Advertisement

A geochemical approach to distinguishing competing tectono-magmatic processes preserved in small eruptive centres

  • Lucy E. McGee
  • Raimundo Brahm
  • Michael C. Rowe
  • Heather K. Handley
  • Eduardo Morgado
  • Luis E. Lara
  • Michael B. Turner
  • Nicolas Vinet
  • Miguel-Ángel Parada
  • Pedro Valdivia
Original Paper

Abstract

Small eruptive centres (SECs) representing short-lived, isolated eruptions are effective samples of mantle heterogeneity over a given area, as they are generally of basaltic composition and show evidence of little magmatic processing. This is particularly powerful in volcanic arcs where the original melting process generating stratovolcanoes is often obscured by additions from the down-going slab (fluids and sediments) and the overlying crust. The Pucón area of southern Chile contains active and dormant stratovolcanoes, Holocene, basaltic SECs and an arc-scale strike-slip fault (the Liquiñe Ofqui Fault System: LOFS). The SECs show unexpected compositional heterogeneity considering their spatial proximity. We present a detailed study of these SECs combining whole rock major and trace element concentrations, U-Th isotopes and olivine-hosted melt inclusion major element and volatile contents to highlight the complex inter-relations in this small but active area. We show that heterogeneity preserved at individual SECs relates to different processes: some start in the melting region with the input of slab-derived fluids, whilst others occur later in a centre’s magmatic history with the influence of crustal contamination prior to olivine crystallisation. These signals are deduced through the combination of the different geochemical tools used in this study. We show that there is no correlation between composition and distance from the arc front, whilst the local tectonic regime has an effect on melt composition: SECs aligned along the LOFS have either equilibrium U-Th ratios or small Th-excesses instead of the large—fluid influenced—U-excesses displayed by SECs situated away from this feature. One of the SECs is modelled as being generated from fluid-enriched depleted mantle, a source which it may share with the stratovolcano Villarrica, whilst another SEC with abundant evidence of crustal contamination may share its plumbing system with its neighbouring stratovolcano Quetrupillán, showing that polygenetic–monogenetic connections are unpredictable. Such marked preservation of individual magmatic histories highlights the isolation of individual melting events even in complex and highly volcanically active areas.

Keywords

Southern Chile U-Th isotopes Heterogeneity Monogenetic Melt inclusions Tectonics 

Notes

Acknowledgments

This Project was financed by FONDECYT Grant 11130296 to LM, who was supported at CEGA by FONDAP Project 15090013. HH acknowledges support from an Australian Research Council Future Fellowship, FT120100440. NV acknowledges financial support from CONICYT/FONDECYT grant #3140353. LL acknowledges former support from FONDECYT grant 1107022. We thank Ian Smith and John Adam for helpful comments regarding high Mg andesites, and Gerhardt Woerner for many helpful discussions regarding Chilean volcanoes. Roberto Topp, Tomás Martinez and Andrés Flores are thanked for their help and enthusiasm in the field, and Roberto Valles and Anisse Pizarro for their excellent work in sample preparation. We thank the editor Tim Grove and two anonymous reviewers for their detailed and constructive comments, and Leonid Danyushevksy, John Gamble and an anonymous reviewer for their useful comments on a previous version of this paper.

Supplementary material

410_2017_1360_MOESM1_ESM.xlsx (94 kb)
Supplementary material 1 (XLSX 93 kb)

References

  1. Adam J, Green T (2011) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 2. Tasmanian Cainozoic basalts and the origins of intraplate basaltic magmas. Contrib Miner Petrol 161(6):883–899CrossRefGoogle Scholar
  2. Ariskin AA, Bychkov KA, Danyushevsky LV, McNeill AW, Barmina GS, Nikolaev GS (2012) COMAGMAT-5: a new magma crystallization model designed to simulate mafic to ultramafic sulfide-saturated systems. In: Abs. 12th international Ni–Cu-(PGE) symposium (June 16–21, 2012, Guiyang, China), p 15–18Google Scholar
  3. Arndt N (2003) Komatiites, kimberlites, and boninites. J Geophys Res Solid Earth 108(B6). doi: 10.1029/2002JB002157
  4. Blondes MS, Reiners PW, Ducea MN, Singer BS, Chesley J (2008) Temporal-compositional trends over short and long time-scales in basalts of the Big Pine Volcanic Field, California. Earth Planet Sci Lett 269:140–154CrossRefGoogle Scholar
  5. Borg LE, Clynne MA, Bullen TD (1997) The variable role of slab-derived fluids in the generation of a suite of primitive calc-alkaline lavas from the southernmost Cascades, Calilornia. Can Miner 35:425–452Google Scholar
  6. Bouvet de Maisonneuve C, Dungan MA, Bachmann O, Burgisser A (2012) Insights into shallow magma storage and crystallization at Volcán Llaima (Andean Southern Volcanic Zone, Chile). J Volcanol Geoth Res 211–212:76–91CrossRefGoogle Scholar
  7. Brenna M, Cronin S, Smith I, Sohn Y, Németh K (2010) Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Miner Petrol 160(6):931–950CrossRefGoogle Scholar
  8. Brenna M, Cronin SJ, Smith IEM, Maas R, Sohn YK (2012) How Small-volume Basaltic Magmatic Systems Develop: a Case Study from the Jeju Island Volcanic Field, Korea. J Petrol 53(5):985–1018CrossRefGoogle Scholar
  9. Bucchi F, Lara LE, Gutiérrez F (2015) The Carrán-Los Venados Volcanic Field and its relationship with coeval and nearby polygenetic volcanism in an intra-arc setting. J Volcanol Geoth Res 308:70–81CrossRefGoogle Scholar
  10. Cameron W, McCulloch M, Walker D (1983) Boninite petrogenesis: chemical and Nd-Sr isotopic constraints. Earth Planet Sci Lett 65(1):75–89CrossRefGoogle Scholar
  11. Cembrano J, Lara L (2009) The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471(1–2):96–113CrossRefGoogle Scholar
  12. Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259(1–3):55–66CrossRefGoogle Scholar
  13. Cheng H, Lawrence Edwards R, Shen C-C, Polyak VJ, Asmerom Y, Woodhead J, Hellstrom J, Wang Y, Kong X, Spötl C, Wang X, Calvin Alexander E Jr (2013) Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet Sci Lett 371–372:82–91CrossRefGoogle Scholar
  14. Conrey RM, Sherrod DR, Hooper PR, Swanson DA (1997) Diverse primitive magmas in the Cascade arc, northern Oregon and southern Washington. Can Miner 35:367–396Google Scholar
  15. Cooper LB, Plank T, Arculus RJ, Hauri EH, Hall PS, Parman SW (2010) High‐Ca boninites from the active Tonga Arc. J Geophys Res Solid Earth 115(B10). doi: 10.1029/2009JB006367
  16. Costantini L, Pioli L, Bonadonna C, Clavero J, Longchamp C (2011) A late Holocene explosive mafic eruption of Villarrica volcano, Southern Andes: the Chaimilla deposit. J Volcanol Geoth Res 200(3–4):143–158CrossRefGoogle Scholar
  17. Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Miner Petrol 138:68–83CrossRefGoogle Scholar
  18. Davidson J, Turner S, Plank T (2013) Dy/Dy*: variations arising from Mantle sources and petrogenetic processes. J Petrol 54(3):525–537CrossRefGoogle Scholar
  19. Gamble J, Wood C, Price R, Smith I, Stewart R, Waight T (1999) A fifty year perspective of magmatic evolution on Ruapehu Volcano, New Zealand: verification of open system behaviour in an arc volcano. Earth Planet Sci Lett 170(3):301–314CrossRefGoogle Scholar
  20. Grove TL, Kinzler RJ, Baker MB, Donnelly-Nolan JM, Lesher CE (1988) Assimilation of granite by basaltic magma at Burnt Lava flow, Medicine Lake volcano, northern California: decoupling of heat and mass transfer. Contrib Miner Petrol 99(3):320–343CrossRefGoogle Scholar
  21. Haase KM, Renno AD (2008) Variation of magma generation and mantle sources during continental rifting observed in Cenozoic lavas from the Eger Rift, Central Europe. Chem Geol 257(3–4):192–202CrossRefGoogle Scholar
  22. Hawkesworth CJ, Turner SP, McDermott F, Peate DW, van Calsteren P (1997) U-Th isotopes in Arc Magmas: implications for element transfer from the subducted crust. Science 276(5312):551–555CrossRefGoogle Scholar
  23. Hickey-Vargas R, Roa HM, Escobar LL, Frey FA (1989) Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanin volcanic chain (39.5°S): an evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contrib Miner Petrol 103(3):361–386CrossRefGoogle Scholar
  24. Hickey-Vargas R, Sun M, López-Escobar L, Moreno-Roa H, Reagan MK, Morris JD, Ryan JG (2002) Multiple subduction components in the mantle wedge: evidence from eruptive centers in the Central Southern volcanic zone, Chile. Geology 30(3):199–202CrossRefGoogle Scholar
  25. Hickey-Vargas R, Sun M, Holbik S (2016) Geochemistry of basalts from small eruptive centers near Villarrica stratovolcano, Chile: evidence for lithospheric mantle components in continental arc magmas. Geochim Cosmochim Acta 185:358–382CrossRefGoogle Scholar
  26. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90(3):297–314CrossRefGoogle Scholar
  27. Huang F, Xu J, Zhang J (2016) U-series disequilibria in subduction zone lavas: inherited from subducted slabs or produced by mantle in-growth melting? Chem Geol 440:179–190CrossRefGoogle Scholar
  28. Hughes RD, Hawkesworth CJ (1999) The effects of magma replenishment processes on 238U-230Th disequilibrium. Geochim Cosmochim Acta 63(23–24):4101–4110CrossRefGoogle Scholar
  29. Jacques G, Hoernle K, Gill J, Wehrmann H, Bindeman I, Lara LE (2014) Geochemical variations in the Central Southern Volcanic Zone, Chile (38–43 S): the role of fluids in generating arc magmas. Chem Geol 371:27–45CrossRefGoogle Scholar
  30. Jannot S, Schiano P, Boivin P (2005) Melt inclusions in scoria and associated mantle xenoliths of Puy Beaunit Volcano, Chaîne des Puys, Massif Central, France. Contrib Miner Petrol 149(5):600–612CrossRefGoogle Scholar
  31. Jicha BR, Singer BS, Beard BL, Johnson CM, Moreno-Roa H, Naranjo JA (2007) Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue-Cordón Caulle, Southern Volcanic Zone, Chile. Earth Planet Sci Lett 255(1–2):229–242CrossRefGoogle Scholar
  32. Jordan SC, Jowitt SM, Cas RAF (2015) Origin of temporal—compositional variations during the eruption of Lake Purrumbete Maar, Newer Volcanics Province, southeastern Australia. Bull Volcanol 77(1):1–15CrossRefGoogle Scholar
  33. Knesel KM, Davidson JP (1999) Sr isotope systematics during melt generation by intrusion of basalt into continental crust. Contrib Miner Petrol 136(3):285–295CrossRefGoogle Scholar
  34. Lara LE, Lavenu A, Cembrano J, Rodríguez C (2006) Structural controls of volcanism in transversal chains: resheared faults and neotectonics in the Cordón Caulle-Puyehue area (40.5°S), Southern Andes. J Volcanol Geoth Res 158(1–2):70–86CrossRefGoogle Scholar
  35. Leeman WP, Lewis JF, Evarts RC, Conrey RM, Streck MJ (2005) Petrologic constraints on the thermal structure of the Cascades arc. J Volcanol Geoth Res 140(1–3):67–105CrossRefGoogle Scholar
  36. López-Escobar L, Cembrano J, Moreno H (1995) Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37–46°S). Andean Geol 22(2):219–234Google Scholar
  37. Lucassen F, Wiedicke M, Franz G (2010) Complete recycling of a magmatic arc: evidence from chemical and isotopic composition of quaternary trench sediments in Chile (36–40 S). Int J Earth Sci (Geol Rundsch) 99(3):687–701CrossRefGoogle Scholar
  38. Lundstrom CC (2003) Uranium-series disequilibria in mid-ocean ridge basalts: observations and models of basalt genesis. Rev Miner Geochem 52(1):175–214CrossRefGoogle Scholar
  39. McDonough WF, Sun S-s (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  40. McGee LE, Smith IEM (2016) Interpreting chemical compositions of small scale basaltic systems: a review. J Volcanol Geoth Res 325:45–60CrossRefGoogle Scholar
  41. McGee LE, Millet M-A, Smith IEM, Németh K, Lindsay JM (2012) The inception and progression of melting in a monogenetic eruption: Motukorea Volcano, the Auckland Volcanic Field, New Zealand. Lithos 155:360–374CrossRefGoogle Scholar
  42. McGee LE, McLeod C, Davidson JP (2015a) A spectrum of disequilibrium melting preserved in lava-hosted, partially melted crustal xenoliths from the Wudalianchi volcanic field, NE China. Chem Geol 417:184–199CrossRefGoogle Scholar
  43. McGee LE, Millet M-A, Beier C, Smith IEM, Lindsay JM (2015b) Mantle heterogeneity controls on small-volume basaltic volcanism. Geology 43(6):551–554CrossRefGoogle Scholar
  44. McLeod CL, Davidson JP, Nowell GM, de Silva SL (2012) Disequilibrium melting during crustal anatexis and implications for modeling open magmatic systems. Geology 40(5):435–438CrossRefGoogle Scholar
  45. McMillan NJ, Harmon RS, Moorbath S, Lopez-Escobar L, Strong DF (1989) Crustal sources involved in continental arc magmatism: a case study of volcan Mocho-Choshuenco, southern Chile. Geology 17(12):1152–1156CrossRefGoogle Scholar
  46. Moreno H, Clavero J (2006) Geología del volcán Villarrica, Regiones de la Araucanía y de los Lagos. Servicio Nacional de Geología y Minería. Carta Geológica de Chile, Serie Geología Básica. No. 98. Mapa escala 1:50000Google Scholar
  47. Morgado E, Parada MA, Contreras C, Castruccio A, Gutiérrez F, McGee LE (2015) Contrasting records from mantle to surface of Holocene lavas of two nearby arc volcanic complexes: Caburgua-Huelemolle Small Eruptive Centers and Villarrica Volcano, Southern Chile. J Volcanol Geoth Res 306:1–16CrossRefGoogle Scholar
  48. Nielsen RL, Michael PJ, Sours-Page R (1998) Chemical and physical indicators of compromised melt inclusions. Geochim Cosmochim Acta 62(5):831–839CrossRefGoogle Scholar
  49. Peate DW, Kokfelt TF, Hawkesworth CJ, Van Calsteren PW, Hergt JM, Pearce JA (2001) U-series Isotope data on Lau Basin glasses: the role of subduction-related fluids during melt generation in Back-arc Basins. J Petrol 42(8):1449–1470CrossRefGoogle Scholar
  50. Pioli L, Scalisi L, Costantini L, Di Muro A, Bonadonna C, Clavero J (2015) Explosive style, magma degassing and evolution in the Chaimilla eruption, Villarrica volcano, Southern Andes. Bull Volcanol 77(11):1–14CrossRefGoogle Scholar
  51. Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46(5):921–944. doi: 10.1093/petrology/egi005 CrossRefGoogle Scholar
  52. Price RC, Turner S, Cook C, Hobden B, Smith IEM, Gamble JA, Handley H, Maas R, Möbis A (2010) Crustal and mantle influences and U-Th–Ra disequilibrium in andesitic lavas of Ngauruhoe volcano, New Zealand. Chem Geol 277(3–4):355–373CrossRefGoogle Scholar
  53. Rasoazanamparany C, Widom E, Valentine G, Smith E, Cortés J, Kuentz D, Johnsen R (2015) Origin of chemical and isotopic heterogeneity in a mafic, monogenetic volcanic field: a case study of the Lunar Crater Volcanic Field, Nevada. Chem Geol 397:76–93CrossRefGoogle Scholar
  54. Reagan MK, Gill JB (1989) Coexisting calcalkaline and high-niobium basalts from Turrialba Volcano, Costa Rica: implications for residual titanates in arc magma sources. J Geophys Res Solid Earth 94(B4):4619–4633CrossRefGoogle Scholar
  55. Reubi O, Bourdon B, Dungan MA, Koornneef JM, Sellés D, Langmuir CH, Aciego S (2011) Assimilation of the plutonic roots of the Andean arc controls variations in U-series disequilibria at Volcan Llaima, Chile. Earth Planet Sci Lett 303(1–2):37–47CrossRefGoogle Scholar
  56. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 29:275–289CrossRefGoogle Scholar
  57. Rowe MC, Nielsen RL, Kent AJ (2006) Anomalously high Fe contents in rehomogenized olivine-hosted melt inclusions from oxidized magmas. Am Miner 91(1):82–91CrossRefGoogle Scholar
  58. Rowe MC, Kent AJR, Nielsen RL (2009) Subduction influence on oxygen fugacity and trace and volatile elements in basalts across the Cascade Volcanic Arc. J Petrol 50(1):61–91CrossRefGoogle Scholar
  59. Rowe MC, Peate DW, Newbrough A (2011a) Compositional and thermal evolution of olivine-hosted melt inclusions in small-volume basaltic eruptions: a “simple” example from Dotsero Volcano, NW Colorado. Contrib Miner Petrol 161:197–211CrossRefGoogle Scholar
  60. Rowe MC, Peate DW, Ukstins Peate I (2011b) An investigation into the nature of the magmatic plumbing system at Paricutin Volcano, Mexico. J Petrol 52(11):2187–2220CrossRefGoogle Scholar
  61. Rudnick RL, Gao J (2004) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, vol 3. Elsevier, Amsterdam, pp 1-64Google Scholar
  62. Ruprecht P, Bergantz GW, Cooper KM, Hildreth W (2012) The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity. J Petrol 53(4):801–840CrossRefGoogle Scholar
  63. Saito G, Morishita Y, Shinohara H (2010) Magma plumbing system of the 2000 eruption of Miyakejima volcano, Japan, deduced from volatile and major component contents of olivine‐hosted melt inclusions. J Geophys Res Solid Earth 115(B11). doi: 10.1029/2010JB007433
  64. Salters VJ, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5(5):Q05004. doi: 10.1029/2003GC000597 CrossRefGoogle Scholar
  65. Sánchez P, Pérez-Flores P, Arancibia G, Cembrano J, Reich M (2013) Crustal deformation effects on the chemical evolution of geothermal systems: the intra-arc Liquiñe-Ofqui fault system, Southern Andes. Int Geol Rev 55(11):1384–1400CrossRefGoogle Scholar
  66. Shaw CSJ (2009) Caught in the act—the first few hours of xenolith assimilation preserved in lavas of the Rockeskyllerkopf volcano, West Eifel, Germany. Lithos 112(3–4):511–523CrossRefGoogle Scholar
  67. Siebe C, Rodriguez-Lara V, Schaaf P, Abrams M (2004) Geochemistry, Sr-Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa and Chichinautzin scoria cones, south of Mexico City. J Volcanol Geoth Res 130:197–226CrossRefGoogle Scholar
  68. Sigmarsson O, Chmeleff J, Morris J, Lopez-Escobar L (2002) Origin of 226Ra–230Th disequilibria in arc lavas from southern Chile and implications for magma transfer time. Earth Planet Sci Lett 196(3–4):189–196CrossRefGoogle Scholar
  69. Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137(1):45–55CrossRefGoogle Scholar
  70. Sun S-s, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345CrossRefGoogle Scholar
  71. Stern RJ, Morris J, Bloomer SH, Hawkins JW Jr (1991) The source of the subduction component in convergent margin magmas: trace element and radiogenic isotope evidence from Eocene boninites, Mariana forearc. Geochim Cosmochim Acta 55(5):1467–1481CrossRefGoogle Scholar
  72. Stracke A, Bizimis M, Salters VJM (2003) Recycling oceanic crust: quantitative constraints. Geochem Geophys Geosyst 4(3):8003. doi: 10.1029/2001GC00023
  73. Strong M, Wolff J (2003) Compositional variations within scoria cones. Geology 31(2):143–146CrossRefGoogle Scholar
  74. Sun M (2001) Geochemical variation among small eruptive centers in the central SVZ of the Andes: an evaluation of subduction, mantle and crustal influences. Florida International University, MiamiGoogle Scholar
  75. Tamura Y, Ishizuka O, Stern RJ, Nichols ARL, Kawabata H, Hirahara Y, Chang Q, Miyazaki T, Kimura J-I, Embley RW, Tatsumi Y (2014) Mission Immiscible: distinct subduction components generate two primary Magmas at Pagan Volcano, Mariana Arc. J Petrol 55(1):63–101CrossRefGoogle Scholar
  76. Tašárová ZA (2007) Towards understanding the lithospheric structure of the southern Chilean subduction zone (36°S–42°S) and its role in the gravity field. Geophys J Int 170(3):995–1014CrossRefGoogle Scholar
  77. Thirlwall MF, Upton BGJ, Jenkins C (1994) Interaction between continental lithosphere and the Iceland Plume—Sr-Nd-Pb Isotope Geochemistry of Tertiary Basalts, NE Greenland. J Petrol 35(3):839–879CrossRefGoogle Scholar
  78. Turner S, Evans P, Hawkesworth C (2001) Ultrafast source-to-surface movement of melt at island arcs from 226Ra-230Th systematics. Science 292:1363–1366CrossRefGoogle Scholar
  79. Turner S, Beier C, Niu Y, Cook C (2011) U-Th-Ra disequilibria and the extent of off-axis volcanism across the East Pacific Rise at 9°30N, 10°30N, and 11°20N. Geochem Geophys Geosyst 12(7):Q0AC12CrossRefGoogle Scholar
  80. Valdivia Muñoz PA (2016) Estudio petrológico y geoquímico del Volcán Huililco, IX Región, Chile. Unpublished undergraduate thesis, Universidad de ChileGoogle Scholar
  81. Wallace PJ, Carmichael ISE (1999) Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions. Contrib Miner Petrol 135(4):291–314CrossRefGoogle Scholar
  82. Watt SFL, Pyle DM, Mather TA, Naranjo JA (2013) Arc magma compositions controlled by linked thermal and chemical gradients above the subducting slab. Geophys Res Lett 40(11):2550–2556CrossRefGoogle Scholar
  83. Wehrmann H, Hoernle K, Jacques G, Garbe-Schönberg D, Schumann K, Mahlke J, Lara LE (2014) Volatile (sulphur and chlorine), major, and trace element geochemistry of mafic to intermediate tephras from the Chilean Southern Volcanic Zone (33–43 S). Int J Earth Sci (Geol Rundsch) 103(7):1945–1962CrossRefGoogle Scholar
  84. Witter JB, Kress VC, Delmelle P, Stix J (2004) Volatile degassing, petrology, and magma dynamics of the Villarrica Lava Lake, Southern Chile. J Volcanol Geoth Res 134(4):303–337CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Lucy E. McGee
    • 1
    • 2
    • 6
  • Raimundo Brahm
    • 1
    • 2
  • Michael C. Rowe
    • 3
  • Heather K. Handley
    • 4
  • Eduardo Morgado
    • 1
    • 2
    • 7
  • Luis E. Lara
    • 5
  • Michael B. Turner
    • 4
  • Nicolas Vinet
    • 1
    • 2
  • Miguel-Ángel Parada
    • 1
    • 2
  • Pedro Valdivia
    • 2
  1. 1.Centro de Excelencia en Geotermia de los Andes (CEGA)SantiagoChile
  2. 2.Department of GeologyUniversidad de ChileSantiagoChile
  3. 3.School of EnvironmentUniversity of AucklandAucklandNew Zealand
  4. 4.Department of Earth and Planetary SciencesMacquarie UniversitySydneyAustralia
  5. 5.Volcano Hazards ProgramServicio Nacional de Geología y Minería (SERNAGEOMIN)SantiagoChile
  6. 6.Department of Earth and Planetary SciencesMacquarie UniversitySydneyAustralia
  7. 7.Institute of Geophysics and Tectonics, School of Earth and EnvironmentUniversity of LeedsLeedsUK

Personalised recommendations