Magma storage conditions and differentiation of the mafic Lower Pollara volcanics, Salina Island, Aeolian Islands, Italy: implications for the formation conditions of shoshonites and potassic rocks

  • Oliver Beermann
  • François Holtz
  • Erik Duesterhoeft
Original Paper


Crystallization experiments of basaltic andesite mafic endmember from the 24 ka Lower Pollara eruption (Salina, Aeolian Islands, Italy) were investigated at 200 MPa, 950–1100 °C, in the H2O activity (aH2O) range ~0.3 to 1, and at two ranges of oxygen fugacity (fO2) between ~FMQ to FMQ+1 and ~FMQ+2 to FMQ+3.3 (log bars, FMQ is fayalite-magnetite-quartz). Comparison of the produced phase assemblages and phase compositions with the natural sample reveals that the storage conditions were ~1050 °C, ~2.8 wt% H2O in the melt (aH2O ~0.5), and relatively oxidizing (~FMQ+2.5). The composition of plagioclase in the groundmass indicates a period of cooling to ≤950 °C. The overall differentiation trends of the Salina volcanics can be explained by fractional crystallization close to H2O saturated conditions (~5 wt% H2O in the melt at 200 MPa) and most likely by accumulation of plagioclase, i.e., in basaltic andesites, and by various degree of mixing–mingling between the corresponding differentiates. The slightly elevated K2O contents of the most mafic basaltic andesites that can be found in the lowermost unit of the Lower Pollara pyroclastics reveal earlier processes of moderately hydrous fractional crystallization at higher temperature (>~1050 °C). Fractional crystallization with decreasing influence of H2O causes a moderate decrease of MgO and a significant increase of K2O relative to SiO2 in the residual liquids. It is exemplarily shown that the crystallization of SiO2-rich phases at high temperature and low aH2O of only moderately K2O-rich calc-alkaline basalts can produce shoshonitic and high potassic rocks similar to those of Stromboli and Volcano. This suggests that the observed transition from calc-alkaline to shoshonitic and high potassic volcanism at the Aeolian Arc over time can be initiated by a general increase of magmatic temperatures and a decrease of aH2O in response to the extensional tectonics and related increase of heat flow and declining influence of slab-derived fluids.


Aeolian Island volcanism Salina Island Lower Pollara eruption Magma storage conditions Magma differentiation Shoshonites Potassic rocks 



The starting material was collected and kindly provided by Jan Schuessler, Tina Krüsmann, and Hella Wittman-Oelze during graduate student mapping and field trip in 2003 (Leibniz Universität Hannover, Institute of Geosciences) assisted by Prof. Rosanna De Rosa (University of Calabria) and Dr. Guido Ventura (INGV). The field trip was organized by Prof. Harald Behrens and the mapping was supervised by Prof. Francois Holtz and Dr. Guido Ventura. Guido Ventura is gratefully acknowledged for his helpful comments and support in aspects of the geodynamic setting. Special thanks go to Otto Diedrich for sample preparation, Anna Schimroscyk and Magnus Johannsson for their assistance in EPMA analyses, and to Roman Botcharnikov and Sandrin Feig who provided support in the experimental laboratory. Thoroughly reviews by two anonymous reviewers significantly improved this paper. The editorial work of Timothy L. Grove is greatly appreciated.

Supplementary material

410_2017_1363_MOESM1_ESM.pdf (575 kb)
Supplementary material 1 (PDF 576 kb)
410_2017_1363_MOESM2_ESM.pdf (663 kb)
Supplementary material 2 (PDF 664 kb)
410_2017_1363_MOESM3_ESM.pdf (522 kb)
Supplementary material 3 (PDF 523 kb)
410_2017_1363_MOESM4_ESM.xlsx (66 kb)
Supplementary material 4 (XLSX 66 kb)
410_2017_1363_MOESM5_ESM.pdf (544 kb)
Supplementary material 5 (PDF 544 kb)


  1. Albarede F, Provost A (1977) Petrological and geochemical mass-balance equations: an algorithm for least-square fitting and general error analysis. Comput Geosci 3(2):309–326. doi: 10.1016/0098-3004(77)90007-3 CrossRefGoogle Scholar
  2. Almeev RR, Ariskin AA, Ozerov AY, Kononkova NN (2002) Problems of the stoichiometry and thermobarometry of magmatic amphiboles: an example of hornblende from the andesites of Bezymianny volcano, Eastern Kamchatka. Geochem Int 40(8):723–738Google Scholar
  3. Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe–Mg–Mn–Ti oxides: Fe–Ti oxides. Am Mineral 73:714–726Google Scholar
  4. Anderson H, Jackson J (1987) Active tectonics of the Adriatic Region. Geophys J Int 91(3):937–983. doi: 10.1111/j.1365-246X.1987.tb01675.x CrossRefGoogle Scholar
  5. Barberi F, Gasparini P, Innocenti F, Villari L (1973) Volcanism of the southern Tyrrhenian Sea and its geodynamic implications. J Geophys Res 78(23):5221–5232. doi: 10.1029/JB078i023p05221 CrossRefGoogle Scholar
  6. Barberi F, Civetta L, Gasparini P, Innocenti F, Scandone R, Villari L (1974) Evolution of a section of the Africa-Europe plate boundary: paleomagnetic and volcanological evidence from Sicily. Earth Planet Sci Lett 22(2):123–132. doi: 10.1016/0012-821X(74)90072-7 CrossRefGoogle Scholar
  7. Barberi F, Gandino A, Gioncada A, La Torre P, Sbrana A, Zenucchini C (1994) The deep structure of the Eolian arc (Filicudi-Panarea-Vulcano sector) in light of gravity, magnetic and volcanological data. J Volcanol Geotherm Res 61(3–4):189–206. doi: 10.1016/0377-0273(94)90003-5 CrossRefGoogle Scholar
  8. Barca D, Ventura G (1991) Volcano-tectonic evolution of Salina Island (Aeolian Archipelago, south Tyrrhenian Sea). Mem Soc Geol Ital 47:401–415Google Scholar
  9. Barton M, Hamilton DL (1982) Water-undersaturated melting experiments bearing upon the origin of potassium-rich Magmas. Mineral Mag 45(337):267–278. doi: 10.1180/minmag.1982.045.337.30 CrossRefGoogle Scholar
  10. Beccaluva L, Rossi P, Serri G (1982) Neogene to Recent volcanism of the southern Tyrrhenian-Sicilian area: implications for the geodynamic evolution of the Calabrian arc. Earth Evol Sci 3:222–238Google Scholar
  11. Behrens H (1995) Determination of water solubilities in high-viscosity melts: an experimental study on NaAlSi3O8 and KAlSi3O8 melts. Eur J Mineral 7(4):905–920CrossRefGoogle Scholar
  12. Berndt J, Liebske C, Holtz F, Freise M, Nowak M, Ziegenbein D, Hurkuck JKW (2002) A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic melts. Am Mineral 87:1717–1726CrossRefGoogle Scholar
  13. Berndt J, Koepke J, Holtz F (2005) An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol 46(1):135–167. doi: 10.1093/petrology/egh066 CrossRefGoogle Scholar
  14. Borisov A, McCammon C (2010) The effect of silica on ferric/ferrous ratio in silicate melts: an experimental study using Mössbauer spectroscopy. Am Mineral 95(4):545–555. doi: 10.2138/am.2010.3217 CrossRefGoogle Scholar
  15. Borisov A, Behrens H, Holtz F (2015) Effects of melt composition on Fe3+/Fe2+ in silicate melts: a step to model ferric/ferrous ratio in multicomponent systems. Contrib Mineral Petrol 169(2):24. doi: 10.1007/s00410-015-1119-6 CrossRefGoogle Scholar
  16. Botcharnikov RE, Almeev RR, Koepke J, Holtz F (2008) Phase Relations and liquid lines of descent in hydrous ferrobasalt—Implications for the Skaergaard Intrusion and Columbia River Flood Basalts. J Petrol 49(9):1687–1727. doi: 10.1093/petrology/egn043 CrossRefGoogle Scholar
  17. Burnham CW (1979) The importance of volatile constituents. In: Yoder HS Jr (ed) The evolution of the igneous rocks: fiftieth anniversary perspectives, vol Princeton., University PressPrinceton, New Jersey, pp 439–482Google Scholar
  18. Calanchi N, De Rosa R, Mazzuoli R, Rossi P, Santacroce R, Ventura G (1993) Silicic magma entering a basaltic magma chamber: eruptive dynamics and magma mixing—an example from Salina (Aeolian islands, Southern Tyrrhenian Sea). Bull Volcanol 55(7):504–522. doi: 10.1007/bf00304593 CrossRefGoogle Scholar
  19. Campbell IH, Stepanov AS, Liang H-Y, Allen CM, Norman MD, Zhang Y-Q, Xie Y-W (2014) The origin of shoshonites: new insights from the Tertiary high-potassium intrusions of eastern Tibet. Contrib Mineral Petrol 167(3):983. doi: 10.1007/s00410-014-0983-9 CrossRefGoogle Scholar
  20. Chamot-Rooke C, Rangin C, Le Pichon X, Dotmed Working Group (2005) DOTMED—deep offshore tectonics of the Mediterranean: a synthesis of deep marine data in the Eastern Mediterranean, Mémoire de la Société géologique de France & American Association of Petroleum Geologists. 177(64):69Google Scholar
  21. Chiarabba C, Jovane L, DiStefano R (2005) A new view of Italian seismicity using 20 years of instrumental recordings. Tectonophysics 395(3–4):251–268. doi: 10.1016/j.tecto.2004.09.013 CrossRefGoogle Scholar
  22. Chiarabba C, De Gori P, Speranza F (2008) The southern Tyrrhenian subduction zone: deep geometry, magmatism and Plio-Pleistocene evolution. Earth Planet Sci Lett 268(3–4):408–423. doi: 10.1016/j.epsl.2008.01.036 CrossRefGoogle Scholar
  23. Condomines M, Allegre CJ (1980) Age and magmatic evolution of Stromboli volcano from 230Th to 238U disequilibrium data. Nature 288(5789):354–357CrossRefGoogle Scholar
  24. Corriveau L, Gorton MP (1993) Coexisting K-rich alkaline and shoshonitic magmatism of arc affinities in the Proterozoic: a reassessment of syenitic stocks in the southwestern Grenville Province. Contrib Mineral Petrol 113(2):262–279. doi: 10.1007/bf00283233 CrossRefGoogle Scholar
  25. De Astis G, La Volpe L, Peccerillo A, Civetta L (1997) Volcanological and petrological evolution of Vulcano island (Aeolian arc, southern Tyrrhenian Sea). J Geophys Res Solid Earth 102(B4):8021–8050. doi: 10.1029/96jb03735 CrossRefGoogle Scholar
  26. De Astis G, Peccerillo A, Kempton PD, La Volpe L, Wu TW (2000) Transition from calc-alkaline to potassium-rich magmatism in subduction environments: geochemical and Sr, Nd, Pb isotopic constraints from the island of Vulcano (Aeolian arc). Contrib Miner Petrol 139(6):684–703. doi: 10.1007/s004100000172 CrossRefGoogle Scholar
  27. De Ritis R, Ventura G, Chiappini M (2007) Aeromagnetic anomalies reveal hidden tectonic and volcanic structures in the central sector of the Aeolian Islands, southern Tyrrhenian Sea, Italy. Journal of Geophysical Research-Solid Earth 112(B10) doi: 10.1029/2006jb004639
  28. De Rosa R, Donato P, Gioncada A, Masetti M, Santacroce R (2003a) The Monte Guardia eruption (Lipari, Aeolian Islands): an example of a reversely zoned magma mixing sequence. Bull Volcanol 65(7):530–543. doi: 10.1007/s00445-003-0281-2 CrossRefGoogle Scholar
  29. De Rosa R, Guillou H, Mazzuoli R, Ventura G (2003b) New unspiked K-Ar ages of volcanic rocks of the central and western sector of the Aeolian Islands: reconstruction of the volcanic stages. J Volcanol Geotherm Res 120(3–4):161–178. doi: 10.1016/s0377-0273(02)00369-4 CrossRefGoogle Scholar
  30. Dèzes P, Ziegler PA (2002) Moho depth map of Western and Central Europe. World Wide Web Address:
  31. Di Carlo I, Pichavant M, Rotolo SG, Scaillet B (2006) Experimental crystallization of a high-K arc basalt: the golden pumice, Stromboli volcano (Italy). J Petrol 47(7):1317–1343. doi: 10.1093/petrology/egl011 CrossRefGoogle Scholar
  32. Di Martino C, Frezzotti ML, Lucchi F, Peccerillo A, Tranne CA, Diamond LW (2010) Magma storage and ascent at Lipari Island (Aeolian archipelago, Southern Italy) at 223–81 ka: the role of crustal processes and tectonic influence. Bull Volcanol 72(9):1061–1076. doi: 10.1007/s00445-010-0383-6 CrossRefGoogle Scholar
  33. Dohmen R, Becker H-W, Chakraborty S (2007) Fe–Mg diffusion in olivine I: experimental determination between 700 and 1200°C as a function of composition, crystal orientation and oxygen fugacity. Phys Chem Miner 34(6):389–407. doi: 10.1007/s00269-007-0157-7 CrossRefGoogle Scholar
  34. Donato P, Behrens H, De Rosa R, Holtz F, Parat F (2006) Crystallization conditions in the Upper Pollara magma chamber, Salina Island, Southern Tyrrhenian Sea. Miner Petrol 86(1–2):89–108. doi: 10.1007/s00710-005-0105-5 CrossRefGoogle Scholar
  35. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Miner Mag 51(361):431–435. doi: 10.1180/minmag.1987.051.361.10 CrossRefGoogle Scholar
  36. Edgar AD, Vukadinovic D (1992) Implications of experimental petrology to the evolution of ultrapotassic rocks. Lithos 28(3–6):205–220. doi: 10.1016/0024-4937(92)90007-L CrossRefGoogle Scholar
  37. Ellam RM, Harmon RS (1990) Oxygen isotope constraints on the crustal contributions to the subduction-related magmatism of the Aeolian Island, Southern Italy. J Volcanol Geotherm Res 44(1–2):105–122. doi: 10.1016/0377-0273(90)90014-7 CrossRefGoogle Scholar
  38. Ellam RM, Menzies MA, Hawkesworth CJ, Leeman WP, Rosi M, Serri G (1988) The transition from calc-alkaline to potassic orogenic magmatism in the Aeolian Islands, Southern Italy. Bull Volcanol 50(6):386–398. doi: 10.1007/bf01050638 CrossRefGoogle Scholar
  39. Ellam RM, Hawkesworth CJ, Menzies MA, Rogers NW (1989) The volcanism of southern Italy: role of subduction and the relationship between potassic and sodic alkaline magmatism. J Geophys Res Solid Earth 94(B4):4589–4601. doi: 10.1029/JB094iB04p04589 CrossRefGoogle Scholar
  40. Faccenna C, Molin P, Orecchio B, Olivetti V, Bellier O, Funiciello F, Minelli L, Piromallo C, Billi A (2011) Topography of the calabria subduction zone (southern Italy): clues for the origin of Mt. Etna. Tectonics 30(1):TC1003 doi: 10.1029/2010TC002694
  41. Ferrari L, Manetti P (1993) Geodynamic framework of the Tyrrhenian volcanism: a review. Acta Vulcanol 3:1–10Google Scholar
  42. Foley S (1992) Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos 28(3):187–204. doi: 10.1016/0024-4937(92)90006-K CrossRefGoogle Scholar
  43. Foley S, Peccerillo A (1992) Potassic and ultrapotassic magmas and their origin. Lithos 28(3–6):181–185. doi: 10.1016/0024-4937(92)90005-J CrossRefGoogle Scholar
  44. Foley SF, Taylor WR, Green DH (1986) The effect of fluorine on phase relationships in the system KAlSiO4–Mg2SiO4–SiO2 at 28 kbar and the solution mechanism of fluorine in silicate melts. Contrib Miner Petrol 93(1):46–55. doi: 10.1007/bf00963584 CrossRefGoogle Scholar
  45. Ford CE (1978) Platinum–iron alloy sample containers for melting experiments on ironbearing rocks, minerals, and related systems. Miner Mag 42(322):271–275. doi: 10.1180/minmag.1978.042.322.16 CrossRefGoogle Scholar
  46. Francalanci L, Manetti P, Peccerillo A (1989) Volcanological and magmatological evolution of Stromboli volcano (Aeolian Islands): the roles of fractional crystallization, magma mixing, crustal contamination and source heterogeneity. Bull Volcanol 51(5):355–378. doi: 10.1007/bf01056897 CrossRefGoogle Scholar
  47. Francalanci L, Taylor SR, McCulloch MT, Woodhead JD (1993) Geochemical and isotopic variations in the calc-alkaline rocks of Aeolian arc, southern Tyrrhenian Sea, Italy: constraints on magma genesis. Contrib Miner Petrol 113(3):300–313. doi: 10.1007/bf00286923 CrossRefGoogle Scholar
  48. Francalanci L, Avanzinelli R, Petrone CM, Santo AP (2004) Petrochemical and magmatological characteristics of the Aeolian Arc volcanoes, southern Tyrrhenian Sea, Italy: inferences on shallow level processes and magma source variations. Periodico Di Mineralogia 73:75–104Google Scholar
  49. Freise M, Holtz F, Nowak M, Scoates JS, Strauss H (2009) Differentiation and crystallization conditions of basalts from the Kerguelen large igneous province: an experimental study. Contrib Miner Petrol 158(4):505–527. doi: 10.1007/s00410-009-0394-5 CrossRefGoogle Scholar
  50. Gasperini D, Blichert-Toft J, Bosch D, Del Moro A, Macera P, Albarede F (2002) Upwelling of deep mantle material through a plate window: evidence from the geochemistry of Italian basaltic volcanics. J Geophys Res Solid Earth 107(B12) doi: 10.1029/2001jb000418
  51. Gertisser R, Keller J (2000) From basalt to dacite: origin and evolution of the calc-alkaline series of Salina, Aeolian Arc, Italy. Contrib Miner Petrol 139(5):607–626. doi: 10.1007/s004100000159 CrossRefGoogle Scholar
  52. Giardini D, Velonà M (1991) The deep seismicity of the Tyrrhenian sea. Terra Nova 3(1):57–64. doi: 10.1111/j.1365-3121.1991.tb00844.x CrossRefGoogle Scholar
  53. Gioncada A, Mazzuoli R, Bisson M, Pareschi MT (2003) Petrology of volcanic products younger than 42 ka on the Lipari-Vulcano complex (Aeolian Islands, Italy): an example of volcanism controlled by tectonics. J Volcanol Geotherm Res 122(3–4):191–220. doi: 10.1016/s0377-0273(02)00502-4 CrossRefGoogle Scholar
  54. Grove TL, Till CB, Krawczynski MJ (2012) The role of H2O in subduction zone magmatism. Ann Rev Earth Planet Sci 40(1):413–439. doi: 10.1146/annurev-earth-042711-105310 CrossRefGoogle Scholar
  55. Gupta AK, Green DH (1988) The liquidus surface of the system forsterite-kalsilite-quartz at 28 kb under dry conditions, in presence of H2O, and of CO2. Miner Petrol 39(3):163–174. doi: 10.1007/bf01163032 CrossRefGoogle Scholar
  56. Husen A, Almeev RR, Holtz F (2016) The effect of H2O and pressure on multiple saturation and liquid lines of descent in basalt from the shatsky rise. J Petrol. doi: 10.1093/petrology/egw008 Google Scholar
  57. Keller J (1974) Petrology of some volcanic rock series of the Aeolian arc, Southern Tyrrhenian Sea: calc-alkaline and shoshonitic associations. Contrib Miner Petrol 46(1):29–47. doi: 10.1007/BF00377991 CrossRefGoogle Scholar
  58. Keller J (1980) The island of Salina. Rendiconti della Società Italiana di Mineralogia e Petrologia 36:489–524Google Scholar
  59. King PL, Hervig RL, Holloway JR, Delaney JS, Dyar MD (2000) Partitioning of Fe3+/Fetotal between amphibole and basanitic melt as a function of oxygen fugacity. Earth Planet Sci Lett 178(1–2):97–112. doi: 10.1016/S0012-821X(00)00071-6 CrossRefGoogle Scholar
  60. Konzett J, Fei Y (2000) Transport and storage of potassium in the earth’s upper mantle and transition zone: an experimental study to 23 GPa in simplified and natural bulk compositions. J Petrol 41(4):583–603. doi: 10.1093/petrology/41.4.583 CrossRefGoogle Scholar
  61. Konzett J, Ulmer P (1999) The stability of hydrous potassic phases in Lherzolitic Mantle—an experimental study to 9.5 GPa in simplified and natural bulk compositions. J Petrol 40(4):629–652. doi: 10.1093/petroj/40.4.629 CrossRefGoogle Scholar
  62. Kushiro I (1975) On the nature of silicate melt and its significance in magma genesis; regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals. Am J Sci 275(4):411–431. doi: 10.2475/ajs.275.4.411 CrossRefGoogle Scholar
  63. Lanzo G, Di Carlo I, Pichavant M, Rotolo SG, Scaillet B (2016) Origin of primitive ultra-calcic arc melts at crustal conditions—experimental evidence on the La Sommata basalt, Vulcano, Aeolian Islands. J Volcanol Geotherm Res 321:85–101. doi: 10.1016/j.jvolgeores.2016.04.032 CrossRefGoogle Scholar
  64. Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sørensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms. Blackwell, OxfordGoogle Scholar
  65. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi Guo (1997) Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can Mineralogist 35(1):219–246Google Scholar
  66. Martel C, Pichavant M, Bourdier JL, Traineau H, Holtz F, Scaillet B (1998) Magma storage conditions and control of eruption regime in silicic volcanoes: experimental evidence from Mt. Pelée. Earth Planet Sci Lett 156(1–2):89–99. doi: 10.1016/S0012-821X(98)00003-X CrossRefGoogle Scholar
  67. Martel C, Pichavant M, Holtz F, Scaillet B, Bourdier J-L, Traineau H (1999) Effects of fO2 and H2O on andesite phase relations between 2 and 4 kbar. J Geophys Res Solid Earth 104(B12):29453–29470. doi: 10.1029/1999JB900191 CrossRefGoogle Scholar
  68. Mazzuoli R, Tortorici L, Ventura G (1995) Oblique rifting in Salina, Lipari and Vulcano islands (Aeolian islands, southern Italy). Terra Nova 7(4):444–452. doi: 10.1111/j.1365-3121.1995.tb00540.x CrossRefGoogle Scholar
  69. Meen JK (1987) Formation of shoshonites from calcalkaline basalt magmas: geochemical and experimental constraints from the type locality. Contrib Miner Petrol 97(3):333–351. doi: 10.1007/bf00371997 CrossRefGoogle Scholar
  70. Müller D, Groves DI (1997) Tectonic settings of potassic igneous rocks. In: Potassic igneous rocks and associated gold-copper mineralization, vol. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 11–39Google Scholar
  71. Müller D, Groves DI (2016) Direct Associations Between Potassic Igneous Rocks and Gold-Copper Deposits in Volcanic Arcs. In: Potassic Igneous Rocks and Associated Gold-Copper Mineralization, vol. Springer International Publishing, Cham, pp 97–190Google Scholar
  72. Nazzareni S, Molin G, Peccerillo A, Zanazzi PF (2001) Volcanological implications of crystal-chemical variations in clinopyroxenes from the Aeolian Arc, Southern Tyrrhenian Sea (Italy). Bull Volcanol 63(1):73–82. doi: 10.1007/s004450100125 CrossRefGoogle Scholar
  73. Nazzareni S, Skogby H, Zanazzi PF (2011) Hydrogen content in clinopyroxene phenocrysts from Salina mafic lavas (Aeolian arc, Italy). Contrib Mineral Petrol 162(2):275–288. doi: 10.1007/s00410-010-0594-z CrossRefGoogle Scholar
  74. Nicotra E, Viccaro M, De Rosa R, Sapienza M (2014) Volcanological evolution of the Rivi-Capo volcanic complex at Salina, Aeolian Islands: magma storage processes and ascent dynamics. Bull Volcanol. doi: 10.1007/s00445-014-0840-8 Google Scholar
  75. Nikolaev GS, Borisov AA, Ariskin AA (1996) Calculation of the ferricframe ferrous ratio in magmatic melts: testing and additional calibration of empirical equations for various magmatic series. Geochem Int 24(8):641–649Google Scholar
  76. Panza GF, Suhadolc P (1990) Properties of the lithosphere in collisional belts in the Mediterranean—a review. Tectonophysics 182(1–2):39–46. doi: 10.1016/0040-1951(90)90340-E CrossRefGoogle Scholar
  77. Parat F, Streck MJ, Holtz F, Almeev R (2014) Experimental study into the petrogenesis of crystal-rich basaltic to andesitic magmas at Arenal volcano. Contrib Miner Petrol 168(2):1–18. doi: 10.1007/s00410-014-1040-4 CrossRefGoogle Scholar
  78. Peccerillo A, Dallai L, Frezzotti ML, Kempton PD (2004) Sr–Nd–Pb–O isotopic evidence for decreasing crustal contamination with ongoing magma evolution at Alicudi volcano (Aeolian arc, Italy): implications for style of magma-crust interaction and for mantle source compositions. Lithos 78(1–2):217–233. doi: 10.1016/j.lithos.2004.04.040 CrossRefGoogle Scholar
  79. Peccerillo A, Frezzotti ML, De Astis G, Ventura G (2006) Modeling the magma plumbing system of Vulcano (Aeolian Islands, Italy) by integrated fluid-inclusion geobarometry, petrology, and geophysics. Geology 34(1):17–20. doi: 10.0030/g22117.1 CrossRefGoogle Scholar
  80. Peccerillo A, De Astis G, Faraone D, Forni F, Frezzotti ML (2013) Chapter 15 compositional variations of magmas in the Aeolian arc: implications for petrogenesis and geodynamics. Geological Society London Memoirs 37(1):491–510. doi: 10.1144/m37.15 CrossRefGoogle Scholar
  81. Pichavant M, Di Carlo I, Le Gac Y, Rotolo SG, Scaillet B (2009) Experimental constraints on the deep magma feeding system at Stromboli volcano. Italy. J Petrol 50(4):601–624. doi: 10.1093/petrology/egp014 CrossRefGoogle Scholar
  82. Pichavant M, Scaillet B, Pommier A, Iacono-Marziano G, Cioni R (2014) Nature and evolution of primitive Vesuvius magmas: an experimental study. J Petrol 55(11):2281–2310. doi: 10.1093/petrology/egu057 CrossRefGoogle Scholar
  83. Pitzer KS, Sterner SM (1995) Equations of state valid continuously from zero to extreme pressures with H2O and CO2 as examples. Int J Thermophys 16(2):511–518. doi: 10.1007/bf01441917 CrossRefGoogle Scholar
  84. Poli S, Schmidt MW (2002) Petrology of subducted slabs. Annu Rev Earth Planet Sci 30(1):207–235. doi: 10.1146/ CrossRefGoogle Scholar
  85. Pompilio M, Bertagnini A, Metrich N (2012) Geochemical heterogeneities and dynamics of magmas within the plumbing system of a persistently active volcano: evidence from Stromboli. Bull Volcanol 74(4):881–894. doi: 10.1007/s00445-011-0571-z CrossRefGoogle Scholar
  86. Pontevivo A, Panza GF (2006) The lithosphere-asthenosphere system in the Calabrian Arc and surrounding seas—Southern Italy. Pure Appl Geophys 163(8):1617–1659. doi: 10.1007/s00024-006-0093-3 CrossRefGoogle Scholar
  87. Popp RK, Gilbert C, Craig JR (1977) Stability of Fe-Mg amphiboles with respect to oxygen fugacity. Am Mineral 62:1–12Google Scholar
  88. Rickwood PC (1989) Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22(4):247–263. doi: 10.1016/0024-4937(89)90028-5 CrossRefGoogle Scholar
  89. Robie RA, Hemingway BS, Fischer JR (1978) Thermodynamic properties of minerals and related subtances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperature. Geol Surv Bull 1452:456Google Scholar
  90. Rossi PL, Calanchi N, Gabbianelli G, Lanzafame G (1987) Nuovi dati strutturali su Salina e sull’area sottomarina circostante. CNR-GNV Boll 2:599–611Google Scholar
  91. Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10(3):n/a-n/a doi: 10.1029/2008GC002332
  92. Sajona FG, Maury RC, Pubellier M, Leterrier J, Bellon H, Cotten J (2000) Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines). Lithos 54(3–4):173–206. doi: 10.1016/S0024-4937(00)00019-0 CrossRefGoogle Scholar
  93. Schiavi F, Kobayashi K, Nakamura E, Tiepolo M, Vannucci R (2012) Trace element and Pb-B-Li isotope systematics of olivine-hosted melt inclusions: insights into source metasomatism beneath Stromboli (southern Italy). Contrib Mineral Petrol 163(6):1011–1031. doi: 10.1007/s00410-011-0713-5 CrossRefGoogle Scholar
  94. Schwab R, Küstner D (1981) The equilibrium fugacities of important oxygen buffers in technology and petrology. Neues Jahrb Mineral Monatsh 140:112–142Google Scholar
  95. Selvaggi G, Chiarabba C (1995) Seismicity and P-wave velocity image of the Southern Tyrrhenian subduction zone. Geophys J Int 121(3):818–826. doi: 10.1111/j.1365-246X.1995.tb06441.x CrossRefGoogle Scholar
  96. Shaw HR, Wones DR (1964) Fugacity coefficients for hydrogen gas between 0° and 1000°C, for pressures to 3000 atm. Am J Sci 262(7):918–929CrossRefGoogle Scholar
  97. Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113(2):143–166. doi: 10.1007/bf00283225 CrossRefGoogle Scholar
  98. Spear FS (1981) An experimental study of hornblende stability and compositional variability in amphibole. Am J Sci 281:697–734CrossRefGoogle Scholar
  99. Stelling J, Botcharnikov RE, Beermann O, Nowak M (2008) Solubility of H2O- and chlorine-bearing fluids in basaltic melt of Mount Etna at T = 1050–1250 & #xB0;C and P = 200 MPa. Chem Geol 256(3–4):102–110. doi: 10.1016/j.chemgeo.2008.04.009 CrossRefGoogle Scholar
  100. Sun C-H, Stern RJ (2001) Genesis of Mariana shoshonites: contribution of the subduction component. Journal of Geophysical Research: Solid Earth 106(B1):589–608. doi: 10.1029/2000JB900342 CrossRefGoogle Scholar
  101. Taylor RW (1964) Phase equilibria in the system FeO-Fe2O3-TiO2 at 1300 °C. Am Mineral 49(7–8):1016Google Scholar
  102. Trua T, Serri G, Marani MP (2003) Lateral flow of African mantle below the nearby Tyrrhenian plate: geochemical evidence. Terra Nova 15(6):433–440. doi: 10.1046/j.1365-3121.2003.00509.x CrossRefGoogle Scholar
  103. Trua T, Serri G, Marani MP, Rossi PL, Gamberi F, Renzulli A (2004) Mantle domains beneath the southern Tyrrhenian: constraints from recent seafloor sampling and dynamic implications. Periodico Di Mineralogia 73:53–73Google Scholar
  104. Trua T, Marani MP, Gamberi F (2011) Magmatic evidence for African mantle propagation into the southern Tyrrhenian backarc region. In: Beccaluva L, Bianchini G, Wilson M (eds) Volcanism and Evolution of the African Lithosphere, vol. Geologic Society of America, Boulder, pp 307–331Google Scholar
  105. Ventura G (2013) Chapter 2 Kinematics of the Aeolian volcanism (Southern Tyrrhenian Sea) from geophysical and geological data. Geological Society London Memoirs 37(1):3–11. doi: 10.1144/m37.2 CrossRefGoogle Scholar
  106. Villiger S, Ulmer P, Müntener O, Thompson AB (2004) The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization—an experimental study at 1·0 GPa. J Petrol 45(12):2369–2388. doi: 10.1093/petrology/egh042 CrossRefGoogle Scholar
  107. Villiger S, Müntener O, Ulmer P (2007) Crystallization pressures of mid-ocean ridge basalts derived from major element variations of glasses from equilibrium and fractional crystallization experiments. J Geophys Res Solid Earth 112(B1):159–184. doi: 10.1029/2006JB004342 CrossRefGoogle Scholar
  108. Wang C-Y, Hwang W-T, Shi Y (1989) Thermal evolution of a rift basin: the Tyrrhenian Sea. J Geophys Res Solid Earth 94(B4):3991–4006. doi: 10.1029/JB094iB04p03991 CrossRefGoogle Scholar
  109. Whitaker ML, Nekvasil H, Lindsley DH, Difrancesco NJ (2007) The role of pressure in producing compositional diversity in intraplate basaltic magmas. J Petrol 48(2):365–393. doi: 10.1093/petrology/egl063 CrossRefGoogle Scholar
  110. Zito G, Mongelli F, De Lorenzo S, Doglioni C (2003) Heat flow and geodynamics in the Tyrrhenian Sea. Terra Nova 15(6):425–432. doi: 10.1046/j.1365-3121.2003.00507.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Oliver Beermann
    • 1
    • 2
  • François Holtz
    • 1
  • Erik Duesterhoeft
    • 2
  1. 1.Institute of MineralogyLeibniz Universität HannoverHannoverGermany
  2. 2.Institute of GeosciencesChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations