Iron isotope fractionation in subduction-related high-pressure metabasites (Ile de Groix, France)

  • Afifé El Korh
  • Béatrice Luais
  • Etienne Deloule
  • Damien Cividini
Original Paper

Abstract

Characterisation of mass transfer during subduction is fundamental to understand the origin of compositional heterogeneities in the upper mantle. Fe isotopes were measured in high-pressure/low-temperature metabasites (blueschists, eclogites and retrograde greenschists) from the Ile de Groix (France), a Variscan high-pressure terrane, to determine if the subducted oceanic crust contributes to mantle Fe isotope heterogeneities. The metabasites have δ56Fe values of +0.16 to +0.33‰, which are heavier than typical values of MORB and OIB, indicating that their basaltic protolith derives from a heavy-Fe mantle source. The δ56Fe correlates well with Y/Nb and (La/Sm)PM ratios, which commonly fractionate during magmatic processes, highlighting variations in the magmatic protolith composition. In addition, the shift of δ56Fe by +0.06 to 0.10‰ compared to basalts may reflect hydrothermal alteration prior to subduction. The δ56Fe decrease from blueschists (+0.19 ± 0.03 to +0.33 ± 0.01‰) to eclogites (+0.16 ± 0.02 to +0.18 ± 0.03‰) reflects small variations in the protolith composition, rather than Fe fractionation during metamorphism: newly-formed Fe-rich minerals allowed preserving bulk rock Fe compositions during metamorphic reactions and hampered any Fe isotope fractionation. Greenschists have δ56Fe values (+0.17 ± 0.01 to +0.27 ± 0.02‰) similar to high-pressure rocks. Hence, metasomatism related to fluids derived from the subducted hydrothermally altered metabasites might only have a limited effect on mantle Fe isotope composition under subsolidus conditions, owing to the large stability of Fe-rich minerals and low mobility of Fe. Subsequent melting of the heavy-Fe metabasites at deeper levels is expected to generate mantle Fe isotope heterogeneities.

Keywords

Fe isotopes Metabasites Subduction HP–LT metamorphism Blueschists Eclogites Greenschists Basaltic protoliths 

Notes

Acknowledgements

This study benefited from constructive reviews of Oliver Nebel and Paolo Sossi. The editorial work of Othmar Müntener was greatly appreciated. Thanks to Stephanie Hayman for having read the English text. The research was supported by project P300P2_147749 of the Swiss National Science Foundation, and benefited from fundings from the Observatoire de la Terre et de l’Environnement en Lorraine (OTELo-CNRS) and the TelluS-SYSTER program from the Institut National des Sciences de l’Univers (INSU).

Supplementary material

410_2017_1357_MOESM1_ESM.pdf (712 kb)
Supplementary material 1 (PDF 712 kb)

References

  1. Audren C, Triboulet C, Chauris L, Lefort JP, Vigneresse JL, Audrain J, Thiéblemont D, Goyallon J, Jégouzo P, Guennoc P, Augris C, Carn A (1993) Notice explicative de la feuille Ile de Groix à 1/25000, carte géologique. BRGM, OrléansGoogle Scholar
  2. Ballèvre M, Pitra P, Bohn M (2003) Lawsonite growth in the epidote blueschists from the Ile de Groix (Armorican massif, France): a potential geobarometer. J Metamorph Geol 21:723–735CrossRefGoogle Scholar
  3. Barrientos X, Selverstone J (1993) Infiltration vs. thermal overprinting of epidote blueschists, Ile de Groix, France. Geology 21:69–72CrossRefGoogle Scholar
  4. Beard BL, Johnson CM (2004) Inter-mineral Fe isotope variations in mantle-derived rocks and implications for the Fe geochemical cycle. Geochim Cosmochim Acta 68:4727–4743CrossRefGoogle Scholar
  5. Bernard-Griffiths J, Carpenter MSN, Peucat JJ, Jahn BM (1986) Geochemical and isotopic characteristics of blueschist facies rocks from the Ile de Groix, Armorican Massif (northwest France). Lithos 19:235–253CrossRefGoogle Scholar
  6. Bezos A, Humler E (2005) The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69:711–725CrossRefGoogle Scholar
  7. Bosse V, Ballèvre M, Vidal O (2002) Ductile thrusting recorded by the garnet isograd from blueschist-facies metapelites of the Ile de Groix, Armorican Massif, France. J Petrol 43:485–510CrossRefGoogle Scholar
  8. Chou IM, Eugster HP (1977) Solubility of magnetite in supercritical chloride solutions. Am J Sci 277:1296–1314CrossRefGoogle Scholar
  9. Christie DM, Carmichael ISE, Langmuir CH (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79:397–411CrossRefGoogle Scholar
  10. Cottrell E, Kelley KA (2011) The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett 305:270–282CrossRefGoogle Scholar
  11. Craddock PR, Dauphas N (2011) Iron isotopic compositions of geological reference materials and chondrites. Geostand Geoanal Res 35:101–123CrossRefGoogle Scholar
  12. Craddock PR, Warren JM, Dauphas N (2013) Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth. Earth Planet Sci Lett 365:63–76CrossRefGoogle Scholar
  13. Dauphas N, Craddock PR, Asimow PD, Bennett VC, Nutman AP, Ohnenstetter D (2009) Iron isotopes may reveal the redox conditions of mantle melting from Archean to present. Earth Planet Sci Lett 288:255–267CrossRefGoogle Scholar
  14. Debret B, Andreani M, Muñoz M, Bolfan-Casanova N, Carlut J, Nicollet C, Schwartz S, Trcera N (2014) Evolution of Fe redox state in serpentine during subduction. Earth Planet Sci Lett 400:206–218CrossRefGoogle Scholar
  15. Debret B, Millet MA, Pons ML, Bouilhol P, Inglis E, Williams H (2016) Isotopic evidence for iron mobility during subduction. Geology 44:215–218CrossRefGoogle Scholar
  16. Downes H (2001) Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of western and central Europe. J Petrol 42:233–250CrossRefGoogle Scholar
  17. El Korh A (2006) Métamorphisme HP–BT dans les métabasites de l’Ile de Groix, France: étude pétrologique et géochimique. Unpublished master thesis, University of Geneva, p 334Google Scholar
  18. El Korh A, Schmidt STh, Ulianov A, Potel S (2009) Trace element partitioning in HP–LT metamorphic assemblages during subduction-related metamorphism, Ile de Groix, France: a detailed LA-ICPMS study. J Petrol 50:1107–1148CrossRefGoogle Scholar
  19. El Korh A, Schmidt STh, Vennemann T, Ulianov A (2011) Trace element and O-isotope composition of polyphase metamorphic veins of the Ile de Groix (Armorican Massif, France): implication for fluid flow during HP subduction and exhumation processes. In: Dobrzhinetskaya L, Faryad W, Wallis S, Cuthbert S (eds) Ultrahigh pressure metamorphism: 25 years after discovery of coesite and diamond. Elsevier, Amsterdam, pp 243–291CrossRefGoogle Scholar
  20. El Korh A, Schmidt STh, Ballèvre M, Ulianov A, Bruguier O (2012) Discovery of an albite gneiss from the Ile de Groix (Armorican Massif, France): geochemistry and LA-ICP-MS U-Pb geochronology of its Ordovician protolith. Int J Earth Sci 101:1169–1190CrossRefGoogle Scholar
  21. El Korh A, Schmidt STh, Vennemann T, Ballèvre M (2013) Trace element and isotopic fingerprints in HP–LT metamorphic rocks as a result of fluid-rock interactions (Ile de Groix, France). Gondwana Res 23:880–900CrossRefGoogle Scholar
  22. El Korh A, Luais B, Boiron MC, Deloule E, Cividini D (2017) Investigation of Ge and Ga exchange behaviour and Ge isotopic fractionation during subduction zone metamorphism. Chem Geol 449:165–181CrossRefGoogle Scholar
  23. Evans KA (2012) The redox budget of subduction zones. Earth Sci Rev 113:11–32CrossRefGoogle Scholar
  24. Foden J, Sossi PA, Wawryk CM (2015) Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite. Lithos 212–215:32–44CrossRefGoogle Scholar
  25. Fretzdorff S, Haase KM (2002) Geochemistry and petrology of lavas from the submarine flanks of Reunion Island (Western Indian Ocean): implications for magma genesis and the mantle source. Miner Petrol 75:153–184CrossRefGoogle Scholar
  26. Galvez ME, Beyssac O, Martinez I, Benzerara K, Chaduteau C, Malvoisin B, Malavieille J (2013) Graphite formation by carbonate reduction during subduction. Nat Geosci 6:473–477CrossRefGoogle Scholar
  27. Govindaraju K (1994) 1994 compilation of working values and sample description for 383 geostandards. Geostand Newsl 18:1–158CrossRefGoogle Scholar
  28. Gréau Y, Huang JX, Griffin WL, Renac C, Alard O, O’Reilly SY (2011) Type I eclogites from Roberts Victor kimberlites: products of extensive mantle metasomatism. Geochim Cosmochim Acta 75:6927–6954CrossRefGoogle Scholar
  29. Haase KM (2002) Geochemical constraints on magma sources and mixing processes in Easter Microplate MORB (SE Pacific): a case study of plume–ridge interaction. Chem Geol 182:335–355CrossRefGoogle Scholar
  30. Hill PS, Schauble EA, Young ED (2010) Effects of changing solution chemistry on Fe3+/Fe2+ isotope fractionation in aqueous Fe–Cl solutions. Geochim Cosmochim Acta 74:6669–6689CrossRefGoogle Scholar
  31. Imai N, Terashima S, Itoh S, Ando A (1995) 1994 compilation values for GSJ reference samples, “Igneous rock series”. Geochem J 29:91–95CrossRefGoogle Scholar
  32. Jackson MG, Hart SR, Koppers AAP, Staudigel H, Konter J, Blusztajn J, Kurz M, Russell JA (2007) The return of subducted continental crust in Samoan lavas. Nature 448:684–687CrossRefGoogle Scholar
  33. Jenner FE, O’Neill HSC (2012) Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem Geophys Geosyst 13:2Google Scholar
  34. John T, Scherer E, Schenk V, Herms P, Halama R, Garbe-Schönberg D (2010) Subducted seamounts in an eclogite-facies ophiolite sequence: the Andean Raspas Complex, SW Ecuador. Contrib Miner Petrol 159:265–284CrossRefGoogle Scholar
  35. Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607CrossRefGoogle Scholar
  36. Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727CrossRefGoogle Scholar
  37. Konter JG, Pietruszka AJ, Hanan BB, Finlayson VA, Craddock PR, Jackson MG, Dauphas N (2016) Unusual δ56Fe values in Samoan rejuvenated lavas generated in the mantle. Earth Planet Sci Lett 450:221–232CrossRefGoogle Scholar
  38. Kretz R (1983) Symbols for rock-forming minerals. Am Miner 68:277–279Google Scholar
  39. Langmuir CH, Bender JF, Bence AE, Hanson GN, Taylor SR (1977) Petrogenesis of basalts from the FAMOUS area: Mid-Atlantic Ridge. Earth Planet Sci Lett 36:133–156CrossRefGoogle Scholar
  40. Li DY, Xiao YL, Li WY, Zhu X, Williams HM, Li YL (2016) Iron isotopic systematics of UHP eclogites respond to oxidizing fluid during exhumation. J Metamorph Geol 34:987–997CrossRefGoogle Scholar
  41. Liu PP, Zhou MF, Luais B, Cividini D, Rollion-Bard C (2014) Disequilibrium iron isotopic fractionation during the high-temperature magmatic differentiation of the Baima Fe–Ti oxide-bearing mafic intrusion, SW China. Earth Planet Sci Lett 399:21–29CrossRefGoogle Scholar
  42. Malaspina N, Scambelluri M, Poli S, van Roermund HLM, Langenhorst F (2010) The oxidation state of mantle wedge majoritic garnet websterites metasomatised by C-bearing subduction fluids. Earth Planet Sci Lett 298:417–426CrossRefGoogle Scholar
  43. Manning CE (2004) The chemistry of subduction-zone fluids. Earth Planet Sci Lett 223:1–16CrossRefGoogle Scholar
  44. Manning CE (2006) Mobilizing aluminum in crustal and mantle fluids. J Geochem Explor 89:251–253CrossRefGoogle Scholar
  45. Marin-Carbonne J, Rollion-Bard C, Luais B (2011) In-situ measurements of iron isotopes by SIMS: MC-ICP-MS intercalibration and application to a magnetite crystal from the Gunflint chert. Chem Geol 285:50–61CrossRefGoogle Scholar
  46. Mottl MJ, Wheat CG, Fryer P, Gharib J, Martin JB (2004) Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochim Cosmochim Acta 68:4915–4933CrossRefGoogle Scholar
  47. Nebel O, Arculus RJ, Sossi PA, Jenner FE, Whan THE (2013) Iron isotopic evidence for convective resurfacing of recycled arc-front mantle beneath back-arc basins. Geophys Res Lett 40:5849–5853CrossRefGoogle Scholar
  48. Nebel O, Sossi PA, Bénard A, Wille M, Vroon PZ, Arculus RJ (2015) Redox-variability and controls in subduction zones from an iron-isotope perspective. Earth Planet Sci Lett 432:142–151CrossRefGoogle Scholar
  49. Pearce JA (1996) A user’s guide to basalt discrimination diagrams. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration, vol 12. Geological Association of Canada, Short Course Notes, St. John's, Newfoundland, pp 79–113Google Scholar
  50. Poitrasson F, Delpech G, Grégoire M (2013) On the iron isotope heterogeneity of lithospheric mantle xenoliths: implications for mantle metasomatism, the origin of basalts and the iron isotope composition of the Earth. Contrib Miner Petrol 165:1243–1258CrossRefGoogle Scholar
  51. Polyakov VB, Mineev SD (2000) The use of Mössbauer spectroscopy in stable isotope geochemistry. Geochim Cosmochim Acta 64:849–865CrossRefGoogle Scholar
  52. Polyakov VB, Soultanov DM (2011) New data on equilibrium iron isotope fractionation among sulfides: constraints on mechanisms of sulfide formation in hydrothermal and igneous systems. Geochim Cosmochim Acta 75:1957–1974CrossRefGoogle Scholar
  53. Rosman K, Taylor P (1998) Isotopic compositions of the elements 1997. J Phys Chem Ref Data 27:1275–1287CrossRefGoogle Scholar
  54. Rouxel O, Dobbek N, Ludden J, Fouquet Y (2003) Iron isotope fractionation during oceanic crust alteration. Chem Geol 202:155–182CrossRefGoogle Scholar
  55. Rouxel O, Shanks WC, Bach W, Edwards KJ (2008) Integrated Fe-and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10 N. Chem Geol 252:214–227CrossRefGoogle Scholar
  56. Rüpke LH, Morgan JP, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223:17–34CrossRefGoogle Scholar
  57. Saunier G, Pokrovski GS, Poitrasson F (2011) First experimental determination of iron isotope fractionation between hematite and aqueous solution at hydrothermal conditions. Geochim Cosmochim Acta 75:6629–6654CrossRefGoogle Scholar
  58. Scambelluri M, Müntener O, Ottolini L, Pettke TT, Vannucci R (2004) The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth Planet Sci Lett 222:217–234CrossRefGoogle Scholar
  59. Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379CrossRefGoogle Scholar
  60. Schneider ME, Eggler DH (1986) Fluids in equilibrium with peridotite minerals—implications for mantle metasomatism. Geochim Cosmochim Acta 50:711–724CrossRefGoogle Scholar
  61. Schuessler JA, Schoenberg R, Sigmarsson O (2009) Iron and lithium isotope systematics of the Hekla volcano, Iceland—evidence for Fe isotope fractionation during magma differentiation. Chem Geol 258:78–91CrossRefGoogle Scholar
  62. Shervais JW, Zoglman Schuman MM, Hanna B (2005) The stonyford volcanic complex: a forearc seamount in the Northern California Coast Ranges. J Petrol 46:2091–2128CrossRefGoogle Scholar
  63. Sossi PA, O’Neill HSC (2017) The effect of bonding environment on iron isotope fractionation between minerals at high temperature. Geochim Cosmochim Acta 196:121–143CrossRefGoogle Scholar
  64. Sossi PA, Foden JD, Halverson G (2012) Redox-controlled iron isotope fractionation during magmatic differentiation. Contrib Miner Petrol 164:757–772CrossRefGoogle Scholar
  65. Sossi PA, Nebel O, Foden JD (2016) Iron isotope systematics in planetary reservoirs. Earth Planet Sci Lett 452:295–308CrossRefGoogle Scholar
  66. Su BX, Teng FZ, Hu Y, Shi RD, Zhou MF, Zhu B, Liu F, Gong XH, Huang QS, Xiao Y, Chen C, He YS (2015) Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: perspectives from ophiolites. Earth Planet Sci Lett 430:523–532CrossRefGoogle Scholar
  67. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins, vol 42. Geological Society of London Special Publication, pp 313–345Google Scholar
  68. Teng FZ, Dauphas N, Helz RT (2008) Iron isotope fractionation during magmatic differentiation in Kilauea Iki Lava Lake. Science 320:1620–1622CrossRefGoogle Scholar
  69. Teng FZ, Dauphas N, Huang S, Marty B (2013) Iron isotopic systematics of oceanic basalts. Geochim Cosmochim Acta 107:12–26CrossRefGoogle Scholar
  70. Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction related magmatism. Science 268:858–861CrossRefGoogle Scholar
  71. von Raumer JF, Stampfli GM, Arenas R, Martínez SS (2015) Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation. Int J Earth Sci 104:1107–1121CrossRefGoogle Scholar
  72. Weyer S, Ionov DA (2007) Partial melting and melt percolation in the mantle: the message from Fe isotopes. Earth Planet Sci Lett 259:119–133CrossRefGoogle Scholar
  73. Widmer T, Thompson AB (2001) Local origin of high-pressure vein material in eclogite facies rocks of the Zermatt-Saas zone, Switzerland. Am J Sci 301:627–656CrossRefGoogle Scholar
  74. Williams HM, McCammon CA, Peslier AH, Halliday AN, Teutsch N, Levasseur S, Burg JP (2004) Iron isotope fractionation and the oxygen fugacity of the mantle. Science 304:1656–1659CrossRefGoogle Scholar
  75. Williams HM, Peslier AH, McCammon C, Halliday AN, Levasseur S, Teutsch N, Burg JP (2005) Systematic iron isotope variations in mantle rocks and minerals: the effects of partial melting and oxygen fugacity. Earth Planet Sci Lett 235:435–452CrossRefGoogle Scholar
  76. Williams HM, Nielsen SG, Renac C, Griffin WL, O’Reilly SY, McCammon CA, Pearson N, Viljoen F, Alt JC, Halliday AN (2009) Fractionation of oxygen and iron isotopes by partial melting processes: implications for the interpretation of stable isotope signatures in mafic rocks. Earth Planet Sci Lett 283:156–166CrossRefGoogle Scholar
  77. Zhao XM, Zhang HF, Zhu XK, Tang SH, Tang YJ (2010) Iron isotope variations in spinel peridotite xenoliths from North China Craton: implications for mantle metasomatism. Contrib Miner Petrol 160:1–14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Afifé El Korh
    • 1
    • 2
  • Béatrice Luais
    • 1
  • Etienne Deloule
    • 1
  • Damien Cividini
    • 1
  1. 1.Centre de Recherches Pétrographiques et Géochimiques (CRPG)UMR 7358 CNRS-Université de LorraineVandœuvre-Lès-Nancy CedexFrance
  2. 2.Unit of Earth Sciences, Department of GeosciencesUniversity of FribourgFribourgSwitzerland

Personalised recommendations