25759a.1 CrossRefGoogle Scholar
  16. Cesare B, Acosta-Vigil A, Bartoli O, Ferrero S (2015) What can we learn from melt inclusions in migmatites and granulites? Lithos 239:186–216. doi: 10.1016/j.lithos.2015.09.028 CrossRefGoogle Scholar
  17. Chakraborty S, Anczkiewicz R, Gaidies F, Rubatto D, Sorcar N, Faak K, Mukhopadhyay D, Dasgupta S (2016) A review of thermal history and timescales of tectonometamorphic processes in Sikkim Himalaya (NE India) and implications for rates of metamorphic processes. J Metamorph Geol 34:785–803. doi: 10.1111/jmg.12200 CrossRefGoogle Scholar
  18. Cherniak DJ, Watson EB, Grove M, Harrison TM (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Acta 68(4):829–840. doi: 10.1016/j.gca.2003.07.012 CrossRefGoogle Scholar
  19. Clarke GL, Powell R (1991) Decompressional coronas and symplectites in granulites of the Musgrave Complex, central Australia. J Metamorph Geol 9(4):441–450. doi: 10.1111/j.1525-1314.1991.tb00538.x CrossRefGoogle Scholar
  20. Corrie SL, Kohn MJ (2011) Metamorphic history of the central Himalaya, Annapurna region, Nepal, and implications for tectonic models. Geol Soc Am Bull 123(9–10):1863–1879. doi: 10.1130/b30376.1 CrossRefGoogle Scholar
  21. Corrie SL, Kohn MJ, Vervoort JD (2010) Young eclogite from the Greater Himalayan Sequence, Arun Valley, eastern Nepal: P-T-t path and tectonic implications. Earth Planet Sci Lett 289(3–4):406–416. doi: 10.1016/j.epsl.2009.11.029 CrossRefGoogle Scholar
  22. Cottle JM, Jessup MJ, Newell DL, Searle MP, Law RD, Horstwood MSA (2007) Structural insights into the early stages of exhumation along an orogen-scale detachment: the South Tibetan detachment system, Dzakaa Chu section, Eastern Himalaya. J Struct Geol 29(11):1781–1797. doi: 10.1016/j.jsg.2007.08.007 CrossRefGoogle Scholar
  23. Cottle JM, Searle Michael P, Horstwood Matthew SA, Waters David J (2009a) Timing of midcrustal metamorphism, melting, and deformation in the Mount Everest Region of Southern Tibet revealed by U(–Th)–Pb geochronology. J Geol 117(6):643–664. doi: 10.1086/605994 CrossRefGoogle Scholar
  24. Cottle JM, Jessup MJ, Newell DL, Horstwood MSA, Noble SR, Parrish RR, Waters DJ, Searle MP (2009b) Geochronology of granulitized eclogite from the Ama Drime Massif: implications for the tectonic evolution of the South Tibetan Himalaya. Tectonics 28(1):TC1002. doi: 10.1029/2008TC002256 CrossRefGoogle Scholar
  25. Cottle JM, Larson KP, Kellett DA (2015) How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen. J Struct Geol 78:119–133. doi: 10.1016/j.jsg.2015.06.008 CrossRefGoogle Scholar
  26. DeCelles PG, Gehrels GE, Quade J, LaReau B, Spurlin M (2000) Tectonic Implications of U–Pb Zircon Ages of the Himalayan Orogenic Belt in Nepal. Science 288(5465):497–499. doi: 10.1126/science.288.5465.497 CrossRefGoogle Scholar
  27. Dumond G, Goncalves P, Williams ML, Jercinovic MJ (2015) Monazite as a monitor of melting, garnet growth and feldspar recrystallization in continental lower crust. J Metamorph Geol 33(7):735–762. doi: 10.1111/jmg.12150 CrossRefGoogle Scholar
  28. Erickson TM, Pearce MA, Taylor RJM, Timms NE, Clark C, Reddy SM, Buick IS (2015) Deformed monazite yields high-temperature tectonic ages. Geology 43(5):383–386. doi: 10.1130/g36533.1 CrossRefGoogle Scholar
  29. Ewing TA, Hermann J, Rubatto D (2013) The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contrib Miner Petrol 165(4):757–779. doi: 10.1007/s00410-012-0834-5 CrossRefGoogle Scholar
  30. Faccenda M, Gerya TV, Chakraborty S (2008) Styles of postsubduction collisional orogeny: influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos 103(1–2):257–287. doi: 10.1016/j.lithos.2007.09.009 CrossRefGoogle Scholar
  31. Ferrero S, Bartoli O, Cesare B, Salvioli-Mariani E, Acosta-Vigil A, Cavallo A, Groppo C, Battiston S (2012) Microstructures of melt inclusions in anatectic metasedimentary rocks. J Metamorph Geol 30(3):303–322. doi: 10.1111/j.1525-1314.2011.00968.x CrossRefGoogle Scholar
  32. Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Miner Petrol 154(4):429–437. doi: 10.1007/s00410-007-0201-0 CrossRefGoogle Scholar
  33. Florence FP, Spear FS (1995) Intergranular diffusion kinetics of Fe and Mg during retrograde metamorphism of a pelitic gneiss from the Adirondack Mountains. Earth Planet Sci Lett 134(3):329–340. doi: 10.1016/0012-821X(95)00129-Z CrossRefGoogle Scholar
  34. Foster G, Kinny P, Vance D, Prince C, Harris N (2000) The significance of monazite U–Th–Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. Earth Planet Sci Lett 181(3):327–340. doi: 10.1016/S0012-821X(00)00212-0 CrossRefGoogle Scholar
  35. Foster G, Gibson HD, Parrish R, Horstwood M, Fraser J, Tindle A (2002) Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chem Geol 191(1–3):183–207. doi: 10.1016/S0009-2541(02)00156-0 CrossRefGoogle Scholar
  36. From R, Larson K, Cottle JM (2014) Metamorphism and geochronology of the exhumed Himalayan midcrust, Likhu Khola region, east-central Nepal: recognition of a tectonometamorphic discontinuity. Lithosphere 10(2):292–307. doi: 10.1130/l381.1 Google Scholar
  37. Goscombe B, Gray D, Hand M (2006) Crustal architecture of the Himalayan metamorphic front in eastern Nepal. Gondwana Res 10(3–4):232–255. doi: 10.1016/ CrossRefGoogle Scholar
  38. Grand’Homme A, Janots E, Seydoux-Guillaume A-M, Guillaume D, Bosse V, Magnin V (2016) Partial resetting of the U–Th–Pb systems in experimentally altered monazite: nanoscale evidence of incomplete replacement. Geology 44(6):431–434. doi: 10.1130/g37770.1 CrossRefGoogle Scholar
  39. Groppo C, Lombardo B, Rolfo F, Pertusati P (2007) Clockwise exhumation path of granulitized eclogites from the Ama Drime range (Eastern Himalayas). J Metamorph Geol 25(1):51–75. doi: 10.1111/j.1525-1314.2006.00678.x CrossRefGoogle Scholar
  40. Groppo C, Rolfo F, Lombardo B (2009) P-T evolution across the Main Central Thrust Zone (Eastern Nepal): hidden discontinuities revealed by petrology. J Petrol 50(6):1149–1180. doi: 10.1093/petrology/egp036 CrossRefGoogle Scholar
  41. Groppo C, Rubatto D, Rolfo F, Lombardo B (2010) Early Oligocene partial melting in the Main Central Thrust Zone (Arun valley, eastern Nepal Himalaya). Lithos 118(3–4):287–301. doi: 10.1016/j.lithos.2010.05.003 CrossRefGoogle Scholar
  42. Groppo C, Rolfo F, Indares A (2012) Partial melting in the higher Himalayan Crystallines of Eastern Nepal: the effect of decompression and implications for the ‘channel flow’ model. J Petrol 53(5):1057–1088. doi: 10.1093/petrology/egs009 CrossRefGoogle Scholar
  43. Grujic D, Warren CJ, Wooden JL (2011) Rapid synconvergent exhumation of Miocene-aged lower orogenic crust in the eastern Himalaya. Lithosphere 3(5):346–366. doi: 10.1130/l154.1 CrossRefGoogle Scholar
  44. Harley SL, Nandakumar V (2014) Accessory mineral behaviour in granulite migmatites: a case study from the Kerala Khondalite Belt, India. J Petrol 55(10):1965–2002. doi: 10.1093/petrology/egu047 CrossRefGoogle Scholar
  45. Harrison TM, McKeegan KD, LeFort P (1995) Detection of inherited monazite in the Manaslu leucogranite by 208Pb/232Th ion microprobe dating: crystallization age and tectonic implications. Earth Planet Sci Lett 133(3–4):271–282. doi: 10.1016/0012-821X(95)00091-P CrossRefGoogle Scholar
  46. Harrison TM, Grove M, Lovera OM, Catlos EJ (1998) A model for the origin of Himalayan anatexis and inverted metamorphism. J Geophys Res 103(B11):27017. doi: 10.1029/98jb02468 CrossRefGoogle Scholar
  47. Hensen BJ (1971) Theoretical phase relations involving cordierite and garnet in the system MgO–FeO–Al2O3–SiO2. Contrib Miner Petrol 33(3):191–214. doi: 10.1007/BF00374063 CrossRefGoogle Scholar
  48. Hokada T, Motoyoshi Y (2006) Electron microprobe technique for U–Th–Pb and REE chemistry of monazite, and its implications for pre-, peak-and post-metamorphic events of the Lutzow-Holm Complex and the Napier Complex, East Antarctica. Polar Geosci 19:118–151Google Scholar
  49. Holdaway M (2000) Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. Am Mineral 85(7–8):881–892. doi: 10.2138/am-2000-0701 CrossRefGoogle Scholar
  50. Holdaway M (2001) Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. Am Miner 86(10):1117–1129. doi: 10.2138/am-2001-1001 CrossRefGoogle Scholar
  51. Imayama T, Takeshita T, Arita K (2010) Metamorphic P-T profile and P–T path discontinuity across the far-eastern Nepal Himalaya: investigation of channel flow models. J Metamorph Geol 28(5):527–549. doi: 10.1111/j.1525-1314.2010.00879.x CrossRefGoogle Scholar
  52. Imayama T, Takeshita T, Yi K, Cho D-L, Kitajima K, Tsutsumi Y, Kayama M, Nishido H, Okumura T, Yagi K, Itaya T, Sano Y (2012) Two-stage partial melting and contrasting cooling history within the Higher Himalayan Crystalline Sequence in the far-eastern Nepal Himalaya. Lithos 134–135:1–22. doi: 10.1016/j.lithos.2011.12.004 CrossRefGoogle Scholar
  53. Jamieson RA, Beaumont C, Medvedev S, Nguyen MH (2004) Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. J Geophys Res Solid Earth 109(B6):B06407. doi: 10.1029/2003JB002811 CrossRefGoogle Scholar
  54. Janasi VdA, Alves A, Vlach SRF, Leite RJ (2003) Granitos Peraluminosos da Porção Central da Faixa Ribeira, Estado de São Paulo: sucessivos eventos de reciclagem da crosta continental no Neoproterozóico. Geol USP Série Científica São Paulo 3:13–24. doi: 10.5327/S1519-874X2003000100002 CrossRefGoogle Scholar
  55. Janots E, Brunet F, Goffé B, Poinssot C, Burchard M, Cemič L (2007) Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites. Contrib Miner Petrol 154(1):1–14. doi: 10.1007/s00410-006-0176-2 CrossRefGoogle Scholar
  56. Jessup MJ, Newell DL, Cottle JM, Berger AL, Spotila JA (2008) Orogen-parallel extension and exhumation enhanced by denudation in the trans-Himalayan Arun River gorge, Ama Drime Massif, Tibet–Nepal. Geology 36(7):587–590. doi: 10.1130/g24722a.1 CrossRefGoogle Scholar
  57. Jiao S, Guo J (2011) Application of the two-feldspar geothermometer to ultrahigh-temperature (UHT) rocks in the Khondalite belt, North China craton and its implications. Am Miner 96(2–3):250–260. doi: 10.2138/am.2011.3500 CrossRefGoogle Scholar
  58. Kali E, Leloup PH, Arnaud N, Maheo G, Liu DY, Boutonnet E, Van der Woerd J, Liu XH, Jing LZ, Li HB (2010) Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure-temperature-deformation-time constraints on orogenic models. Tectonics 29:TC2014. doi: 10.1029/2009tc002551 CrossRefGoogle Scholar
  59. Kellett DA, Cottle JM, Smit M (2014) Eocene deep crust at Ama Drime, Tibet: early evolution of the Himalayan orogen. Lithosphere 6(4):220–229. doi: 10.1130/l350.1 CrossRefGoogle Scholar
  60. Kelly NM, Harley SL, Möller A (2012) Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration. Chem Geol 322–323:192–208. doi: 10.1016/j.chemgeo.2012.07.001 CrossRefGoogle Scholar
  61. Kelsey DE, Hand M (2015) On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geosci Fronti 6(3):311–356. doi: 10.1016/j.gsf.2014.09.006 CrossRefGoogle Scholar
  62. Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26(2):199–212. doi: 10.1111/j.1525-1314.2007.00757.x CrossRefGoogle Scholar
  63. Kingsbury JA, Miller CF, Wooden JL, Harrison TM (1993) Monazite paragenesis and U–Pb systematics in rocks of the eastern Mojave Desert, California, USA: implications for thermochronometry. Chem Geol 110(1):147–167. doi: 10.1016/0009-2541(93)90251-D CrossRefGoogle Scholar
  64. Kohn MJ (2008) P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan sequence. Geol Soc Am Bull 120(3–4):259–273. doi: 10.1130/b26252.1 CrossRefGoogle Scholar
  65. Kohn MJ (2014) Himalayan metamorphism and its tectonic implications. Annu Rev Earth Planet Sci 42:381–419. doi: 10.1146/annurev-earth-060313-055005 CrossRefGoogle Scholar
  66. Kohn MJ (2016) Metamorphic chronology—a tool for all ages: past achievements and future prospects. Am Mineral 101(1):25–42. doi: 10.2138/am-2016-5146 CrossRefGoogle Scholar
  67. Kohn MJ, Malloy MA (2004) Formation of monazite via prograde metamorphic reactions among common silicates: implications for age determinations. Geochim Cosmochim Acta 68(1):101–113. doi: 10.1016/s0016-7037(03)00258-8 CrossRefGoogle Scholar
  68. Kohn MJ, Wieland MS, Parkinson CD, Upreti BN (2004) Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth Planet Sci Lett 228(3–4):299–310. doi: 10.1016/j.epsl.2004.10.007 CrossRefGoogle Scholar
  69. Kohn MJ, Wieland MS, Parkinson CD, Upreti BN (2005) Five generations of monazite in Langtang gneisses: implications for chronology of the Himalayan metamorphic core. J Metamorph Geol 23(5):399–406. doi: 10.1111/j.1525-1314.2005.00584.x CrossRefGoogle Scholar
  70. Kooijman E, Smit MA, Mezger K, Berndt J (2012) Trace element systematics in granulite facies rutile: implications for Zr geothermometry and provenance studies. J Metamorph Geol 30(4):397–412. doi: 10.1111/j.1525-1314.2012.00972.x CrossRefGoogle Scholar
  71. Larson KP, Gervais F, Kellett DA (2013) A P-T-t-D discontinuity in east-central Nepal: implications for the evolution of the Himalayan mid-crust. Lithos 179:275–292. doi: 10.1016/j.lithos.2013.08.012 CrossRefGoogle Scholar
  72. Larson KP, Ambrose TK, Webb AG, Cottle JM, Shrestha S (2015) Reconciling Himalayan midcrustal discontinuities: the Main Central thrust system. Earth Planet Sci Lett 429:139–146. doi: 10.1016/j.jsg.2015.06.008 CrossRefGoogle Scholar
  73. Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Miner Petrol 99(2):226–237. doi: 10.1007/bf00371463 CrossRefGoogle Scholar
  74. Leech M, Singh S, Jain A, Klemperer S, Manickavasagam R (2005) The onset of India-Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet Sci Lett 234(1–2):83–97. doi: 10.1016/j.epsl.2005.02.038 CrossRefGoogle Scholar
  75. Leloup PH, Mahéo G, Arnaud N, Kali E, Boutonnet E, Liu D, Xiaohan L, Haibing L (2010) The South Tibet detachment shear zone in the Dinggye area Time constraints on extrusion models of the Himalayas. Earth Planet Sci Lett 292(1–2):1–16. doi: 10.1016/j.epsl.2009.12.035 CrossRefGoogle Scholar
  76. Leloup PH, Liu X, Mahéo G, Paquette J-L, Arnaud N, Aubray A, Liu X (2015) New constraints on the timing of partial melting and deformation along the Nyalam section (central Himalaya): implications for extrusion models. Geol Soc Lond Spec Public 412(1):131–175. doi: 10.1144/sp412.11 CrossRefGoogle Scholar
  77. Li D, Liao Q, Yuan Y, Wan Y, Liu D, Zhang X, Yi S, Cao S, Xie D (2003) SHRIMP U–Pb zircon geochronology of granulites at Rimana (Southern Tibet) in the central segment of Himalayan orogen. Chin Sci Bull 48(23):2647–2650. doi: 10.1360/03wd0080 CrossRefGoogle Scholar
  78. Li XH, Liu Y, Li QL, Guo CH, Chamberlain KR (2009) Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophys Geosyst 10(4). doi: 10.1029/2009GC002400
  79. Li Q-L, Li X-H, Liu Y, Tang G-Q, Yang J-H, Zhu W-G (2010) Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. J Anal At Spectrom 25(7):1107–1113. doi: 10.1039/B923444F CrossRefGoogle Scholar
  80. Li X, Tang G, Gong B, Yang Y, Hou K, Hu Z, Li Q, Liu Y, Li W (2013) Qinghu zircon: a working reference for microbeam analysis of U–Pb age and Hf and O isotopes. Chin Sci Bull 58(36):4647–4654. doi: 10.1007/s11434-013-5932-x CrossRefGoogle Scholar
  81. Liu Y, Siebel W, Massonne HJ, Xiao XC (2007) Geochronological and petrological constraints for tectonic evolution of the central Greater Himalayan Sequence in the Kharta area, southern Tibet. J Geol 115(2):215–230. doi: 10.1086/510806 CrossRefGoogle Scholar
  82. Lombardo B, Rolfo F (2000) Two contrasting eclogite types in the Himalayas: implications for the Himalayan orogeny. J Geodyn 30(1–2):37–60. doi: 10.1016/S0264-3707(99)00026-5 CrossRefGoogle Scholar
  83. Lombardo B, Rolfo F, McClelland WC (2016) A review of the first eclogites discovered in the Eastern Himalaya. Eur J Miner 28:1099–1109. doi: 10.1127/ejm/2016/0028-2553 CrossRefGoogle Scholar
  84. Ludwig KR (2008) Isoplot/Ex version 3.7. A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Centre, Special Publication.
  85. Martin AJ, Gehrels GE, DeCelles PG (2007) The tectonic significance of (U, Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal. Chem Geol 244(1–2):1–24. doi: 10.1016/j.chemgeo.2007.05.003 CrossRefGoogle Scholar
  86. McDonough WF, Ss Sun (1995) The composition of the Earth. Chem Geol 120(3–4):223–253. doi: 10.1016/0009-2541(94)00140-4 CrossRefGoogle Scholar
  87. Montel J-M (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110(1):127–146. doi: 10.1016/0009-2541(93)90250-M CrossRefGoogle Scholar
  88. Montomoli C, Iaccarino S, Carosi R, Langone A, Visonà D (2013) Tectonometamorphic discontinuities within the Greater Himalayan Sequence in Western Nepal (Central Himalaya): insights on the exhumation of crystalline rocks. Tectonophysics 608:1349–1370. doi: 10.1016/j.tecto.2013.06.006 CrossRefGoogle Scholar
  89. Montomoli C, Carosi R, Iaccarino S (2015) Tectonometamorphic discontinuities in the Greater Himalayan Sequence: a local or a regional feature? Geol Soc Lond Spec Public 412(1):25–41. doi: 10.1144/sp412.3 CrossRefGoogle Scholar
  90. Mottram CM, Warren CJ, Regis D, Roberts NMW, Harris NBW, Argles TW, Parrish RR (2014) Developing an inverted Barrovian sequence; insights from monazite petrochronology. Earth Planet Sci Lett 403:418–431. doi: 10.1016/j.epsl.2014.07.006 CrossRefGoogle Scholar
  91. Ouzegane K, Boumaza S (1996) An example of ultrahigh-temperature metamorphism: orthopyroxene–sillimanite–garnet, sapphirine–quartz and spinel–quartz parageneses in Al–Mg granulites from In Hihaou, In Ouzzal, Hoggar. J Metamorph Geol 14(6):693–708. doi: 10.1111/j.1525-1314.1996.00049.x CrossRefGoogle Scholar
  92. Parrish RR (1990) U–Pb dating of monazite and its application to geological problems. Can J Earth Sci 27(11):1431–1450. doi: 10.1139/e90-152 CrossRefGoogle Scholar
  93. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21(1):115–144. doi: 10.1111/j.1751-908X.1997.tb00538.x CrossRefGoogle Scholar
  94. Peterman EM, Mattinson JM, Hacker BR (2012) Multi-step TIMS and CA-TIMS monazite U–Pb geochronology. Chem Geol 312–313:58–73. doi: 10.1016/j.chemgeo.2012.04.006 CrossRefGoogle Scholar
  95. Pyle JM, Spear FS, Rudnick RL, McDonough WF (2001) Monazite–xenotime–garnet equilibrium in metapelites and a new monazite–garnet thermometer. J Petrol 42(11):2083–2107. doi: 10.1093/petrology/42.11.2083 CrossRefGoogle Scholar
  96. Rapp RP, Watson EB (1986) Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib Miner Petrol 94(3):304–316. doi: 10.1007/bf00371439 CrossRefGoogle Scholar
  97. Rowley DB (1996) Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet Sci Lett 145(1–4):1–13. doi: 10.1016/S0012-821X(96)00201-4 CrossRefGoogle Scholar
  98. Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Miner Petrol 140(4):458–468. doi: 10.1007/PL00007673 CrossRefGoogle Scholar
  99. Rubatto D, Hermann J, Buick IS (2006) Temperature and bulk composition control on the growth of monazite and zircon during low-pressure anatexis (Mount Stafford, central Australia). J Petrol 47(10):1973–1996. doi: 10.1093/petrology/egl033 CrossRefGoogle Scholar
  100. Rubatto D, Chakraborty S, Dasgupta S (2013) Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contrib Miner Petrol 165(2):349–372. doi: 10.1007/s00410-012-0812-y CrossRefGoogle Scholar
  101. Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in situ U–Pb isotope, cathodoluminescence and microchemical evidence. Contrib Miner Petrol 134(2–3):186–201. doi: 10.1007/s004100050478 CrossRefGoogle Scholar
  102. Schandl ES, Gorton MP (2004) A textural and geochemical guide to the identification of hydrothermal monazite: criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Econ Geol 99(5):1027–1035. doi: 10.2113/gsecongeo.99.5.1027 CrossRefGoogle Scholar
  103. Schärer U (1984) The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67(2):191–204. doi: 10.1016/0012-821X(84)90114-6 CrossRefGoogle Scholar
  104. Schelling D (1992) The tectonostratigraphy and structure of the eastern Nepal Himalaya. Tectonics 11(5):925–943. doi: 10.1029/92TC00213 CrossRefGoogle Scholar
  105. Searle MP, Szulc AG (2005) Channel flow and ductile extrusion of the high Himalayan slab-the Kangchenjunga-Darjeeling profile, Sikkim Himalaya. J Asian Earth Sci 25(1):173–185. doi: 10.1016/j.jseaes.2004.03.004 CrossRefGoogle Scholar
  106. Searle MP, Parrish RR, Hodges KV, Hurford A, Ayres MW, Whitehouse MJ (1997) Shisha Pangma leucogranite, south Tibetan Himalaya: field relations, geochemistry, age, origin, and emplacement. J Geol 105(3):295–317. doi: 10.1086/515924 CrossRefGoogle Scholar
  107. Searle MP, Simpson RL, Law RD, Parrish RR, Waters DJ (2003) The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. J Geol Soc 160(3):345–366. doi: 10.1144/0016-764902-126 CrossRefGoogle Scholar
  108. Searle MP, Law RD, Godin L, Larson KP, Streule MJ, Cottle JM, Jessup MJ (2008) Defining the Himalayan Main Central Thrust in Nepal. J Geol Soc 165(2):523–534. doi: 10.1144/0016-76492007-081 CrossRefGoogle Scholar
  109. Seydoux-Guillaume AM, Paquette J-L, Wiedenbeck M, Montel J-M, Heinrich W (2002) Experimental resetting of the U–Th–Pb systems in monazite. Chem Geol 191(1–3):165–181. doi: 10.1016/S0009-2541(02)00155-9 CrossRefGoogle Scholar
  110. Simpson RL, Parrish RR, Searle MP, Waters DJ (2000) Two episodes of monazite crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya. Geology 28(5):403. doi: 10.1130/0091-7613(2000)28<403:teomcd>;2 CrossRefGoogle Scholar
  111. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249(1–2):1–35. doi: 10.1016/j.chemgeo.2007.11.005 CrossRefGoogle Scholar
  112. Smith HA, Barreiro B (1990) Monazite U–Pb dating of staurolite grade metamorphism in pelitic schists. Contrib Miner Petrol 105(5):602–615. doi: 10.1007/BF00302498 CrossRefGoogle Scholar
  113. Smith M, Henderson P, Campbell L (2000) Fractionation of the REE during hydrothermal processes: constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochim Cosmochim Acta 64(18):3141–3160. doi: 10.1016/S0016-7037(00)00416-6 CrossRefGoogle Scholar
  114. Sorcar N, Hoppe U, Dasgupta S, Chakraborty S (2014) High-temperature cooling histories of migmatites from the High Himalayan Crystallines in Sikkim, India: rapid cooling unrelated to exhumation? Contrib Miner Petrol 167(2):1–34. doi: 10.1007/s00410-013-0957-3 CrossRefGoogle Scholar
  115. Spear FS, Kohn MJ, Cheney JT (1999) P –T paths from anatectic pelites. Contrib Miner Petrol 134(1):17–32. doi: 10.1007/s004100050466 CrossRefGoogle Scholar
  116. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221. doi: 10.1016/0012-821X(75)90088-6 CrossRefGoogle Scholar
  117. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36(3):359–362. doi: 10.1016/0012-821X(77)90060-7 CrossRefGoogle Scholar
  118. Stepanov AS, Hermann J, Rubatto D, Rapp RP (2012) Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem Geol 300–301:200–220. doi: 10.1016/j.chemgeo.2012.01.007 CrossRefGoogle Scholar
  119. Taylor RJM, Clark C, Fitzsimons ICW, Santosh M, Hand M, Evans N, McDonald B (2014) Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India. Contrib Miner Petrol 168(2):1044. doi: 10.1007/s00410-014-1044-0 CrossRefGoogle Scholar
  120. Taylor RJM, Kirkland CL, Clark C (2016) Accessories after the facts: constraining the timing, duration and conditions of high-temperature metamorphic processes. Lithos 264:239–257. doi: 10.1016/j.lithos.2016.09.004 CrossRefGoogle Scholar
  121. Tomkins HS, Powell R, Ellis DJ (2007) The pressure dependence of the zirconium-in-rutile thermometer. J Metamorph Geol 25(6):703–713. doi: 10.1111/j.1525-1314.2007.00724.x CrossRefGoogle Scholar
  122. Visonà D, Lombardo B (2002) Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet). Himalayan leucogranite genesis by isobaric heating? Lithos 62(3–4):125–150. doi: 10.1016/s0024-4937(02)00112-3 CrossRefGoogle Scholar
  123. Wang X, Zhang J, Santosh M, Liu J, Yan S, Guo L (2012) Andean-type orogeny in the Himalayas of south Tibet: Implications for early Paleozoic tectonics along the Indian margin of Gondwana. Lithos 154:248–262. doi: 10.1016/j.lithos.2012.07.011 CrossRefGoogle Scholar
  124. Wang JM, Zhang JJ, Wang XX (2013) Structural kinematics, metamorphic P-T profiles and zircon geochronology across the Greater Himalayan Crystalline Complex in south-central Tibet: implication for a revised channel flow. J Metamorph Geol 31(6):607–628. doi: 10.1111/jmg.12036 CrossRefGoogle Scholar
  125. Wang J-M, Rubatto D, Zhang J-J (2015a) Timing of Partial Melting and Cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya): in-sequence Thrusting and its Implications. J Petrol 56(9):1677–1702. doi: 10.1093/petrology/egv050 CrossRefGoogle Scholar
  126. Wang JM, Zhang JJ, Wei CJ, Rai SM, Wang M, Qian JH (2015b) Characterising the metamorphic discontinuity across the Main Central Thrust Zone of eastern-central Nepal. J Asian Earth Sci 101:83–100. doi: 10.1016/j.jseaes.2015.01.027 CrossRefGoogle Scholar
  127. Wang J-M, Zhang J-J, Liu K, Zhang B, Wang X-X, Rai S, Scheltens M (2016) Spatial and temporal evolution of tectonometamorphic discontinuities in the central Himalaya: constraints from P-T paths and geochronology. Tectonophysics 679:41–60. doi: 10.1016/j.tecto.2016.04.035 CrossRefGoogle Scholar
  128. Wang Y, Zhang L, Zhang J, Wei C (2017) The youngest eclogite in central Himalaya: P-T path, U–Pb zircon age and its tectonic implication. Gondwana Res 41:188–206. doi: 10.1016/ CrossRefGoogle Scholar
  129. Warren CJ, Grujic D, Kellett DA, Cottle J, Jamieson RA, Ghalley KS (2011) Probing the depths of the India-Asia collision: U-Th–Pb monazite chronology of granulites from NW Bhutan. Tectonics 30(2):TC2004. doi: 10.1029/2010TC002738 CrossRefGoogle Scholar
  130. Warren CJ, Singh AK, Roberts NMW, Regis D, Halton AM, Singh RB (2014) Timing and conditions of peak metamorphism and cooling across the Zimithang Thrust, Arunachal Pradesh, India. Lithos 200–201:94–110. doi: 10.1016/j.lithos.2014.04.005 CrossRefGoogle Scholar
  131. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Miner Petrol 151(4):413–433. doi: 10.1007/s00410-006-0068-5 CrossRefGoogle Scholar
  132. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95(1):185–187. doi: 10.2138/am.2010.3371 CrossRefGoogle Scholar
  133. Wiedenbeck M, AllÉ P, Corfu F, Griffin WL, Meier M, Oberli F, Quadt AV, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19(1):1–23. doi: 10.1111/j.1751-908X.1995.tb00147.x CrossRefGoogle Scholar
  134. Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: McKibben MA, Shanks III WC, and Ridley WI (eds.), Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:1–35CrossRefGoogle Scholar
  135. Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Planet Sci 35:137–175. doi: 10.1146/ CrossRefGoogle Scholar
  136. Williams ML, Jercinovic MJ, Harlov DE, Budzyń B, Hetherington CJ (2011) Resetting monazite ages during fluid-related alteration. Chem Geol 283(3–4):218–225. doi: 10.1016/j.chemgeo.2011.01.019 CrossRefGoogle Scholar
  137. Wing BA, Ferry JM, Harrison TM (2003) Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contrib Miner Petrol 145(2):228–250. doi: 10.1007/s00410-003-0446-1 CrossRefGoogle Scholar
  138. Wu C-M, Zhang J, Ren L-D (2004) Empirical garnet–biotite–plagioclase–quartz (GBPQ) geobarometry in medium-to high-grade metapelites. J Petrol 45(9):1907–1921. doi: 10.1093/petrology/egh038 CrossRefGoogle Scholar
  139. Wu FY, Liu ZC, Liu XC, Ji WQ (2015) Himalayan leucogranite: petrogenesis and implications to orogenesis and plateau uplift. Acta Petrol Sin 31(1):1–36 (In Chinese with English abstract) Google Scholar
  140. Yakymchuk C, Brown M (2014) Behaviour of zircon and monazite during crustal melting. J Geol Soc 171(4):465–479. doi: 10.1144/jgs2013-115 CrossRefGoogle Scholar
  141. Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131. doi: 10.1016/j.earscirev.2005.05.004 CrossRefGoogle Scholar
  142. Zhang JJ, Guo L (2007) Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the south Tibetan detachment system. J Asian Earth Sci 29(5–6):722–736. doi: 10.1016/j.jseaes.2006.05.003 CrossRefGoogle Scholar
  143. Zhang ZM, Dong X, Xiang H, Liou JG, Santosh M (2013) Building of the Deep Gangdese Arc, South Tibet: Paleocene Plutonism and Granulite-Facies Metamorphism. J Petrol 54(12):2547–2580. doi: 10.1093/petrology/egt056 CrossRefGoogle Scholar
  144. Zhang ZM, Xiang H, Dong X, Li W, Ding HX, Gou Z, Tian ZL (2017) Oligocene HP metamorphism and anatexis of the Higher Himalayan Crystalline Sequence in Yadong region, east-central Himalaya. Gondwana Res 41:173–187. doi: 10.1016/ CrossRefGoogle Scholar
  145. Zhu XK, O’Nions RK (1999) Monazite chemical composition: some implications for monazite geochronology. Contrib Miner Petrol 137(4):351–363. doi: 10.1007/s004100050555 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Lithospheric EvolutionInstitute of Geology and Geophysics, Chinese Academy of SciencesBeijingChina
  2. 2.Institut für Geologie Mineralogie und Geophysik, Ruhr-Universität BochumBochumGermany
  3. 3.Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of SciencesBeijingChina
  4. 4.Institute of Geological Sciences, University of BernBernSwitzerland
  5. 5.School of Earth and Space SciencesPeking UniversityBeijingChina

Personalised recommendations