Geochemistry, mineralogy, and zircon U–Pb–Hf isotopes in peraluminous A-type granite xenoliths in Pliocene–Pleistocene basalts of northern Pannonian Basin (Slovakia)

  • Monika Huraiová
  • Jean-Louis Paquette
  • Patrik Konečný
  • Abdel-Mouhcine Gannoun
  • Vratislav Hurai
Original Paper

Abstract

Anorogenic granite xenoliths occur in alkali basalts coeval with the Pliocene–Pleistocene continental rifting of the Pannonian Basin. Observed granite varieties include peraluminous, calcic to peralkalic, magnesian to ferroan types. Quartz and feldspars are dominant rock-forming minerals, accompanied by minor early ilmenite and late magnetite–ulvöspinel. Zircon and Nb–U–REE minerals (oxycalciopyrochlore, fergusonite, columbite) are locally abundant accessory phases in calc-alkalic types. Absence of OH-bearing Fe, Mg-silicates and presence of single homogeneous feldspars (plagioclase in calcic types, anorthoclase in calc-alkalic types, ferrian Na-sanidine to anorthoclase in alkalic types) indicate water-deficient, hypersolvus crystallization conditions. Variable volumes of interstitial glass, absence of exsolutions, and lacking deuteric hydrothermal alteration and/or metamorphic/metasomatic overprint are diagnostic of rapid quenching from hypersolidus temperatures. U–Pb zircon ages determined in calcic and calc-alkalic granite xenoliths correspond to a time interval between 5.7 and 5.2 Ma. Positive εHf values (14.2 ± 3.9) in zircons from a 5.2-Ma-old calc-alkalic granite xenolith indicate mantle-derived magmas largely unaffected by the assimilation of crustal material. This is in accordance with abundances of diagnostic trace elements (Rb, Y, Nb, Ta), indicating A1-type, OIB-like source magmas. Increased accumulations of Nb–U–REE minerals in these granites indicate higher degree of the magmatic differentiation reflected in Rb-enrichment, contrasting with Ba-enrichment in barren xenoliths. Incipient charnockitization, i.e. orthopyroxene and ilmenite crystallization from interstitial silicate melt, was observed in many granite xenoliths. Thermodynamic modeling using pseudosections showed that the orthopyroxene growth may have been triggered by water exsolution from the melt during ascent of xenoliths in basaltic magma. Euhedral-to-skeletal orthopyroxene growth probably reflects contrasting ascent rates of basaltic magma with xenoliths, intermitted by the stagnation in various crustal levels at a <3 kbar pressure. The Tertiary suite of intra-plate, mantle-derived A1-type granites and syenites is geochemically distinct from pre-Tertiary, post-orogenic A2-type granites of the Carpatho–Pannonian region, which exhibit geochemical features diagnostic of crustal melting along continental margins.

Keywords

Granite xenolith Hf isotopes U–Pb zircon dating Pyrochlore Slovakia 

Supplementary material

410_2017_1379_MOESM1_ESM.xls (440 kb)
Supplementary material 1 (XLS 440 kb)

References

  1. Åmli R, Griffin WL (1975) Standards and correction factors for microprobe analysis of REE minerals. Am Mineral 60:599–606Google Scholar
  2. Atencio D, Andrade MB, Christy AG, Gieré R, Kartashov PM (2010) The pyrochlore supergroup of minerals: nomenclature. Can Mineral 48:673–698CrossRefGoogle Scholar
  3. Boehnke P, Watson BE, Trail D, Harrison MT, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334CrossRefGoogle Scholar
  4. Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97:1–29CrossRefGoogle Scholar
  5. Bonin B, Sørensen H (2003) The granites of the Mykle region in the southern part of the Oslo igneous province, Norway. NGU Bull 441:17–24Google Scholar
  6. Bouseily AM, Sokkary AA (1975) The relation between Rb, Ba and Sr in granitic rocks. Chem Geol 16:207–219CrossRefGoogle Scholar
  7. Broska I, Uher P (2001) Whole-rock chemistry and genetic typology of the West-Carpathian Variscan granites. Geol Carpath 52:79–90Google Scholar
  8. Broska I, Williams CT, Uher P, Konečný P, Leichmann J (2004) The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: the role of apatite and P-bearing feldspar. Chem Geol 205:1–15CrossRefGoogle Scholar
  9. Černý P, Ercit TS (1989) Mineralogy of niobium and tantalum: crystal chemical relationships, paragenetic aspects and their economic implications. In: Möller P, Černý P, Saupé F (eds) Lanthanides, tantalum and niobium. Springer, Heidelberg, pp 27–79Google Scholar
  10. Cherniak DJ, Watson EB (2001) Pb diffusion in zircon. Chem Geol 172:5–24CrossRefGoogle Scholar
  11. Chudík P, Uher P (2009) Pyrochlore-group minerals from granite pegmatites of Western Carpathians: compositional variations and substitution mechanisms. Miner Slov 41:159–168 (in Slovak) Google Scholar
  12. Connolly JAD (1990) Multivariable phase-diagrams—an algorithm based on generalized thermodynamics. Am J Sci 290:666–718CrossRefGoogle Scholar
  13. Connolly JAD (1992) Elementary phase diagrams: principles and methods. In: Pressure and temperature evolution of orogenic belts. 5th Summer School, Geologia e Petrologia dei Basamenti Cristallini. University of Siena and Italian National Research Council, Italy, pp 203–220Google Scholar
  14. Connolly JAD, Cesare B (1993) C–O–H–S fluid composition and oxygen fugacity in graphitic metapelites. J Metamorph Geol 11:379–388CrossRefGoogle Scholar
  15. Dérerová J, Zeyen H, Bielik M, Salman K (2006) Application of integrated geophysical modeling for determination of the continental lithospheric thermal structure in the eastern Carpathians. Tectonics 25:TC3009CrossRefGoogle Scholar
  16. Dianiška I, Uher P, Hurai V, Huraiová M, Frank W, Konečný P, Kráľ J (2007) Mineralization of rare-metal granites. In: Hurai V (ed) Source of fluids and origin of mineralizations of the Gemeric Unit. Geological Project 0503: source of fluids and metallogenesis of Western Carpathians. State Geological Institute of D. Štúr and Ministry of Environment of the Slovak Republic, BratislavaGoogle Scholar
  17. Dobosi G, Fodor RV, Goldberg SA (1995) Late-Cenozoic alkali basalt magmatism in Northern Hungary and Slovakia: petrology, source compositions and relationships to tectonics. Acta Vulcanol 7:189–198Google Scholar
  18. Downes H, Vaselli O (1995) The lithospheric mantle beneath the Carpathian–Pannonian Region: a review of trace element and isotopic evidence from ultramafic xenoliths. Acta Vulcanol 7:219–229Google Scholar
  19. Duan Z, Møller N, Weare J (1995) Equation of state for NaCl–H2O–CO2 system: prediction of phase equilibria and volumetric properties. Geochim Cosmochim Acta 59:2869–2882CrossRefGoogle Scholar
  20. Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134CrossRefGoogle Scholar
  21. Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644CrossRefGoogle Scholar
  22. Embey-Isztin A, Downes H, Kempton P, Dobosi G, Thirlwall M (2003) Lower crustal granulite xenoliths from the Pannonian Basin, Hungary. Part 1: mineral chemistry, thermobarometry and petrology. Contrib Mineral Petrol 144:652–670CrossRefGoogle Scholar
  23. Frost CD, Frost BR (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52:39–55CrossRefGoogle Scholar
  24. Frost BR, Arculus RJ, Barnes CG, Collins W, Ellis DJ, Frost CD (2001) A geochemical classification of granitic rocks. J Petrol 42:2033–2048CrossRefGoogle Scholar
  25. Grantham GH, Mendonidis P, Thomas RJ, Satish-Kumar M (2012) Multiple origins of charnockite in the Mesoproterozoic Natal belt, Kwazulu-Natal, South Africa. Geosci Front 3:755–771CrossRefGoogle Scholar
  26. Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477CrossRefGoogle Scholar
  27. Hatert F, Burke EAJ (2008) The IMA–CNMNC dominant-constituent rule revisited and extended. Can Mineral 46:717–728CrossRefGoogle Scholar
  28. Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircon to unravel the record of crustal evolution. Chem Geol 226:144–162CrossRefGoogle Scholar
  29. Hirtopanu P, Andersen J, Fairhurst R (2010) Nb, Ta, REE(Y), Ti, Zr, Th, U and Te rare element minerals within the Ditrău alkaline intrusive complex, Eastern Carpathians, Romania. In: Szakáll S, Kristály F (eds) Mineralogy of Székelyland, Eastern Transylvania, Romania. Csik County Nature and Conservation Society, Miercurea Ciuc, pp 89–128Google Scholar
  30. Holland T, Powell R (1996) Thermodynamics of order-disorder in minerals. 2. Symmetric formalism applied to solid solutions. Am Mineral 81:1425–1437CrossRefGoogle Scholar
  31. Holland T, Powell R (1998) An internally consistent thermodynamic dataset for phases of petrological interest. J Metamorph Geol 16:309–343CrossRefGoogle Scholar
  32. Holland T, Powell R (2001) Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. J Petrol 42:673–683CrossRefGoogle Scholar
  33. Hovorka D, Fejdi P (1980) Spinel peridotite xenoliths in West Carpathian late tectonic alkali basalts and their tectonic significance. Bull Volcanol 43:95–105CrossRefGoogle Scholar
  34. Hurai V, Simon K, Wiechert U, Hoefs J, Konečný P, Huraiová M, Pironon J, Lipka J (1998) Immiscible separation of metalliferous Fe/Ti-oxide melts from fractionating alkali basalt: P-T-fO2 conditions and two-liquid elemental partitioning. Contrib Mineral Petrol 133:12–29CrossRefGoogle Scholar
  35. Hurai V, Huraiová M, Konečný P, Thomas R (2007) Mineral-melt-fluid composition of carbonate-bearing cumulate xenoliths in Tertiary alkali basalts of southern Slovakia. Mineral Mag 71:63–79CrossRefGoogle Scholar
  36. Hurai V, Paquette J-L, Huraiová M, Konečný P (2010) U–Th–Pb geochronology of zircon and monazite from syenite and pincinite xenoliths in Pliocene alkali basalts of the intra-Carpathian back-arc basin. J Volcanol Geotherm Res 198:275–287CrossRefGoogle Scholar
  37. Hurai V, Huraiová M, Milovský R, Luptáková J, Konečný P (2013) High-pressure aragonite phenocrysts in carbonatite and carbonated syenite xenoliths within an alkali basalt. Am Mineral 98:1074–1077CrossRefGoogle Scholar
  38. Hurai V, Huraiová M, Slobodník M, Thomas R (2015) Geofluids. Developments in microthermometry, spectroscopy, thermodynamics, and stable isotopes. Elsevier, AmsterdamGoogle Scholar
  39. Huraiová M, Konečný P (1994) Pressure-temperature conditions and oxidation state of the upper mantle in southern Slovakia. Acta Geol Hung 37:33–44Google Scholar
  40. Huraiová M, Konečný P (2006) U–Pb–Th dating and chemical composition of monazite from syenite and pincinite xenoliths from the Late Miocene maar near Pinciná. Miner Slov 38:141–150 (in Slovak) Google Scholar
  41. Huraiová M, Konečný P, Konečný V, Simon K, Hurai V (1996) Mafic and salic igneous xenoliths in Late Tertiary alkaline basalts: fluid inclusion and mineralogical evidence for a deep-crustal magmatic reservoir in the Western Carpathians. Eur J Mineral 8:901–916CrossRefGoogle Scholar
  42. Huraiová M, Dubessy J, Konečný P, Simon K, Kráľ J, Zielinski G, Lipka J, Hurai V (2005) Glassy orthopyroxene granodiorites of the Pannonian Basin: tracers of ultra-high-temperature deep-crustal anatexis triggered by Tertiary basaltic volcanism. Contrib Mineral Petrol 148:615–633CrossRefGoogle Scholar
  43. Huraiová M, Konečný P, Hurai V (2007) Chevkinite-(Ce)—REE-Ti silicate from syenite xenoliths in the Pinciná basaltic maar near Lučenec (Southern Slovakia). Miner Slov 39:255–268 (in Slovak) Google Scholar
  44. Huraiová M, Konečný P, Holický I, Milovská S, Nemec O, Hurai V (2017) Mineralogy and origin of peralkaline granite-syenite nodules ejected in Pleistocene basalt from Bulhary, southern Slovakia. Period Mineral 86:1–17Google Scholar
  45. Irvine TN, Baragar WRA (1971) A guide to chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548CrossRefGoogle Scholar
  46. Kempton PD, Downes H, Embey-Isztin A (1997) Mafic granulite xenoliths in Neogene alkali basalts from the Western Pannonian basin: insights into lower crust of a collapsed orogen. J Petrol 38:941–970CrossRefGoogle Scholar
  47. Kilpatrick JA, Ellis DJ (1992) C-type magmas: igneous charnockites and their intrusive equivalents. Trans R Soc Edinb Earth Sci 83:155–164CrossRefGoogle Scholar
  48. King PL, White AJR, Chappell BW, Allen CM (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. J Petrol 38:371–391CrossRefGoogle Scholar
  49. Konečný V (2007) Palaeogeographical reconstruction, volcanology and time evolution of the Cerova basalt formation. In: Vass D, Elečko M, Konečný V (eds) Geology of Lučenec depression and Cerova highlands. Štátny geologický ústav D. Štúra, Bratislava, pp 196–202 (in Slovak) Google Scholar
  50. Konečný P, Konečný V, Lexa J, Huraiová M (1995a) Mantle xenoliths in alkali basalts of southern Slovakia. Acta Vulcanol 7:241–247Google Scholar
  51. Konečný V, Lexa J, Balogh K, Konečný P (1995b) Alkali basalt volcanism in Southern Slovakia: volcanic forms and time evolution. Acta Vulcanol 7:167–172Google Scholar
  52. Konečný V, Kováč M, Lexa J, Šefara J (2002) Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGU Stephan Mueller Spec Publ Ser 1:105–123CrossRefGoogle Scholar
  53. Konečný P, Siman P, Holický I, Janák M, Kollárová V (2004) Method of monazite dating by means of the microprobe. Miner Slov 36:225–235 (in Slovak) Google Scholar
  54. Kovács I, Szabó C (2005) Petrology and geochemistry of granulite xenoliths beneath the Nógrád–Gömör Volcanic Field, Carpathian–Pannonian Region (N-Hungary/S-Slovakia). Mineral Petrol 85:269–290CrossRefGoogle Scholar
  55. Kovács I, Zajacz Z, Szabó C (2004) Type-II xenoliths and related metasomatism from the Nógrád–Gömör Volcanic Field, Carpathian–Pannonian region (northern Hungary–southern Slovakia). Tectonophysics 393:139–161CrossRefGoogle Scholar
  56. Loiselle MC, Wones DR (1979) Characteristics and origin of anorogenic granites. Geol Soc Am Abstr Progr II:468Google Scholar
  57. Lowenstern JB, Clynne MA, Bullen TD (1997) Comagmatic A-type granophyre and rhyolite from the Alid Volcanic Center, Eritrea, Northeast Africa. J Petrol 38:1707–1721CrossRefGoogle Scholar
  58. Mackay DAR, Simandl GJ (2015) Pyrochlore and columbite-tantalite as indicator minerals for specialty metal deposits. Geochem Explor Environ Anal 15:167–178CrossRefGoogle Scholar
  59. Magna T, Janoušek V, Kohút M, Oberli F, Wiechert U (2010) Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites. Chem Geol 274:94–107CrossRefGoogle Scholar
  60. Middlemost AK (1994) Naming materials in the magma/igneous rock system. Earth Sci Rev 37:215–224CrossRefGoogle Scholar
  61. Morogan V, Upton BGJ, Fitton JG (2000) The petrology of the Ditrau alkaline complex, Eastern Carpathians. Mineral Petrol 69:227–265CrossRefGoogle Scholar
  62. Nemcok M, Pospisil L, Lexa J, Donelick RA (1998) Tertiary subduction and slab break-off model of the Carpathian–Pannonian region. Tectonophysics 295:307–340CrossRefGoogle Scholar
  63. Newton RC, Charlu TV, Kleppa OJ (1980) Thermochemistry of the high structural state plagioclases. Geochim Cosmochim Acta 44:933–941CrossRefGoogle Scholar
  64. Ondrejka M (2004) A-type rhyolites of Silicicum in the continental rifting environment of Western Carpathians: geochemistry, mineralogy, petrology. PhD thesis, Faculty of Sciences, Comenius University, Bratislava (in Slovak) Google Scholar
  65. Ondrejka M, Uher P, Pršek J, Ozdín D (2007) Arsenian monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec-Rejkovo rhyolite, Western Carpathians, Slovakia: composition and substitutions in the (REE, Y)XO4 system (X = P, As, Si, Nb, S). Lithos 95:116–129CrossRefGoogle Scholar
  66. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983CrossRefGoogle Scholar
  67. Peccerillo R, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  68. Petrík I (2000) Multiple sources of the West-Carpathian Variscan granitoids: a review of Rb/Sr and Sm/Nd data. Geol Carpath 51:145–158Google Scholar
  69. Pouchou J-L, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model PAP. In: Heinrich KFJ, Newbury D (eds) Electron probe quantitation. Plenum Press, New York, pp 31–76CrossRefGoogle Scholar
  70. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931CrossRefGoogle Scholar
  71. Shand SJ (1943) Eruptive rocks. Their genesis, composition, classification, and their relation to ore deposits, with a chapter on meteorite. Wiley, New YorkGoogle Scholar
  72. Shao F, Niu Y, Regelous M, Zhu D-Ch (2015) Petrogenesis of peralkaline rhyolites in an intra-plate setting: Glass House Mountains, southeast Queensland, Australia. Lithos 216–217:196–210CrossRefGoogle Scholar
  73. Shellnutt JG, Zhou M-F (2007) Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume. Chem Geol 243:286–316CrossRefGoogle Scholar
  74. Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25:1509–1596CrossRefGoogle Scholar
  75. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, vol 42. Geological Society Special Publications, London, pp 313–345Google Scholar
  76. Szabó C, Taylor L (1994) Mantle petrology and geochemistry beneath the Nógrád–Gömör volcanic field, Carpathian–Pannonian region. Int Geol Rev 36:328–358CrossRefGoogle Scholar
  77. Szabó C, Harangi S, Vaselli O, Downes H (1995) Temperature and oxygen fugacity in peridotite xenoliths from the Carpathian–Pannonian region. Acta Vulcanol 7:231–239Google Scholar
  78. Tašárová A, Afonso JC, Bielik M, Götze H-J, Hók J (2009) The lithospheric structure of the Western Carpathian–Pannonian Basin region based on the CELEBRATION2000 seismic experiment and gravity modeling. Tectonophysics 475:454–469CrossRefGoogle Scholar
  79. Tera F, Wasserburg GJ (1972) U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304CrossRefGoogle Scholar
  80. Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol Soc Am Mem 74:1–153CrossRefGoogle Scholar
  81. Uher P, Pushkarev Yu (1994) Granitic pebbles of the Cretaceous flysch of the Pieniny Klippen Belt, Western Carpathians: U/Pb zircon ages. Geol Carpath 45:375–378Google Scholar
  82. Uher P, Černý P, Chapman R, Határ J, Miko O (1998) Evolution of Nb, Ta-oxide minerals in the Prašivá granitic pegmatites, Slovakia. II. External hydrothermal Pb,Sb-overprint. Can Mineral 36:535–545Google Scholar
  83. Uher P, Ondrejka M, Konečný P (2009) Magmatic and post-magmatic Y–REE–Th phosphate, silicate and Nb–Ta–Y–REE oxide minerals in A-type metagranite: an example from the Turčok massif, the Western Carpathians, Slovakia. Mineral Mag 73:1009–1025CrossRefGoogle Scholar
  84. Wang C, Chen L, Bagas L, Lu Y, He X, Lai X (2016) Characterization and origin of the Taishanmiao aluminous A-type granites: implications for early Cretaceous lithospheric thinning at the southern margin of the North China Craton. Int J Earth Sci 105:1563–1589CrossRefGoogle Scholar
  85. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304CrossRefGoogle Scholar
  86. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419CrossRefGoogle Scholar
  87. White RW, Powell R, Holland TJB, Worley BA (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 18:497–511CrossRefGoogle Scholar
  88. White RW, Powell R, Holland TJB (2001) Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). J Metamorph Geol 19:139–153CrossRefGoogle Scholar
  89. Wilkinson JFG, Taylor SR (1980) Trace element fractionation trends of tholeiitic magma at moderate pressure: evidence from Al-spinel ultramafic-mafic inclusion suite. Contrib Mineral Petrol 75:225–233CrossRefGoogle Scholar
  90. Wu C, Yuan Z, Bai G (1996) Rare earth deposits in China. In: Jones AP, Wall F, Willimas CT (eds) Rare earth minerals: chemistry, origin and ore deposits. Chapman and Hill, London, pp 281–310Google Scholar
  91. Zajacz Z, Szabó C (2003) Origin of sulfide inclusions in cumulate xenoliths from Nógrád–Gömör Volcanic Field, Pannonian Basin (north Hungary/south Slovakia). Chem Geol 194:105–117CrossRefGoogle Scholar
  92. Zajacz Z, Kovács I, Szabó C, Halter W, Pettke T (2007) Evolution of mafic alkaline melts crystallized in the uppermost lithospheric mantle: a melt inclusions study of olivine-clinopyroxene xenoliths, northern Hungary. J Petrol 48:853–883CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mineralogy and PetrologyComenius UniversityBratislavaSlovakia
  2. 2.Laboratoire Magmas & VolcansUniversité Clermont Auvergne, CNRS, IRD, OPGCClermont-FerrandFrance
  3. 3.State Geological Institute of Dionýz ŠtúrBratislavaSlovakia
  4. 4.Institute of Earth SciencesSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations