Advertisement

Flow behavior and microstructures of hydrous olivine aggregates at upper mantle pressures and temperatures

  • Tomohiro OhuchiEmail author
  • Takaaki Kawazoe
  • Yuji Higo
  • Akio Suzuki
Original Paper

Abstract

Deformation experiments on olivine aggregates were performed under hydrous conditions using a deformation-DIA apparatus combined with synchrotron in situ X-ray observations at pressures of 1.5–9.8 GPa, temperatures of 1223–1800 K, and strain rates ranging from 0.8 × 10−5 to 7.5 × 10−5 s−1. The pressure and strain rate dependencies of the plasticity of hydrous olivine may be described by an activation volume of 17 ± 6 cm3 mol−1 and a stress exponent of 3.2 ± 0.6 at temperatures of 1323–1423 K. A comparison between previous data sets and our results at a normalized temperature and a strain rate showed that the creep strength of hydrous olivine deformed at 1323–1423 K is much weaker than that for the dislocation creep of water-saturated olivine and is similar to that for diffusional creep and dislocation-accommodated grain boundary sliding, while dislocation microstructures showing the [001] slip or the [001](100) slip system were developed. At temperatures of 1633–1800 K, a much stronger pressure effect on creep strength was observed for olivine with an activation volume of 27 ± 7 cm3 mol−1 assuming a stress exponent of 3.5, water fugacity exponent of 1.2, and activation energy of 520 kJ mol−1 (i.e., power-law dislocation creep of hydrous olivine). Because of the weak pressure dependence of the rheology of hydrous olivine at lower temperatures, water weakening of olivine could be effective in the deeper and colder part of Earth’s upper mantle.

Keywords

Olivine Upper mantle Pressure Water Grain boundary sliding Dislocation creep 

Notes

Acknowledgements

The authors wish to thank Y. Nishihara, K. Funakoshi, T. Kikegawa, and T. Irifune for their technical support for the synchrotron experiments, T. Sakai for preparation of a TEM foil using the FIB system, and K. Fujino for his help with TEM observations. Official review by three anonymous reviewers improved the manuscript. This research was conducted with the approvals of the Photon Factory Program Advisory Committee (Proposal Nos. 2010G136 and 2012G133) and SPring-8 (No. 2013B0082), supported by the Grant-in-Aid for Scientific Research (Nos. 22340161 and 25707040).

References

  1. Abramson EH, Browon JM, Slutsky LJ, Zaug J (1997) The elastic constants of San Carlos olivine up to 17 GPa. J Geophys Res 105:7893–7908Google Scholar
  2. Beran A, Libowitzky E (2006) Water in natural mantle minerals II: olivine, garnet and accessory minerals. Rev Miner Geochem 62:169–191CrossRefGoogle Scholar
  3. Bollinger C, Raterron P, Cordier P, Merkel S (2014) Polycrystaline olivine rheology in dislocation creep: revisiting experimental data to 8.1 GPa. Phys Earth Planet Inter 228:211–219CrossRefGoogle Scholar
  4. Bollinger C, Merkel S, Cordier P, Raterron P (2015) Deformation of forsterite polycrystals at mantle pressure: comparison with Fe-bearing olivine and the effect of iron on its plasticity. Phys Earth Planet Inter 240:95–104CrossRefGoogle Scholar
  5. Boneh Y, Skemer P (2014) The effect of deformation history on the evolution of olivine CPO. Earth Planet Sci Lett 406:213–222CrossRefGoogle Scholar
  6. Borch RS, Green HW (1987) Dependence of creep in olivine on homologous temperature and its implications for flow in the mantle. Nature 330:345–348CrossRefGoogle Scholar
  7. Borch RS, Green HW (1989) Deformation of peridotite at highpressure in a new molten salt cell: comparison of traditional and homologous temperature treatments. Phys Earth Planet Inter 55:269–276CrossRefGoogle Scholar
  8. Bunge HJ (1982) Texture analysis in materials science. Butterworths, LondonGoogle Scholar
  9. Chopra PN, Paterson MS (1984) The role of water in the deformation of dunite. J Geophys Res 89:7861–7876CrossRefGoogle Scholar
  10. Couvy H, Frost DJ, Heidelbach F, Nyilas K, Ungár T, Mackwell S, Cordier P (2004) Shear deformation experiments of forsterite at 11 GPa–1400 °C in the multianvil apparatus. Eur J Miner 16:877–889CrossRefGoogle Scholar
  11. Demouchy S, Tommasi A, Barou F, Mainprice D, Cordier P (2012) Deformation of olivine in torsion under hydrous conditions. Phys Earth Planet Inter 202–203:56–70CrossRefGoogle Scholar
  12. Demouchy S, Mussi A, Barou F, Tommasi A, Cordier P (2014) Viscoplasticity of polycrystalline olivine experimentally deformed at high pressure and 900 °C. Techtonophys 623:123–135CrossRefGoogle Scholar
  13. Dresen G, Wang Z, Bai Q (1996) Kinetics of grain growth in anorthite. Techtonophys 258:251–262CrossRefGoogle Scholar
  14. Durham WB, Mei S, Kohlstedt DL, Wang L, Dixon N (2009) New measurements of activation volume in olivine under anhydrous conditions. Phys Earth Planet Inter 172:67–73CrossRefGoogle Scholar
  15. Faul UH, Cline CJ, David EC, Berry AJ, Jackson I (2016) Titanium-hydroxyl defect-controlled rheology of the Earth’s upper mantle. Earth Planet Sci Lett 452:227–237CrossRefGoogle Scholar
  16. Férot A, Bolfan-Casanova N (2012) Water storage capacity in olivine and pyroxene to 14 GPa: implications for the water content of the earth’s upper mantle and nature of seismic discontinuities. Earth Planet Sci Lett 349–350:218–230CrossRefGoogle Scholar
  17. Girard J, Chen J, Raterron P III, Holyoke C (2013) Hydrolytic weakening of olivine at mantle pressure: evidence of [100](010) slip system softening from single-crystal deformation experiments. Phys Earth Planet Inter 216:12–20CrossRefGoogle Scholar
  18. Grant KJ, Brooker RA, Kohn SC, Wood BJ (2007) The effect of oxygen fugacity on hydroxyl concentrations and speciation in olivine: implications for water solubility in the upper mantle. Earth Planet Sci Lett 261:217–229CrossRefGoogle Scholar
  19. Green HW, Borch RS (1987) The pressure dependence of creep. Acta Metall 35:1301–1305CrossRefGoogle Scholar
  20. Hansen LN, Zimmerman ME, Kohlstedt DL (2011) Grain boundary sliding in San Carlos olivine: flow law parameters and crystallographic-preferred orientation. J Geophys Res 116:B08201. doi: 10.1029/2011JB008220 Google Scholar
  21. Hansen LN, Zimmerman ME, Dillman A, Kohlstedt D (2012) Strain localization in olivine aggregates at high temperature: a laboratory comparison of constant-strain-rate and constant-stress boundary conditions. Earth Planet Sci Lett 333–334:134–145CrossRefGoogle Scholar
  22. Hirschmann MM (2006) Water, melting, and the deep Earth H2O cycle. Annu Rev Earth Planet Sci 34:629–653CrossRefGoogle Scholar
  23. Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108CrossRefGoogle Scholar
  24. Hirth G, Kohlstedt DL (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In: Eiler J (ed) Inside the subduction factory, Geophys. Monogr. Ser. American Geophysical Union, pp 83–105Google Scholar
  25. Huang Y, Humphreys FJ (2000) Subgrain growth and low angle boundary mobility in aluminium crystals of orientation {110}<001>. Acta Mater 48:2017–2030CrossRefGoogle Scholar
  26. Isaak DG (1992) High-temperature elasticity of iron-bearing olivines. J Geophys Res 97:1871–1885CrossRefGoogle Scholar
  27. Jung H, Karato S (2001a) Effects of water on dynamically recrystallized grain-size of olivine. J Struct Geol 23:1337–1344CrossRefGoogle Scholar
  28. Jung H, Karato S (2001b) Water-induced fabric transitions in olivine. Science 293:1460–1463CrossRefGoogle Scholar
  29. Jung H, Katayama I, Jiang Z, Hiraga T, Karato S (2006) Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 421:1–22CrossRefGoogle Scholar
  30. Kaminski É (2002) The influence of water on the development of lattice preferred orientation in olivine aggregates. Geophys Res Lett 29:17-1. doi: 10.1029/2002GL014710 CrossRefGoogle Scholar
  31. Karato S (1989a) Defects and plastic deformation in olivine. In: Karato S, Toriumi M (eds) Rheology of solids and of the earth. Oxford University Press, London, pp 176–208Google Scholar
  32. Karato S (1989b) Grain growth kinetics in olivine aggregates. Tectonophysics 168:255–273CrossRefGoogle Scholar
  33. Karato S, Jung H (2003) Effects of pressure on high-temperature dislocation creep in olivine. Philos Mag 83:401–414CrossRefGoogle Scholar
  34. Karato S, Rubie DC (1997) Toward an experimental study of deep mantle rheology: a new multianvil sample assembly for deformation studies under high pressures and temperatures. J Geophys Res 102:20111–20122CrossRefGoogle Scholar
  35. Karato S, Paterson MS, FitzGerald JD (1986) Rheology of synthetic olivine aggregates: influence of grain size and water. J Geophys Res 91:8151–8176CrossRefGoogle Scholar
  36. Karato S, Zhang S, Wenk H-R (1995) Superplasticity in Earth’s lower mantle: evidence from seismic anisotropy and rock physics. Science 270:458–461CrossRefGoogle Scholar
  37. Katayama I, Karato S (2008) Low-temperature, high-stress deformation of olivine under water-saturated conditions. Phys Earth Planet Inter 168:125–133CrossRefGoogle Scholar
  38. Katayama I, Jung H, Karato S (2004) New type of olivine fabric from deformation experiments at modest water content and low stress. Geology 32:1045–1048CrossRefGoogle Scholar
  39. Kawazoe T, Karato S, Otsuka K, Jing Z, Mookherjee M (2009) Shear deformation of dry polycrystalline olivine under deep upper mantle conditions using a rotational Drickamer apparatus (RDA). Phys Earth Planet Inter 174:128–137CrossRefGoogle Scholar
  40. Kawazoe T, Nishihara Y, Ohuchi T, Nishiyama N, Higo Y, Funakoshi K, Irifune T (2011) In situ stress–strain measurements in a deformation-DIA apparatus at P-T conditions of the upper part of the mantle transition zone. Am Miner 96:1665–1672CrossRefGoogle Scholar
  41. Keefner JW, Mackwell SJ, Kohlstedt DL, Heidelbach F (2011) Dependence of dislocation creep of dunite on oxygen fugacity: implications for viscosity variations in Earth’s mantle. J Geophys Res 116:B05201. doi: 10.1029/2010JB007748 CrossRefGoogle Scholar
  42. Keppler H, Bolfan-Casanova N (2006) Thermodynamics of water solubility and partitioning. Rev Miner Geochem 62:193–230CrossRefGoogle Scholar
  43. Kohlstedt DL, Goetze C, Durham WB (1976a) Experimental deformation of single crystal olivine with application to flow in the mantle. In: Strens RGJ (ed) The physics and chemistry of minerals and rocks. Wiley, New York, pp 35–49Google Scholar
  44. Kohlstedt DL, Goetze C, Durham WB (1976b) New technique for decorating dislocations in olivine. Science 191:1045–1046CrossRefGoogle Scholar
  45. Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4. Contrib Miner Petrol 123:345–357CrossRefGoogle Scholar
  46. Korenaga J, Karato S (2008) A new analysis of experimental data on olivine rheology. J Geophys Res 113:B02403. doi: 10.1029/2007JB005100 CrossRefGoogle Scholar
  47. Langdon T (2006) Grain boundary sliding revisited: developments in sliding over four decades. J Mater Sci 41:597–609CrossRefGoogle Scholar
  48. Li L, Weidner D, Raterron P, Chen J, Vaughan M, Me SH, Durham B (2006) Deformation of olivine at mantle pressure using the D-DIA. Eur J Miner 18:7–19CrossRefGoogle Scholar
  49. Liu M, Kerschhofei L, Mosenfelder JL, Rubie DC (1998) The effect of strain energy on growth rates during the olivine-spinel transformation and implications for olivine metastability in subducting slabs. J Geophys Res 103:23897–23909CrossRefGoogle Scholar
  50. Liu W, Kung J, Li B (2005) Elasticity of San Carlos olivine to 8 GPa and 1073 K. Geophys Res Lett 32:L16301. doi: 10.1029/2005GL023453 CrossRefGoogle Scholar
  51. Lizarralde D, Chave A, Hirth G, Schultz A (1995) Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii to California submarine cable data. J Geophys Res 100:17837–17854CrossRefGoogle Scholar
  52. Mainprice D, Silver PG (1993) Interpretation of SKS-waves using samples from the subcontinental lithosphere. Phys Earth Planet Inter 78:257–280CrossRefGoogle Scholar
  53. McDonnell RD, Peach CJ, Spiers CJ (1999) Flow behavior of fine-grained synthetic dunite in the presence of 0.5 wt% H2O. J Geophys Res 104:17823–17845CrossRefGoogle Scholar
  54. McDonnell RD, Peach CJ, van Roermund HLM, Spiers CJ (2000) Effect of varying enstatite content on the deformation behavior of fine-grained synthetic peridotite under wet conditions. J Geophys Res 105:13535–13553CrossRefGoogle Scholar
  55. Mei S, Kohlstedt DL (2000a) Influence of water on plastic deformation of olivine aggregates 1. Diffusion creep regime. J Geophys Res 105:21457–21469CrossRefGoogle Scholar
  56. Mei S, Kohlstedt DL (2000b) Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J Geophys Res 105:21471–21481CrossRefGoogle Scholar
  57. Mercier J-C (1980) Magnitude of the continental lithospheric stresses inferred from rheomorphic petrology. J Geophys Res 85:6293–6303CrossRefGoogle Scholar
  58. Merkel S (2006) X-ray diffraction evaluation of stress in high pressure deformation experiments. J Phys Condens Matter 18:S949–S962CrossRefGoogle Scholar
  59. Miyazaki T, Sueyoshi K, Hiraga T (2014) Olivine crystals align during diffusion creep of Earth’s upper mantle. Nature 502:321–327CrossRefGoogle Scholar
  60. Nishihara Y, Shinmei T, Karato S (2006) Grain-growth kinetics in wadsleyite: effects of chemical environment. Phys Earth Planet Inter 154:30–43CrossRefGoogle Scholar
  61. Nishihara Y, Ohuchi T, Kawazoe T, Spengler D, Tasaka M, Kikegawa T, Suzuki A, Ohtani E (2014) Rheology of fine-grained forsterite aggregate at deep upper mantle conditions. J Geophys Res 119:253–273. doi: 10.1002/2013JB010473 CrossRefGoogle Scholar
  62. Ohuchi T, Irifune T (2013) Development of A-type olivine fabric in water-rich deep upper mantle. Earth Planet Sci Lett 362:20–30CrossRefGoogle Scholar
  63. Ohuchi T, Irifune T (2014) Crystallographic preferred orientation of olivine in the Earth’s deep upper mantle. Phys Earth Planet Inter 228:220–231CrossRefGoogle Scholar
  64. Ohuchi T, Kawazoe T, Nishiyama N, Nishihara Y, Irifune T (2010) Technical development of simple shear deformation experiments using a deformation-DIA apparatus. J Earth Sci 21:523–531CrossRefGoogle Scholar
  65. Ohuchi T, Karato S, Fujino K (2011) Strength of single crystal of orthopyroxene under lithospheric conditions. Contrib Miner Petrol 161:961–975CrossRefGoogle Scholar
  66. Ohuchi T, Kawazoe T, Nishihara Y, Irifune T (2012a) Change of olivine a-axis alignment induced by water: origin of seismic anisotropy in subduction zones. Earth Planet Sci Lett 317–318:111–119CrossRefGoogle Scholar
  67. Ohuchi T, Nishihara Y, Kawazoe T, Spengler D, Shiraishi R, Suzuki A, Kikegawa T, Ohtani E (2012b) Superplasticity in hydrous melt-bearing dunite: implications for shear localization in Earth’s upper mantle. Earth Planet Sci Lett 335–336:59–71CrossRefGoogle Scholar
  68. Ohuchi T, Kawazoe T, Higo Y, Funakoshi K, Suzuki A, Kikegawa T, Irifune T (2015) Dislocation-accommodated grain boundary sliding of water-rich olivine in the Earth’s deep upper mantle. Sci Adv 1:e1500360. doi: 10.1126/sciadv.1500360 CrossRefGoogle Scholar
  69. Paterson MS (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Minér 105:20–29Google Scholar
  70. Ross JV, Ave’Lallemant HG, Carter N (1979) Activation volume for creep in the upper mantle 203:261–263Google Scholar
  71. Seto Y (2012) Whole pattern fitting for two-dimensional diffraction patterns from polycrystalline materials. Rev High Press Sci Technol 22:144–152CrossRefGoogle Scholar
  72. Shiraishi R, Ohtani E, Kubo T, Doi N, Suzuki A, Shimojuku A, Kato T, Kikegawa T (2011) Deformation cubic anvil press and stress and strain measurements using monochromatic X-rays at high pressure and high temperature. High Press Res 31:399–406CrossRefGoogle Scholar
  73. Singh AK, Balasingh C, Mao H-K, Hemley RJ, Shu J (1998) Analysis of lattice strains measured under nonhydrostatic pressure. J Appl Phys 83:7567–7575CrossRefGoogle Scholar
  74. Tasaka M, Hiraga T (2013) Influence of mineral fraction on the rheological properties of forsterite + enstatite during grain-size-sensitive creep: 1 grain size and grain growth. J Geophys Res 118:3970–3990. doi: 10.1002/jgrb.50285 CrossRefGoogle Scholar
  75. Tasaka M, Zimmerman ME, Kohlstedt DL (2015) Creep behavior of Fe-bearing olivine under hydrous conditions. J Geophys Res 120:6039–6057. doi: 10.1002/2015JB012096 CrossRefGoogle Scholar
  76. van der Meijde M, Marone F, Giardini D, van der Lee S (2003) Seismic evidence for water deep in Earth’s upper mantle. Science 300:1556–1558CrossRefGoogle Scholar
  77. Van der Wal D, Chopra P, Drury M, FitzGerald J (1993) Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophys Res Lett 20:1479–1482CrossRefGoogle Scholar
  78. Vissers RLM, Drury MR, Stranting EHH, Spiers CJ, Dvd Wal (1995) Mantle shear zones and their effect on lithosphere strength during continental breakup. Tectonophysics 249:155–171CrossRefGoogle Scholar
  79. Wang Z (2002) Effects of pressure and water on the kinetic properties of olivine (PhD Thesis). University of Minnesota, p 134Google Scholar
  80. Wang D, Mookherjee M, Xu Y, Karato S (2006) The effect of water on the electrical conductivity of olivine. Nature 443:977–980CrossRefGoogle Scholar
  81. Wenk H-R, Bennett K (1991) Modelling plastic deformation of peridotite with the self-consistent theory. J Geophys Res 96:8337–8349CrossRefGoogle Scholar
  82. Withers AC, Hirschmann MM (2008) Influence of temperature, composition, silica activity and oxygen fugacity on the H2O storage capacity of olivine at 8 GPa. Contrib Miner Petrol 156:595–605CrossRefGoogle Scholar
  83. Yoshino T, Matsuzaki T, Yamashita S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443:973–976CrossRefGoogle Scholar
  84. Zhao YD, Ginsberg SB, Kohlstedt DL (2004) Solubility of hydrogen in olivine: dependence on temperature and iron content. Contrib Miner Petrol 147:155–161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Tomohiro Ohuchi
    • 1
    Email author
  • Takaaki Kawazoe
    • 1
    • 2
  • Yuji Higo
    • 3
  • Akio Suzuki
    • 4
  1. 1.Geodynamics Research CenterEhime UniversityMatsuyamaJapan
  2. 2.Bayerisches GeoinstitutUniversity of BayreuthBayreuthGermany
  3. 3.Japan Synchrotron Radiation Research InstituteSayoJapan
  4. 4.Department of Earth Science, Graduate School of ScienceTohoku UniversitySendaiJapan

Personalised recommendations