Advertisement

Origin of peraluminous minerals (corundum, spinel, and sapphirine) in a highly calcic anorthosite from the Sittampundi Layered Complex, Tamil Nadu, India

  • Shreya Karmakar
  • Subham Mukherjee
  • Sanjoy Sanyal
  • Pulak Sengupta
Original Paper

Abstract

The highly calcic anorthosite (An>95) from the Sittampundi Layered Complex (SLC) develops corundum, spinel and sapphirine that are hitherto not reported from any anorthositic rocks in the world. Petrological observations indicate the following sequence of mineral growth: plagioclasematrix → corundum; clinopyroxene → amphibole; corundum + amphibole → plagioclasecorona + spinel; and spinel + corundum → coronitic sapphirine. Phase relations in the CaO–Na2O–Al2O3–SiO2–H2O (CNASH) system suggest that corundum was presumably developed through vapour present incongruent melting of the highly calcic plagioclase during ultra-high temperature (UHT) metamorphism (T ≥ 1000 °C, P ≥ 9 kbar). Topological constraints in parts of the Na2O–CaO–MgO–Al2O3–SiO2–H2O (NCMASH) system suggest that subsequent to the UHT metamorphism, aqueous fluid(s) permeated the rock and the assemblage corundum + amphibole + anorthite + clinozoisite was stabilized during high-pressure (HP) metamorphism (11 ± 2 kbar, 750 ± 50 °C). Constraints of the NCMASH topology and thermodynamic and textural modeling study suggest that coronitic plagioclase and spinel formed at the expense of corundum + amphibole during a steeply decompressive retrograde PT path (7–8 kbar and 700–800 °C) in an open system. Textural modeling studies combined with chemical potential diagrams (μSiO2–μMgO) in the MASH system support the view that sapphirine also formed from due to silica and Mg metasomatism of the precursor spinel ± corundum, on the steeply decompressive retrograde PT path, prior to onset of significant cooling of the SLC. Extremely channelized fluid flow and large positive solid volume change of the stoichiometrically balanced sapphirine forming reaction explains the localized growth of sapphirine.

Keywords

Metasomatic sapphirine Anatectic corundum Chemical potential Calcic anorthosite Sittampundi Layered Complex 

Notes

Acknowledgements

S.K. and S.M. acknowledge the financial support from the University Grant Commission (UGC), New Delhi. S.S. and P.S. acknowledge that the grants received from the programs awarded to the Department of Geological Sciences, Jadavpur University: Potential for Excellence (UPE-Phase II) from UGC, Center of Advance Studies (Phase VI), and Fund for the Improvement of Science and Technology (FIST-Phase II) from DST (Department of Science and Technology, India). Most of the analyses were done during the stay of P.S. at the Steinmann Institute, University of Bonn, Germany, as a fellow of the Alexander von Humboldt Foundation. The authors are thankful to Prof. M. Raith, University of Bonn for extending the analytical facilities of the institute. The authors are deeply grateful to Prof. James Connolly, Department of Earth Sciences, Swiss Federal Institute of Technology (ETH) Zurich, for his help with numerical modeling and also for rendering his opinion on number of issues related to phase diagram calculations. The authors are very thankful to Prof. Kåre Kullerud, a second anonymous reviewer and the editor Prof. Christian Ballhaus for their detail insightful comments, which have helped to improve the quality of the manuscript significantly.

References

  1. Ashwal LD (1993) Anorthosites. Springer, BerlinCrossRefGoogle Scholar
  2. Baba S (2003) Two stages of sapphirine formation during prograde and retrograde metamorphism in the Palaeoproterozoic Lewisian complex in South Harris, NW Scotland. J Petrol 44:329–354CrossRefGoogle Scholar
  3. Berger J, Féménias O, Ohnenstetter D et al (2010) Origin and tectonic significance of corundum–kyanite–sapphirine amphibolites from the Variscan French Massif Central. J Metamorph Geol 28:341–360. doi: 10.1111/j.1525-1314.2010.00866.x CrossRefGoogle Scholar
  4. Bhaskar Rao YJ, Chetty TRK, Janardhan AS, Gopalan K (1996) Sm–Nd and Rb–Sr ages and PT history of the Archean Sittampundi and Bhavani layered meta-anorthosite complexes in Cauvery shear zone, South India: evidence for Neoproterozoic reworking of Archean crust. CMP 125:237–250. doi: 10.1007/s004100050219 Google Scholar
  5. Brandt S, Raith MM, Schenk V et al (2014) Crustal evolution of the Southern Granulite Terrane, south India: new geochronological and geochemical data for felsic orthogneisses and granites. Precambr Res 246:91–122. doi: 10.1016/j.precamres.2014.01.007 CrossRefGoogle Scholar
  6. Brown M (2009) Metamorphic patterns in orogenic systems and the geological record. Geol Soc Lond Spec Publ 318:37–74. doi: 10.1144/SP318.2 CrossRefGoogle Scholar
  7. Chetty TRK (1996) Proterozoic shear zones in southern granulite terrain, India. In: Santosh M, Yoshida M (eds) The Archaean and Proterozoic Terrains in Southern India within East Gondwana, vol 3. Field Science Publishers, Osaka, pp 77–89Google Scholar
  8. Chowdhury P, Talukdar M, Sengupta P et al (2013) Controls of PT path and element mobility on the formation of corundum pseudomorphs in Paleoproterozoic high-pressure anorthosite from Sittampundi, Tamil Nadu, India. Am Mineral 98:1725–1737. doi: 10.2138/am.2013.4350 CrossRefGoogle Scholar
  9. Connolly J (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. EPSL 236:524–541CrossRefGoogle Scholar
  10. Connolly J (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst 10:1–19CrossRefGoogle Scholar
  11. Das E, Karmakar S, Dey A et al (2017) Reaction textures, P–T paths and chemical dates of monazite from a new suite of sapphirine–spinel granulites from parts of the Eastern Ghats Province, India: insight about final amalgamation of India and east Antarctica during the formation of Rodinia. Geol Soc Lond Spec Publ 457. doi: 10.1144/SP457.12
  12. Drury SA, Harris NBW, Holt RW et al (1984) Precambrian tectonics and crustal evolution in South India. J Geol 92:3–20CrossRefGoogle Scholar
  13. Dunkley DJ, Clarke GL, Harley SL (1999) Diffusion metasomatism in silica-undersaturated sapphirine-bearing granulite from Rumdoodle Peak, Framnes Mountains, east Antarctica. CMP 134:264–276. doi: 10.1007/s004100050483 Google Scholar
  14. Dutta U, Bhui UK, Sengupta P et al (2011) Magmatic and metamorphic imprints in 2.9 Ga chromitites from the Sittampundi layered complex, Tamil Nadu, India. Ore Geol Rev 40:90–107. doi: 10.1016/j.oregeorev.2011.05.004 CrossRefGoogle Scholar
  15. Enami M, Zang Q (1988) Magnesian staurolite in garnet-corundum rocks and eclogite from the Donghai districto Jiangsu province, east China. Am Mineral 73:48–56Google Scholar
  16. Feig ST, Koepke J, Snow JE (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. CMP 152:611–638. doi: 10.1007/s00410-006-0123-2 Google Scholar
  17. Fernando GWAR (2001) Genesis of metasomatic sapphirine-corundum–spinel-bearing granulites in Sri Lanka. PhD thesis, University of MainzGoogle Scholar
  18. Fisher GW (1989) Matrix analysis of metamorphic mineral assemblages and reactions. CMP 102:69–77. doi: 10.1007/BF01160191 Google Scholar
  19. Ghosh JG, de Wit MJ, Zartman RE (2004) Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies. Tectonics. doi: 10.1029/2002TC001444 Google Scholar
  20. Girardeau J, Ibarguchi JIG (1991) Pyroxenite-rich peridotites of the Cabo Ortegal complex (Northwestern Spain): evidence for large-scale upper-mantle heterogeneity. J Petrol Special_Volume:135–154. doi: 10.1093/petrology/Special_Volume.2.135 CrossRefGoogle Scholar
  21. Godard G, Mabit JL (1998) Peraluminous sapphirine formed during retrogression of a kyanite-bearing eclogite from Pays de Léon, Armorican Massif, France. Lithos 43:15–29. doi: 10.1016/s0024-4937(98)00004-8 CrossRefGoogle Scholar
  22. Goldsmith JR (1980) The melting and breakdown reactions of anorthite at high pressures and temperatures. Am Miner 65:272–284Google Scholar
  23. Goldsmith JR (1982) Plagioclase stability at elevated temperatures and water pressures. Am Mineral 67:653–675Google Scholar
  24. Guo J, Peng P, Chen Y et al (2012) UHT sapphirine granulite metamorphism at 1.93–1.92 Ga caused by gabbronorite intrusions: implications for tectonic evolution of the northern margin of the North China Craton. Precambr Res 222–223:124–142. doi: 10.1016/j.precamres.2011.07.020 CrossRefGoogle Scholar
  25. Hariya Y, Kennedy GC (1968) Equilibrium study of anorthite under high pressure and high temperature. Am J Sci 266:193–203. doi: 10.2475/ajs.266.3.193 CrossRefGoogle Scholar
  26. Harley SL (2008) Refining the PT records of UHT crustal metamorphism. J Metamorph Geol 26:125–154. doi: 10.1111/j.1525-1314.2008.00765.x CrossRefGoogle Scholar
  27. Hauck J (1981) Crystallography and phase relations of MeO–M2O3–TiO2 systems (Me = Fe, Mg, Ni; M = Al, Cr, Fe). J Solid State Chem 36:52–65. doi: 10.1016/0022-4596(81)90191-2 CrossRefGoogle Scholar
  28. Higgins JB, Ribbe PH, Herd RK (1979) Sapphirine I: crystal chemical contributions. CMP 68:349–356Google Scholar
  29. Holland T, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343CrossRefGoogle Scholar
  30. Holland T, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. CMP 145:492–501. doi: 10.1007/s00410-003-0464-z Google Scholar
  31. Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383. doi: 10.1111/j.1525-1314.2010.00923.x CrossRefGoogle Scholar
  32. Holland T, Powell R (2015) AX: a program to calculate activities of mineral endmembers from chemical analyses. University of Cambridge. Retrieved from http://www.esc.cam.ac.uk/research/research-groups/research-projects/tim-hollands-software-pages/ax
  33. Karmakar S, Schenk V (2015) Neoarchean UHT metamorphism and Paleoproterozoic UHT reworking at Uweinat in the East Sahara Ghost Craton, SW Egypt: evidence from petrology and texturally controlled in situ monazite dating. J Petrol 56:1703–1742. doi: 10.1093/petrology/egv051 CrossRefGoogle Scholar
  34. Karmakar S, Schenk V (2016) Mesoproterozoic UHT metamorphism in the Southern Irumide Belt, Chipata, Zambia: petrology and in situ monazite dating. Precambr Res 275:332–356. doi: 10.1016/j.precamres.2016.01.018 CrossRefGoogle Scholar
  35. Kelsey DE (2008) On ultra high-temperature crustal metamorphism. Gondwana Res 13:1–29. doi: 10.1016/j.gr.2007.06.001 CrossRefGoogle Scholar
  36. Kornprobst J, Piboule M, Roden M, Tabit A (1990) Corundum-bearing garnet clinopyroxenites at Beni Bousera (Morocco): original plagioclase-rich gabbros recrystallized at depth within the mantle? J Petrol 31:717–745. doi: 10.1093/petrology/31.3.717 CrossRefGoogle Scholar
  37. Kruckenberg SC, Whitney DL (2011) Metamorphic evolution of sapphirine- and orthoamphibole–cordierite-bearing gneiss, Okanogan dome, Washington, USA. J Metamorph Geol 29:425–449. doi: 10.1111/j.1525-1314.2010.00926.x CrossRefGoogle Scholar
  38. Kullerud K, Nasipuri P, Ravna EJK, Selbekk RS (2012) Formation of corundum megacrysts during H2O-saturated incongruent melting of feldspar: PT pseudosection-based modelling from the Skattøra migmatite complex, North Norwegian Caledonides. CMP 164:627–641. doi: 10.1007/s00410-012-0765-1 Google Scholar
  39. Lang HM, Rice JM (1985) Regression modelling of metamorphic reactions in metapelites, Snow Peak, Northern Idaho. J Petrol 26:857–887. doi: 10.1093/petrology/26.4.857 CrossRefGoogle Scholar
  40. Lang HM, Wachter AJ, Peterson VL, Ryan JG (2004) Coexisting clinopyroxene/spinel and amphibole/spinel symplectites in metatroctolites from the Buck Creek ultramafic body, North Carolina Blue Ridge. Am Mineral 89:20–30. doi: 10.2138/am-2004-0104 CrossRefGoogle Scholar
  41. Leake BE, Kato A, Kisch HJ et al (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can Mineral 35:219–246Google Scholar
  42. Leake BE, Woolley AR, Birch WD, Burke E (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Associationʼs amphibole nomenclature. Am Mineral 89:883–887Google Scholar
  43. Liu TC, Presnall DC (1990) Liquidus phase relationships on the join anorthite–forsterite–quartz at 20 kbar with applications to basalt petrogenesis and igneous sapphirine. CMP 104:735–742. doi: 10.1007/bf01167290 Google Scholar
  44. Mohan MR, Satyanarayanan M, Santosh M et al (2013) Neoarchean suprasubduction zone arc magmatism in southern India: geochemistry, zircon U-Pb geochronology and Hf isotopes of the Sittampundi Anorthosite Complex. Gondwana Res 23:539–557. doi: 10.1016/j.gr.2012.04.004 CrossRefGoogle Scholar
  45. Morishita T (2004) Possible non-melted remnants of subducted lithosphere: experimental and geochemical evidence from corundum-bearing mafic rocks in the Horoman Peridotite Complex, Japan. J Petrol 45:235–252. doi: 10.1093/petrology/egg105 CrossRefGoogle Scholar
  46. Morishita T, Arai S (2001) Petrogenesis of corundum-bearing mafic rock in the Horoman Peridotite Complex, Japan. J Petrol 42:1279–1299. doi: 10.1093/petrology/42.7.1279 CrossRefGoogle Scholar
  47. Morishita T, Kodera T (1998) Finding of corundum-bearing gabbro boulder possibly derived from the Horoman Peridotite Complex, Hokkaido, northern Japan. J Mineral Petrol Econ Geol 93:52–63. doi: 10.2465/ganko.93.52 CrossRefGoogle Scholar
  48. Morishita T, Arai S, Gervilla F (2001) High-pressure aluminous mafic rocks from the Ronda peridotite massif, southern Spain: significance of sapphirine- and corundum-bearing mineral assemblages. Lithos 57:143–161. doi: 10.1016/s0024-4937(01)00036-6 CrossRefGoogle Scholar
  49. Mukhopadhyay D, Kumar PS, Srinivasan R, Bhattacharya T (2003) Nature of the Palghat-Cauvery lineament in the region South of Namakkal, Tamil Nadu: implications for terrane assembly in the South Indian granulite Province. Mem Geol Soc India 50:279–296Google Scholar
  50. Müntener O, Hermann J (1996) The Val Malenco lower crust-upper mantle complex and its field relations (Italian Alps). Schweiz Mineral Petrogr Mitt 76:475–500. doi: 10.5169/seals-57711 Google Scholar
  51. Peck WH, Valley JW (1996) The Fiskenaesset Anorthosite Complex: stable isotope evidence for shallow emplacement into Archean ocean crust. Geol 24:523. doi: 10.1130/0091-7613(1996)024<0523:TFACSI>2.3.CO;2 CrossRefGoogle Scholar
  52. Polat A, Appel PWU, Fryer B et al (2009) Trace element systematics of the Neoarchean Fiskenæsset anorthosite complex and associated meta-volcanic rocks, SW Greenland: evidence for a magmatic arc origin. Precambr Res 175:87–115. doi: 10.1016/j.precamres.2009.09.002 CrossRefGoogle Scholar
  53. Pouchou JL, Pichoir F (1984) A new model for quan- titative X-ray microanalysis: I. Application to the analysis of homogeneous samples. La Recherche Aéro-spatiale 3:167–192Google Scholar
  54. Raith M, Karmakar S, Brown M (1997) Ultra-high-temperature metamorphism and multistage decompressional evolution of sapphirine granulites from the Palni Hill Ranges, southern India. J Metamorph Geol 15:379–399CrossRefGoogle Scholar
  55. Raith MM, Srikantappa C, Buhl D, Koehler H (1999) The Nilgiri enderbites, South India: nature and age constraints on protolith formation, high-grade metamorphism and cooling history. Precambr Res 98:129–150. doi: 10.1016/s0301-9268(99)00045-5 CrossRefGoogle Scholar
  56. Raith MM, Rakotondrazafy R, Sengupta P (2008) Petrology of corundum–spinel–sapphirine–anorthite rocks (sakenites) from the type locality in southern Madagascar. J Metamorph Geol 26:647–667. doi: 10.1111/j.1525-1314.2008.00779.x CrossRefGoogle Scholar
  57. Raith MM, Brandt S, Sengupta P, Berndt J, John T, Srikantappa C (2016) Element mobility and behaviour of zircon during HT metasomatism of ferroan basic granulite at Ayyarmalai, South India: evidence for polyphase Neoarchaean crustal growth and multiple metamorphism in the Northeastern Madurai Province. J Petrology 57(9):1729–1774. doi: 10.1093/petrology/egw057 Google Scholar
  58. Rollinson H, Reid C, Windley B (2010) Chromitites from the Fiskenæsset anorthositic complex, West Greenland: clues to late Archaean mantle processes. Geol Soc Lond Spec Publ 338:197–212. doi: 10.1144/SP338.10 CrossRefGoogle Scholar
  59. Sack RO, Ghiorso MS (1991) An internally consistent model for the thermodynamic properties of Fe–Mg–titanomagnetite–aluminate spinels. CMP 107:415. doi: 10.1007/BF00325108 Google Scholar
  60. Sajeev K, Windley BF, Connolly JAD, Kon Y (2009) Retrogressed eclogite (20 kbar, 1020 °C) from the Neoproterozoic Palghat-Cauvery suture zone, southern India. Precambr Res 171:23–36. doi: 10.1016/j.precamres.2009.03.001 CrossRefGoogle Scholar
  61. Sen G, Presnall DC (1984) Liquidus phase relationships on the join anorthite–forsterite–quartz at 10 kbar with applications to basalt petrogenesis. CMP 85:404–408. doi: 10.1007/BF01150296 Google Scholar
  62. Sengupta P, Dasgupta S (2009) Modelling of metamorphic textures with C-space: evidence of pan-african high-grade reworking in the Eastern Ghats Belt, India. In: Gupta AK, Dasgupta S (eds) Physics and chemistry of the earth’s interior. Springer, New York, pp 29–39CrossRefGoogle Scholar
  63. Sengupta P, Raith MM, Levitsky VI (2004) Compositional characteristics and paragenetic relations of magnesiohögbomite in aluminous amphibolites from the Belomorian complex, Baltic Shield, Russia. Am Mineral 89:819–831CrossRefGoogle Scholar
  64. Sengupta P, Bhui UK, Braun I et al (2009a) Chemical substitutions, paragenetic relations, and physical conditions of formation of hogbomite in the Sittampundi layered anorthosite complex, South India. Am Mineral 94:1520–1534. doi: 10.2138/am.2009.3121 CrossRefGoogle Scholar
  65. Sengupta P, Dutta U, Bhui UK, Mukhopadhyay D (2009b) Genesis of wollastonite- and grandite-rich skarns in a suite of marble-calc-silicate rocks from Sittampundi, Tamil Nadu: constraints on the PT–fluid regime in parts of the Pan-African mobile belt of South India. Mineral Petrol 95:179–200. doi: 10.1007/s00710-008-0037-y CrossRefGoogle Scholar
  66. Sengupta P, Raith MM, Kooijman E et al (2015) Provenance, timing of sedimentation and metamorphism of metasedimentary rock suites from the Southern Granulite Terrane, India. Geol Soc Lon Mem 43:297–308. doi: 10.1144/M43.20 CrossRefGoogle Scholar
  67. Shazia JR, Santosh M, Sajeev K (2012) Peraluminous sapphirine-cordierite pods in Mg-rich orthopyroxene granulite from southern India: implications for lower crustal processes. J Asian Earth Sci 58:88–97. doi: 10.1016/j.jseaes.2012.06.020 CrossRefGoogle Scholar
  68. Shimpo M, Tsunogae T, Santosh M (2006) First report of garnet–corundum rocks from southern India: implications for prograde high-pressure (eclogite-facies?) metamorphism. EPSL 242:111–129. doi: 10.1016/j.epsl.2005.11.042 CrossRefGoogle Scholar
  69. Simonet C, Paquette JL, Pin C et al (2004) The Dusi (Garba Tula) sapphire deposit, Central Kenya—a unique Pan-African corundum-bearing monzonite. J Afr Earth Sci 38:401–410. doi: 10.1016/j.jafrearsci.2004.02.002 CrossRefGoogle Scholar
  70. Sisson TW, Grove TL (1993) Temperatures and H2O contents of low-MgO high-alumina basalts. CMP 113:167–184. doi: 10.1007/bf00283226 Google Scholar
  71. Subramaniam AP (1956) Mineralogy and petrology of the Sittampundi Complex, Salem District, Madras State, India. Bull Geol Soc Am 67:317–390CrossRefGoogle Scholar
  72. Suman D, Bhattacharya A, Raith MM et al (2006) Aluminous sapphirine granulites from the Eastern Ghats Belt (India): phase relations and relevance to counterclockwise PT history. Eur J Mineral 18:35–48CrossRefGoogle Scholar
  73. Sutherland FL, Coenraads RR (1996) An unusual ruby–sapphire–sapphirine–spinel assemblage from the Tertiary Barrington volcanic province, New South Wales, Australia. Mineral Mag 60:623–638. doi: 10.1180/minmag.1996.060.401.08 CrossRefGoogle Scholar
  74. Takagi D, Sato H, Nakagawa M (2005) Experimental study of a low-alkali tholeiite at 1–5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite. CMP 149:527–540. doi: 10.1007/s00410-005-0666-7 Google Scholar
  75. Talukdar M (2016) Metamorphic evolution of some layered magmatic complexes from parts of the southern Granulite Terrane, Tamil Nadu, India. PhD Thesis Jadavpur University–Kolkata–IndiaGoogle Scholar
  76. Taylor-Jones K, Powell R (2010) The stability of sapphirine + quartz: calculated phase equilibria in FeO–MgO–Al2O3–SiO2–TiO2–O. J Metamorph Geol 28:615–633. doi: 10.1111/j.1525-1314.2010.00883.x CrossRefGoogle Scholar
  77. Tenthorey EA, Ryan JG, Snow EA (1996) Petrogenesis of sapphirine-bearing metatroctolites from the Buck Creek ultramafic body, southern Appalachians. J Metamorph Geol 14:103–114. doi: 10.1046/j.1525-1314.1996.05793.x Google Scholar
  78. Torres-Roldan RL, Garcia-Casco A, Garcia-Sanchez PA (2000) CSpace: an integrated workplace for the graphical and algebraic analysis of phase assemblages on 32-bit Wintel platforms. Comput Geosci 26:779–793CrossRefGoogle Scholar
  79. Tsunogae T, Santosh M (2005) Ti-free högbomite in spinel- and sapphirine-bearing Mg–Al rock from the Palghat-Cauvery shear zone system, southern India. Mineral Mag 69:937–949CrossRefGoogle Scholar
  80. Vernon RH (2004) A practical guide to rock microstructure. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  81. White RW, Powell R (2011) On the interpretation of retrograde reaction textures in granulite facies rocks. J Metamorph Geol 29:131–149. doi: 10.1111/j.1525-1314.2010.00905.x CrossRefGoogle Scholar
  82. White RW, Powell R, Holland T (2001) Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). JMG 19:139–153. doi: 10.1093/petrology/egi079 CrossRefGoogle Scholar
  83. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187. doi: 10.2138/am.2010.3371 CrossRefGoogle Scholar
  84. Windley BF, Bishop FC, Smith JV (1981) Metamorphosed layered igneous complexes in Archaean granulite-gneiss belts. Annu Rev Earth Planet Sci 9:175–198CrossRefGoogle Scholar
  85. Zhang RY, Liou JG, Zheng JP (2004) Ultrahigh-pressure corundum-rich garnetite in garnet peridotite, Sulu terrane, China. CMP 147:21–31. doi: 10.1007/s00410-003-0545-z Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Shreya Karmakar
    • 1
  • Subham Mukherjee
    • 1
  • Sanjoy Sanyal
    • 1
  • Pulak Sengupta
    • 1
  1. 1.Department of Geological SciencesJadavpur UniversityKolkataIndia

Personalised recommendations