Phosphorus zoning as a recorder of crystal growth kinetics: application to second-generation olivine in mantle xenoliths from the Cima Volcanic Field

  • I. Baziotis
  • P. D. Asimow
  • T. Ntaflos
  • J. W. Boyce
  • F. M. McCubbin
  • A. Koroneos
  • D. Perugini
  • S. Flude
  • M. Storey
  • Y. S. Liu
  • S. Klemme
  • J. Berndt
Original Paper


Composite mantle xenoliths from the Cima Volcanic Field (CA, USA) contain glassy veins that cross-cut lithologic layering and preserve evidence of lithospheric melt infiltration events. Compositions and textures of minerals and glasses from these veins have the potential to place constraints on the rates and extents of reaction during infiltration. We studied glass-bearing regions of two previously undescribed composite xenoliths, including optical petrography and chemical analysis for major and trace elements by electron probe microanalysis and laser-ablation inductively coupled plasma mass spectrometry. The petrogenetic history of each vein involves melt intrusion, cooling accompanied by both wall-rock reaction and crystallization, quench of melt to a glass, and possibly later modifications. Exotic secondary olivine crystals in the veins display concentric phosphorus (P)-rich zoning, P-rich glass inclusions, and zoning of rapidly diffusing elements (e.g., Li) that we interpret as records of rapid disequilibrium events and cooling rates on the order of 10 °C/h. Nevertheless, thermodynamic modeling of the diversity of glass compositions recorded in one of the samples demonstrates extensive reaction with Mg-rich olivine from the matrix before final quench. Our results serve as a case study of methods for interpreting the rates and processes of lithospheric melt-rock reactions in many continental and oceanic environments.


Olivine rapid growth Phosphorus zoning Boundary layer Diffusive relaxation Mantle xenoliths Metasomatism 



The studied specimens were loaned for this research by the Division of Petrology and Volcanology, Department of Mineral Sciences, Smithsonian Institution. We are grateful for the editorial handling by Mark Ghiorso, and the fruitful comments made by Benoit Welsch and an anonymous reviewer. I.B. funds for this research project implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program “Education and Lifelong Learning” (Action’s Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State, and the IKYDA project with title: “Petrology and Geochemistry of composite mantle xenoliths”. PDA is supported by the US NSF through geoinformatics award EAR-1550934. Quadlab is funded by a Grant to MS from the Villum Foundation. JWB was supported by NASA Grant NNX13AG40G. DP acknowledges the European Research Council (ERC) for the Consolidator Grant ERC-2013-CoG No. 612776–CHRONOS. We are really grateful for thoughtful comments by Prof. Ed Stolper and his contributions throughout the gestation of this manuscript. An earlier version of this manuscript was reviewed by G. Wörner, Cliff Shaw, Benoit Welsch, and an anonymous reviewer.

Supplementary material

410_2017_1376_MOESM1_ESM.tif (97 kb)
Fig.S1 Münster EPMA analyses of standard reference materials using the same analytical conditions as the EPMA P-in-Olivine analyses (15kV, 50 nA, 20 s peak and 10 s background counting time) compared to the published P-concentrations (TIFF 97 kb)
410_2017_1376_MOESM2_ESM.tif (2.4 mb)
Fig.S2 Münster LA-ICP-MS trace element analyses of the reference materials BCR2-G (a), BIR1-G (b) and BHVO2-G (c) using various internal standards, compared to preferred GeoRem concentrations. (d) Measured Li concentrations for reference materials compared to preferred published concentrations; all protocols tested are successful except for 26Mg internal standard in BCR-2G (TIFF 2457 kb)
410_2017_1376_MOESM3_ESM.jpg (6.6 mb)
Fig.S3 Thin section mosaic for sample Ci-1-196 showing the protogranular to porphyroclastic dunite layer at the left, and equigranular websterite and lherzolite layers in the middle (JPEG 6786 kb)
410_2017_1376_MOESM4_ESM.tif (5.5 mb)
Fig.S4 Sample Ci-1-196 BSE images. (a) Spinel with sieved margin between olivine crystals in the lherzolite matrix. (b) Enlarged view of part of the sieved margin in contact with plagioclase, olivine and glass (TIFF 5667 kb)
410_2017_1376_MOESM5_ESM.tif (5.3 mb)
Fig.S5 Sample Ci-1-196 BSE images. (a) Amphibole partly decomposed to a glass-bearing symplectite. (b) Enlarged view of symplectite, composed of glass, clinopyroxene, olivine and orthopyroxene (TIFF 5461 kb)
410_2017_1376_MOESM6_ESM.tif (6.6 mb)
Fig.S6 Sample Ki-5-301 BSE images. (a) Orthopyroxene crystals hosting rounded sulfide inclusions and interstitial clinopyroxene grains. (b) Large (600 × 1200 μm) anhedral spinel occurring in the lherzolite layer showing thin sieved margins and non-sieve core (TIFF 6784 kb)
410_2017_1376_MOESM7_ESM.tif (7 mb)
Fig.S7 Sample Ki-5-301 BSE images. (a) Apatite-free area of vein with a maximum width ~50 μm; Fe-rich olivine formed as overgrowth on olivine and as discrete grains between pyroxene and glass (former melt). (b) Ilmenite crystals up to ~20 μm occur within the glass layer or as thin rims on plagioclase (TIFF 7158 kb)
410_2017_1376_MOESM8_ESM.tif (1021 kb)
Fig.S8 Trace element patterns normalized to primitive mantle (PM) for (a) olivine, (b) clinopyroxene, (c) glass and (d) apatite. In (a), all analyses correspond to olivine crystals from MV (TIFF 1020 kb)
410_2017_1376_MOESM9_ESM.tif (664 kb)
Fig.S9 Rare earth elements normalized to CI chondrite for (a) olivine, (b) clinopyroxene, (c) glass and (d) apatite. In (a), all analyses correspond to olivine crystals from MV. Symbols as in Fig. S6 (TIFF 663 kb)
410_2017_1376_MOESM10_ESM.tif (491 kb)
Fig.S10 Pyroxene compositional range projected into Wo-En-Fs ternary. Analyses range from augite to diopside while covering a significant range in Fe content (triangles: sample Ci-1-196; boxes: Ki-5-301) (TIFF 490 kb)
410_2017_1376_MOESM11_ESM.tif (2.3 mb)
Fig.S11 MgO variation diagrams for major oxides (in wt%) for glass analyses in sample Ci-1-196. Abbreviations as in Fig. 5 (TIFF 2368 kb)
410_2017_1376_MOESM12_ESM.tif (1.6 mb)
Fig.S12 TAS diagram and MgO variation diagrams for major oxides (in wt%) and Mg# for glass analyses in sample Ki-5-301. Abbreviations as in Fig. 5. Glass composition fields as in figure 6 (TIFF 1589 kb)
410_2017_1376_MOESM13_ESM.tif (3.7 mb)
Fig.S13 Qualitative X-ray maps (Ca, Na, Ti) of the olivine grain shown in Fig. 4f from sample Ki-5-301 (the rest of the x-ray maps are given in fig.12). The upper part is shown on panels a-c and the lower part on panels d-f. Brighter grey-scale values indicate higher concentration of the indicated element. Discrete spinel, apatite, and glass inclusions are visible in the olivine (TIFF 3753 kb)
410_2017_1376_MOESM14_ESM.xlsx (12 kb)
Supplementary material 14 (XLSX 12 kb)
410_2017_1376_MOESM15_ESM.xlsx (16 kb)
Supplementary material 15 (XLSX 16 kb)
410_2017_1376_MOESM16_ESM.xlsx (12 kb)
Supplementary material 16 (XLSX 11 kb)


  1. Adam J, Green T (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior. Contrib Miner Petrol 152:1–17CrossRefGoogle Scholar
  2. Agrell SO, Charnley NR, Chinner GA (1998) Phosphoran olivine from Pine Canyon, Piute Co., Utah. Mineral Mag 62:265–269CrossRefGoogle Scholar
  3. Allison CM, Porter RC, Fouch MJ, Semken S (2013) Seismic evidence for lithospheric modification beneath the Mojave Neovolcanic Province, Southern California. Geophys Res Lett 40(19):5119–5124CrossRefGoogle Scholar
  4. Asimow PD (1999) A model that reconciles major-and trace-element data from abyssal peridotites. Earth Planet Sci Lett 169(3):303–319CrossRefGoogle Scholar
  5. Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Miner 83:1127–1132CrossRefGoogle Scholar
  6. Asimow PD, Hirschmann MM, Stolper EM (2001) Calculation of peridotite partial melting from thermodynamic models of minerals and melts, IV. Adiabatic decompression and the composition and mean properties of mid-ocean ridge basalts. J Petrol 42(5):963–998CrossRefGoogle Scholar
  7. Asimow PD, Dixon JE, Langmuir CH (2004) A hydrous melting and fractionation model for mid-ocean ridge basalts: application to the Mid-Atlantic Ridge near the Azores. Geochem Geophys Geosyst 5(1):1–24CrossRefGoogle Scholar
  8. Baker MB, Hirschmann MM, Ghiorso MS, Stolper EM (1995) Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 375(6529):308–311CrossRefGoogle Scholar
  9. Beattie P (1993) The effect of partial melting of spinel peridotite on uranium series disequilibria: constraints from partitioning studies. Earth Planet Sci Lett 177:379–391CrossRefGoogle Scholar
  10. Behr WM, Hirth G (2014) Rheological properties of the mantle lid beneath the Mojave region in southern California. Earth Planet Sci Lett 393:60–72CrossRefGoogle Scholar
  11. Benn K, Nicolas A, Reuber I (1988) Mantle—crust transition zone and origin of wehrlitic magmas: Evidence from the Oman ophiolite. Tectonophysics 151(1–4):75–85CrossRefGoogle Scholar
  12. Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372(6505):452–454CrossRefGoogle Scholar
  13. Boesenberg JS, Hewins RH (2010) An experimental investigation into the metastable formation of phosphoran olivine and pyroxene. Geochim Cosmochim Ac 74:1923–1941CrossRefGoogle Scholar
  14. Boesenberg JS, Delaney JS, Hewins RH (2012) A petrological and chemical reexamination of Main Group pallasites formation. Geochim Cosmochim Ac 89:134–158CrossRefGoogle Scholar
  15. Boudier F, Nicolas A (1995) Nature of the Moho transition zone in the Oman ophiolite. J Petrol 36(3):777–796CrossRefGoogle Scholar
  16. Boudier F, Nicolas A, Ildefonse B (1996) Magma chambers in the Oman ophiolite: Fed from the top and the bottom. Earth Planet Sci Lett 144(1–2):239–250CrossRefGoogle Scholar
  17. Brunet F, Chazot G (2001) Partitioning of phosphorus between olivine, clinopyroxene and silicate glass in a spinel xenolith from Yemen. Chem Geol 176:51–72CrossRefGoogle Scholar
  18. Davis GA, Fowler TK, Bishop K, Brudos TC, Friedmann SJ, Parke ML, Burchfiel BC (1993) Pluton pinning of an active Miocene detachment fault system eastern Mojave Desert, California. Geology 21:267–270CrossRefGoogle Scholar
  19. Demény A, Vennemann TW, Hegner E, Nagy G, Milton JA, Embey-Isztin A, Homonnay Z, Dobosi G (2004) Trace element and C–O–Sr–Nd isotope evidence for subduction-related carbonate–silicate melts in mantle xenoliths (Pannonian Basin, Hungary). Lithos 75(1):89–113CrossRefGoogle Scholar
  20. Demouchy S, Jacobsen SD, Gaillard F, Stern CR (2006) Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 34(6):429–432CrossRefGoogle Scholar
  21. Demouchy S, Ishikawa A, Tommasi A, Alard O, Keshav S (2015) Characterization of hydration in the mantle lithosphere: Peridotite xenoliths from the Ontong Java Plateau as an example. Lithos 212–215:189–201CrossRefGoogle Scholar
  22. Dohmen R, Kaseman S, Coogan L, Chakraborty S (2010) Diffusion of Li in olivine I: Experimental observations and multispecies diffusion model. Geochim Cosmochim Ac 74:274–292CrossRefGoogle Scholar
  23. Downes H (2001) Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of Western and Central Europe. J Petrol 42:233–250CrossRefGoogle Scholar
  24. Draper DS, Green TH (1997) P-T phase relations of silicic, alkaline, aluminous mantle-xenolith glasses under anhydrous and C–O–H fluid-saturated conditions. J Petrol 38:1187–1224CrossRefGoogle Scholar
  25. Ducea M, Sen G, Eiler J, Fimbres J (2002) Melt depletion and subsequent metasomatism in the shallow mantle beneath Koolau volcano, Oahu (Hawaii). Geochem Geophys Geosyst 3(2). doi: 10.1029/2001GC000184
  26. Dunn T (1987) Partitioning of Hf, Lu, Ti, and Mn between olivine, clinopyroxene and basaltic liquid. Contrib Miner Petrol 96(4):476–484CrossRefGoogle Scholar
  27. Dunn T, Sen C (1994) Mineral/matrix partition-coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. Geochim Cosmochim Ac 58(2):717–733. doi: 10.1016/0016-7037(94)90501-0 CrossRefGoogle Scholar
  28. Elardo SM, Shearer CK (2014) Magma chamber dynamics recorded by oscillatory zoning in pyroxene and olivine phenocrysts in basaltic lunar meteorite Northwest Africa 032. Am Miner 99:355–368CrossRefGoogle Scholar
  29. Ennis ME, McSween HY (2014) Crystallization kinetics of olivine-phyric shergottites. Met Planet Sci 49(8):1440–1455CrossRefGoogle Scholar
  30. Eriksson R, Hayashi M, Seetharaman S (2003) Thermal diffusivity measurements of liquid silicate melts. Int J Thermophys 24(3):785–797CrossRefGoogle Scholar
  31. Farmer GL, Glazner AF, Wilshire HG, Wooden JL, Pickthorn WJ, Katz M (1995) Origin of late Cenozoic basalts at the Cima volcanic field, Mojave Desert, California. J Geophys Res 100:8399–8415CrossRefGoogle Scholar
  32. Faure F, Trolliard G, Nicollet C, Montel JM (2003) A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib Miner Petrol 145(2):251–263CrossRefGoogle Scholar
  33. First E, Hammer J (2016) Igneous cooling history of olivine-phyric shergottite Yamato 980459 constrained by dynamic crystallization experiments. Met Planet Sci 7:1233–1255CrossRefGoogle Scholar
  34. Foley SF, Prelevic D, Rehfeldt T, Jacob DE (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet Sci Lett 363:181–191CrossRefGoogle Scholar
  35. Fonseca RO, Mallmann G, Sprung P, Sommer JE, Heuser A, Speelmanns IM, Blanchard H (2014) Redox controls on tungsten and uranium crystal/silicate melt partitioning and implications for the U/W and Th/W ratio of the lunar mantle. Earth Planet Sci Lett 404:1–13CrossRefGoogle Scholar
  36. Gass IG (1968) Is the Troodos massif of Cyprus a fragment of Mesozoic ocean floor? Nature 220(5162):39–42CrossRefGoogle Scholar
  37. Gass IG, Masson-Smith D (1963) The geology and gravity anomalies of the troodos massif, cyprus. Phil Trans Roy Soc London Series A Math Phys Eng Sci 255(1060):417–467CrossRefGoogle Scholar
  38. Gee LL, Sack RO (1988) Experimental petrology of melilite nephelinites. J Petrol 29(6):1233–1255CrossRefGoogle Scholar
  39. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Miner Petrol 119(2–3):197–212CrossRefGoogle Scholar
  40. Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC (2002) The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosystems 3(5):1–35CrossRefGoogle Scholar
  41. Goodrich CA (1984) Phosphoran pyroxene and olivine in silicate inclusions in natural iron-carbon alloy, Disko Island, Greenland. Geochim Cosmochim Ac 48(5):1115–1126CrossRefGoogle Scholar
  42. Grant TB, Kohn SC (2013) Phosphorus partitioning between olivine and melt: an experimental study in the system Mg2SiO4–Ca2Al2Si2O9–NaAlSi3O8–Mg3(PO4)2. Am Miner 98:1860–1869CrossRefGoogle Scholar
  43. Grégoire M, Chevet J, Maaloe S (2010) Composite xenoliths from Spitsbergen: evidence of the circulation of MORB-related melts within the upper mantle. Geologic Soc London Special Publications 337(1):71–86CrossRefGoogle Scholar
  44. Hawkesworth CJ, Rogers NW, van Calsteren PWC, Menzies MA (1984) Mantle enrichment processes. Nature 311:331–335CrossRefGoogle Scholar
  45. Hilchie L, Fedortchouk Y, Matveev S, Kopylova MG (2014) The origin of high hydrogen content in kimberlitic olivine: Evidence from hydroxyl zonation in olivine from kimberlites and mantle xenoliths. Lithos 202:429–441CrossRefGoogle Scholar
  46. Holycross ME, Watson EB (2016) Diffusive fractionation of trace elements in basaltic melt. Contrib Miner Petrol 171(10):80CrossRefGoogle Scholar
  47. Howarth GH, Barry PH, Pernet-Fisher JF, Baziotis IP, Pokhilenko NP, Pokhilenko LN, Bodnar RJ, Taylor LA, Agashev AM (2014) Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184:209–224CrossRefGoogle Scholar
  48. Ionov DA, Hofmann AW, Shimizu N (1994) Metasomatism-induced melting in mantle xenoliths from Mongolia. J Petrol 35:753–785CrossRefGoogle Scholar
  49. Ionov DA, Bodinier JL, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J Petrol 43(12):2219–2259CrossRefGoogle Scholar
  50. Irving AJ (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkali basalts and implications for magmatic processes within the mantle. Am J Sci 280-A:389–426Google Scholar
  51. Jambon A, Lussiez P, Clocchiatti R, Weisz J, Hernandez J (1992) Olivine growth rates in a tholeiitic basalt: an experimental study of melt inclusions in plagioclase. Chem Geol 96(3):277–287CrossRefGoogle Scholar
  52. Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostandards Geoanalytical Res 29:285–302CrossRefGoogle Scholar
  53. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards Geoanalytical Res 35:397–429CrossRefGoogle Scholar
  54. Kempton PD (1987) Mineralogic and geochemical evidence for differing styles of metasomatism in spinel lherzolite xenoliths: enriched mantle source regions of basalts. In: Menzies M, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 45–89Google Scholar
  55. Kinzler RJ, Langmuir CH (1995) Minute mantle melts. Nature 375(6529):274–275CrossRefGoogle Scholar
  56. Lagabrielle Y, Bodinier JL (2008) Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites French Pyrenees. Terra Nova 20(1):11–21CrossRefGoogle Scholar
  57. Laubier M, Grove TL, Langmuir CH (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet Sci Lett 392:265–278CrossRefGoogle Scholar
  58. Le Roux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259(3):599–612CrossRefGoogle Scholar
  59. Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257(1–2):34–43CrossRefGoogle Scholar
  60. Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D (2009) Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51:537–571CrossRefGoogle Scholar
  61. Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D (2010a) Continental and oceanic crust recycling-induced melt–peridotite interactions in the trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51(1–2):537–571CrossRefGoogle Scholar
  62. Liu S, Su W, Hu R, Feng C, Gao S, Coulson IM, Wang T, Feng G, Tao Y, Xia Y (2010b) Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from southwest Guizhou Province, SW China. Lithos 114(1):253–264CrossRefGoogle Scholar
  63. Lofgren G (1980) Experimental studies on the dynamic crystallization of silicate melts. In: Hargraves RB (ed) The physics of magmatic processes, Princeton University Press, Princeton, New Jersey, pp 487–551Google Scholar
  64. Lorand JP, Alard O, Luguet A (2010) Platinum-group element micronuggets and refertilization process in Lherz orogenic peridotite (northeastern Pyrenees, France). Earth Planet Sci Lett 289(1):298–310CrossRefGoogle Scholar
  65. Ludington S, Moring BC, Miller RJ, Stone PA, Bookstrom AA, Bedford DR, Hopkins MJ (2007) Preliminary integrated geologic map databases for the United States. California, Nevada, Arizona, Washington, Oregon, Idaho, and Utah. Version, Western States, p 1Google Scholar
  66. Luffi P, Saleeby JB, Lee C-TA, Ducea MN (2009) Lithospheric mantle duplex beneath the central Mojave desert revealed by xenoliths from Dish Hill, California. J Geophys Res 114:B03202. doi: 10.1029/2008JB005906 CrossRefGoogle Scholar
  67. Maisonneuve CB, Costa F, Huber C, Vonlanthen P, Bachmann O, Dungan MA (2016) How do olivines record magmatic events? Insights from major and trace element zoning. Contrib Miner Petrol 171(6):1–20CrossRefGoogle Scholar
  68. Mallmann G, O’Neill HCSt, Klemme S (2009) Heterogeneous distribution of phosphorus in olivine from otherwise well-equilibrated spinel peridotite xenoliths and its implications for the mantle geochemistry of lithium. Contrib Miner Petrol 158:485–504CrossRefGoogle Scholar
  69. McCanta MC, Beckett JR, Stolper EM (2016) Correlations and zoning patterns of phosphorus and chromium in olivine from H chondrites and the LL chondrite Semarkona. Met Planet Sci 51:520–546CrossRefGoogle Scholar
  70. McCubbin FM, Shearer CK, Burger PV, Hauri EH, Wang JH, Elardo SM, Papike JJ (2014) Volatile abundances of coexisting merrillite and apatite in the martian meteorite Shergotty: implications for merrillite in hydrous magmas. Am Miner 99:1347–1354CrossRefGoogle Scholar
  71. McCubbin FM, Vander Kaaden KE, Tartese R, Boyce JW, Mikhail S, Whitson ES, Bell AS, Anand M, Franchi IA, Wang JH, Hauri EH (2015) Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1.0–1.2 GPa and 950–1000 °C. Am Miner 100:1790–1802CrossRefGoogle Scholar
  72. Menzies MA, Rogers N, Tindle AG, Hawkesworth CJ (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. In: Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 313–361Google Scholar
  73. Mercier JC, Nicolas A (1975) Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–487CrossRefGoogle Scholar
  74. Miller C, Zanetti A, Thöni M, Konzett J, Klötzli U (2012) Mafic and silica-rich glasses in mantle xenoliths from Wau-en-Namus, Libya: Textural and geochemical evidence for peridotite–melt reactions. Lithos 128:11–26CrossRefGoogle Scholar
  75. Milman-Barris MS, Beckett JR, Baker MB, Hofmann AE, Morgan Z, Crowley MR, Vielzeuf D, Stolper E (2008) Zoning of phosphorus in igneous olivines. Contrib Miner Petrol 155:739–765CrossRefGoogle Scholar
  76. Moores EM, Vine FJ (1971) The Troodos Massif, cyprus and other ophiolites as oceanic crust: evaluation and implications. Phil Trans Roy Soc London Series A Math Phys Eng Sci 268(1192):443–467CrossRefGoogle Scholar
  77. Mukasa SB, Wilshire HG (1997) Isotopic and trace element compositions of upper mantle and lower crustal xenoliths, Cima volcanic field, California: implications for evolution of the subcontinental lithospheric mantle. J Geophys Res 102:20133–20148CrossRefGoogle Scholar
  78. Nealey LD, Sheridan MF (1989) Post-Laramide volcanic rocks of Arizona and northern Sonora, Mexico, and their inclusions, geologic evolution of Arizona. Arizona Geol Soc Digest 17:609–648Google Scholar
  79. Nekvasil H, Dondolini A, Horn J, Filiberto J, Long H, Lindsley DH (2004) The origin and evolution of silica-saturated alkalic suites: an experimental study. J Petrol 45(4):693–721CrossRefGoogle Scholar
  80. Nicolas A, Prinzhofer A (1983) Cumulative or residual origin for the transition zone in ophiolites: Structural evidence. J Petrol 24(2):188–206CrossRefGoogle Scholar
  81. Nielson JE, Budahn JR, Unruh DM, Wilshire HG (1993) Actualistic models of mantle metasomatism documented in a composite xenolith from Dish Hill, Californiac. Geochim Cosmochim Ac 57(1):105–121CrossRefGoogle Scholar
  82. Ottolini L, Laporte D, Raffone N, Devidal JL, Le Fèvre B (2009) New experimental determination of Li and B partition coefficients during upper mantle partial melting. Contrib Miner Petrol 157(3):313–325CrossRefGoogle Scholar
  83. Pertermann M, Hofmeister AM (2006) Thermal diffusivity of olivine-group minerals at high temperature. Am Miner 91(11–12):1747–1760CrossRefGoogle Scholar
  84. Peslier AH, Bizimis M (2014) H diffusion in olivine and pyroxene from peridotite xenoliths and a Hawaiian magma speedometer. Lunar and Planetary Science and Exploration, Goldschmidt, 8–13 June, Sacramento, CaliforniaGoogle Scholar
  85. Peslier AH, Woodland AB, Wolff JA (2008) Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa. Geochim Cosmochim Ac 72(11):2711–2722CrossRefGoogle Scholar
  86. Pilet S, Ulmer P, Villiger S (2010) Liquid line of descent of a basanitic liquid at 1.5 GPa: constraints on the formation of metasomatic veins. Contrib Miner Petrol 159(5):621–643CrossRefGoogle Scholar
  87. Ryan JG (1989) The systematics of lithium, beryllium and boron in young volcanic rocks. Ph.D. Dissertation, Columbia University, New YorkGoogle Scholar
  88. Sakyi PA, Tanaka R, Kobayashi K, Nakamura E (2012) Inherited Pb isotopic records in olivine antecryst-hosted melt inclusions from Hawaiian lavas. Geochim Cosmochim Ac 95:169–195CrossRefGoogle Scholar
  89. Schiano P, Clocchiatti R (1994) Worldwide occurrence of silica-rich melts in sub-continental and sub-oceanic mantle minerals. Nature 368(6472):621–624CrossRefGoogle Scholar
  90. Schiano P, Clocchiatti R, Shimizu N, Weis D, Mattielli N (1994) Cogenetic silica-rich and carbonate-rich melts trapped in mantle minerals in Kerguelen ultramafic xenoliths: implications for metasomatism in the oceanic upper mantle. Earth Planet Sci Lett 123(1):167–178CrossRefGoogle Scholar
  91. Schulte-Pelkum V, Biasi G, Sheehan A, Jones C (2011) Differential motion between upper crust and lithospheric mantle in the central Basin and Range. Nature Geosciences 4(9):619–623CrossRefGoogle Scholar
  92. Shaw CSJ, Klügel A (2002) The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel, Germany: the case for amphibole breakdown, lava infiltration and mineral: melt reaction. Miner Petrol 74:163–187CrossRefGoogle Scholar
  93. Shaw CS, Heidelbach F, Dingwell DB (2006) The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for “metasomatism” by the host lava. Contrib Miner Petrol 151(6):681–697CrossRefGoogle Scholar
  94. Shea T, Lynn KJ, Garcia MO (2015) Cracking the olivine zoning code: distinguishing between crystal growth and diffusion. Geology 43(10):935–938CrossRefGoogle Scholar
  95. Shearer CK, Aaron PM, Burger PV, Guan Y, Bell AS, Papike JJ (2013) Petrogenetic linkages among fO2, isotopic enrichments-depletions and crystallization history in Martian basalts. Evidence from the distribution of phosphorus in olivine megacrysts. Geochim Cosmochim Ac 120:17–38CrossRefGoogle Scholar
  96. Smith PM, Asimow PD (2005) Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem Geophys Geosystems 6(2):Q02004. doi: 10.1029/2004GC000816 CrossRefGoogle Scholar
  97. Soedjatmiko B, Christensen NI (2000) Seismic anisotropy under extended crust: evidence from upper mantle xenoliths, Cima volcanic field, California. Tectonophysics 321(3):279–296CrossRefGoogle Scholar
  98. Solovova IP, Girnis AV, Kogarko LN, Kononkova NN (2005) Compositions of magmas and carbonate-silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy. Lithos 85:113–128CrossRefGoogle Scholar
  99. Spandler C, O’Neill HSC (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1300 C with some geochemical implications. Contrib Miner Petrol 159(6):791–818CrossRefGoogle Scholar
  100. Spandler C, O’Neill HSC, Kamenetsky VS (2007) Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature 447(7142):303–306CrossRefGoogle Scholar
  101. Taura H, Yurimoto H, Kurita K, Sueno S (1998) Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts. Phys Chem Miner 25(7):469–484CrossRefGoogle Scholar
  102. Tiller WA, Jackson KA, Rutter JW, Chalmers B (1953) The redistribution of solute atoms during the solidification of metals. Acta Metall 1(4):428–437CrossRefGoogle Scholar
  103. Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase relations, and mineral–melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170CrossRefGoogle Scholar
  104. Toplis MJ, Libourel G, Carroll MR (1994) The role of phosphorus in crystallisation processes of basalt: an experimental study. Geochim Cosmochim Ac 58(2):797–810CrossRefGoogle Scholar
  105. Tropper P, Recheis A, Konzett J (2004) Pyrometamorphic formation of phosphorus-rich olivines in partially molten metapelitic gneisses from a prehistoric sacrificial burning site (Ötz Valley, Tyrol, Austria). Eur J Miner 16(4):631–640CrossRefGoogle Scholar
  106. Tschegg C, Ntaflos T, Kiraly F, Harangi S (2010) High temperature corrosion of olivine phenocrysts in Pliocene basalts from Banat, Romania. Austrian J Earth Sci 103(1):101–110Google Scholar
  107. Turrin BD, Dohrenwend JC, Drake RE, Curtis GH (1985) K-Ar ages from the Cima volcanic field, eastern Mojave Desert, California. Isochron West 44:9–16Google Scholar
  108. Villemant B (1988) Trace-element evolution in the Phlegrean fields (Central-Italy): fractional crystallization and selective enrichment. Contrib Miner Petrol 98(2):169–183CrossRefGoogle Scholar
  109. Warren JM, Hauri EH (2014) Pyroxenes as tracers of mantle water variations. J Geophys Res Solid Earth 119(3):1851–1881CrossRefGoogle Scholar
  110. Watson EB, Liang Y (1995) A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am Miner 80(11–12):1179–1187CrossRefGoogle Scholar
  111. Watson EB, Müller T (2009) Non-equilibrium isotopic and elemental fractionation during diffusion-controlled crystal growth under static and dynamic conditions. Chem Geol 267:111–124CrossRefGoogle Scholar
  112. Watson EB, Cherniak DJ, Holycross ME (2015) Diffusion of phosphorus in olivine and molten basalt. Am Miner 100:2053–2065CrossRefGoogle Scholar
  113. Welsch B, Faure F, Famin V, Baronnet A, Bachèlery P (2013) Dendritic crystallization: a single process for all the textures of olivine in basalts? J Petrol 54(3):539–574CrossRefGoogle Scholar
  114. Welsch B, Hammer J, Hellebrand E (2014) Phosphorus zoning reveals dendritic architecture of olivine. Geology 42:867–870CrossRefGoogle Scholar
  115. Welsch B, Hammer J, Baronnet A, Jacob S, Hellebrand E, Sinton J (2016) Clinopyroxene in postshield Haleakala ankaramite: 2. Texture, compositional zoning and supersaturation in the magma. Contrib Miner Petrol 171(1):1–19CrossRefGoogle Scholar
  116. Wilshire HG, McGuire AV (1996) Magmatic infiltration and melting in the lower crust and upper mantle beneath the Cima volcanic field, California. Contrib Miner Petrol 123:358–374CrossRefGoogle Scholar
  117. Wilshire HG, Meyer CE, Nakata JK, Calk LC, Shervais JW, Nielson JE, Schwarzman EC (1988) Mafic and ultramafic xenoliths from volcanic rocks of the western United States. United States Geol Survey Prof Paper 1443:179Google Scholar
  118. Wilshire HG, McGuire AV, Noller JS, Turrin BD (1991) Petrology of lower crustal and upper mantle xenoliths from the Cima volcanic field, California. J Petrol 32:169–200CrossRefGoogle Scholar
  119. Witt-Eickschen G, Kramm U (1998) Evidence for the multiple stage evolution of the subcontinental lithospheric mantle beneath the Eifel (Germany) from pyroxenite and composite pyroxenite/peridotite xenoliths. Contrib Miner Petrol 131(2–3):258–272CrossRefGoogle Scholar
  120. Witt-Eickschen G, O’Neill HSC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221(1):65–101CrossRefGoogle Scholar
  121. Wulff-Pedersen E, Neumann ER, Jensen BB (1996) The upper mantle under La Palma, Canary Islands: formation of Si–K–Na-rich melt and its importance as a metasomatic agent. Contrib Miner Petrol 125(2–3):113–139CrossRefGoogle Scholar
  122. Wood BJ, Blundy JD (2001) The effect of cation charge on crystal–melt partitioning of trace elements. Earth Planet Sci Lett 188(1):59–71CrossRefGoogle Scholar
  123. Wulff-Pedersen E, Neumann ER, Vannucci R, Bottazzi P, Ottolini L (1999) Silicic melts produced by reaction between peridotite and infiltrating basaltic melts: ion probe data on glasses and minerals in veined xenoliths from La Palma, Canary Islands. Contrib Miner Petrol 137:59–82CrossRefGoogle Scholar
  124. Yaxley GM, Kamenetsky V (1999) In situ origin for glass in mantle xenoliths from southeastern Australia: insights from trace element compositions of glasses and metasomatic phases. Earth Planet Sci Lett 172:97–109CrossRefGoogle Scholar
  125. Yurtmen S, Rowbotham G, İşler F, Floyd PA (2000) Petrogenesis of basalts from southern Turkey: the Plio-Quaternary volcanism to the north of Iskenderun Gulf. Geological Society London Special Publications 173(1):489–512CrossRefGoogle Scholar
  126. Zanetti A, Tiepolo M, Oberti R, Vannucci R (2004) Trace-element partitioning in olivine: modelling of a complete data set from a synthetic hydrous basanite melt. Lithos 75(1):39–54CrossRefGoogle Scholar
  127. Zhang HF, Nakamura E, Kobayashi K, Ying JF, Tang YJ (2010a) Recycled crustal melt injection into lithospheric mantle: implication from cumulative composite and pyroxenite xenoliths. Int J Earth Sci 99(6):1167–1186CrossRefGoogle Scholar
  128. Zhang Y, Ni H, Chen Y (2010b) Diffusion data in silicate melts. Rev Miner Geochem 72:311–408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • I. Baziotis
    • 1
  • P. D. Asimow
    • 2
  • T. Ntaflos
    • 3
  • J. W. Boyce
    • 4
  • F. M. McCubbin
    • 5
  • A. Koroneos
    • 6
  • D. Perugini
    • 7
  • S. Flude
    • 8
    • 11
  • M. Storey
    • 8
    • 12
  • Y. S. Liu
    • 9
  • S. Klemme
    • 10
  • J. Berndt
    • 10
  1. 1.Natural Resources and Agricultural EngineeringAgricultural University of AthensAthensGreece
  2. 2.California Institute of TechnologyDivision of Geological and Planetary SciencesPasadenaUSA
  3. 3.Department of Lithospheric ResearchUniversity of ViennaViennaAustria
  4. 4.NASA Johnson Space CenterMailcode XI3HoustonUSA
  5. 5.NASA Johnson Space CenterHoustonUSA
  6. 6.Department of Mineralogy-Petrology-Economic GeologyAristotle University of ThessalonikiThessalonikiGreece
  7. 7.Department of Physics and GeologyUniversity of PerugiaPerugiaItaly
  8. 8.Department of Environmental, Social and Spatial ChangeQuadlab, Roskilde UniversityRoskildeDenmark
  9. 9.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina
  10. 10.Westfälische Wilhelms-Univ. MünsterInstitut für MineralogieMünsterGermany
  11. 11.School of GeosciencesThe University of EdinburghEdinburghUK
  12. 12.Quadlab, Natural History Museum of DenmarkCopenhagenDenmark

Personalised recommendations