Advertisement

Primitive andesites from the Taupo Volcanic Zone formed by magma mixing

  • Christoph Beier
  • Karsten M. Haase
  • Philipp A. Brandl
  • Stefan H. Krumm
Original Paper

Abstract

Andesites with Mg# >45 erupted at subduction zones form either by partial melting of metasomatized mantle or by mixing and assimilation processes during melt ascent. Primitive whole rock basaltic andesites from the Pukeonake vent in the Tongariro Volcanic Centre in New Zealand’s Taupo Volcanic Zone contain olivine, clino- and orthopyroxene, and plagioclase xeno- and antecrysts in a partly glassy matrix. Glass pools interstitial between minerals and glass inclusions in clinopyroxene, orthopyroxene and plagioclase as well as matrix glasses are rhyolitic to dacitic indicating that the melts were more evolved than their andesitic bulk host rock analyses indicate. Olivine xenocrysts have high Fo contents up to 94%, δ18O(SMOW) of +5.1‰, and contain Cr-spinel inclusions, all of which imply an origin in equilibrium with primitive mantle-derived melts. Mineral zoning in olivine, clinopyroxene and plagioclase suggest that fractional crystallization occurred. Elevated O isotope ratios in clinopyroxene and glass indicate that the lavas assimilated sedimentary rocks during stagnation in the crust. Thus, the Pukeonake andesites formed by a combination of fractional crystallization, assimilation of crustal rocks, and mixing of dacite liquid with mantle-derived minerals in a complex crustal magma system. The disequilibrium textures and O isotope compositions of the minerals indicate mixing processes on timescales of less than a year prior to eruption. Similar processes may occur in other subduction zones and require careful study of the lavas to determine the origin of andesite magmas in arc volcanoes situated on continental crust.

Keywords

Taupo Volcanic Zone Primitive andesites Magma mixing Subduction zones Crustal magmatic processes 

Notes

Acknowledgements

We thank P. Appel and B. Mader for help during the microprobe work in Kiel, A. Weinkauf for help during XRF and D. Garbe-Schönberg and U. Westernstroer for their help during ICP-MS analyses in Kiel. C. Beier thanks A. and J. Weller and E. and J. Beier for their persistence in supporting a manuscript that started many years ago. We acknowledge the help of A. Kraetschell with the ASTER GDEM data. We acknowledge the constructive reviews of an anonymous reviewer and T. Rooney during one of his stays in the Detroit Lufthansa Senator Lounge. We thank P. Kelemen, R. Price and J. Gamble for their helpful and constructive comments on a previous version of the manuscript.

Supplementary material

410_2017_1354_MOESM1_ESM.pdf (218 kb)
Supplemental Fig. 1 Major element variation diagrams of the Pukeonake whole rocks, groundmass glasses and Pukeonake glass inclusions (GI) and minerals. Glass inclusions are coloured based on their host minerals. Pukeonake melt pools refer to larger glass inclusions in the matrix (>50 µm). The similarity of glass inclusions from the matrix, glass inclusions from clinopyroxene, orthopyroxene and plagioclase hosts implies a limited diffusive equilibration and post-entrapment crystallization (PDF 218 kb)
410_2017_1354_MOESM2_ESM.pdf (179 kb)
Supplemental Fig. 2 Major element variation diagrams of the Pukeonake (a–b) clinopyroxenes, orthopyroxenes, olivines and (d–f) plagioclase crystals with core and rim compositions, respectively (PDF 179 kb)
410_2017_1354_MOESM3_ESM.xls (63 kb)
Supplemental Table 1 Pukeonake whole rock, glass and glass inclusion compositions. Matrix glasses and glass inclusion major elements were measured by electron microprobe, whole rock major elements were determined by XRF and whole rock trace element analyses were analysed by solution ICP-MS (see main text for analytical methods). Trace element concentrations marked with star were determined by XRF. Major elements are given in (wt%), trace elements in (ppm) (XLS 63 kb)
410_2017_1354_MOESM4_ESM.xls (157 kb)
Supplemental Table 2 Plagioclase, clinopyroxene, orthopyroxene, olivine and oxide mineral compositions analyzed by electron microprobe. Oxygen isotope compositions determined by laser fluorination (see main text for analytical methods). Numbering of minerals denotes similar crystals. Values of 0.00 are below limits of detection (b.l.d.), n.d. = not determined, n.c. = not calculated (XLS 157 kb)

References

  1. Anderson AT (1976) Magma mixing: petrological process and volcanological tool. J Volcanol Geotherm Res 1(1):3–33. doi: 10.1016/0377-0273(76)90016-0 CrossRefGoogle Scholar
  2. Arculus RJ, Johnson RW, Chappell BW, McKee CO, Sakai H (1983) Ophiolite-contaminated andesites, trachybasalts, and cognate inclusions of Mount Lamington, Papua New Guinea: anhydrite-amphibole-bearing lavas and the 1951 cumulodome. J Volcanol Geotherm Res 18(1):215–247. doi: 10.1016/0377-0273(83)90010-0 CrossRefGoogle Scholar
  3. Barr J, Grove TL, Elkins-Tanton L (2007) High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive melt: comment and reply: comment. Geology 35(1):e147CrossRefGoogle Scholar
  4. Beier C, Haase KM, Hansteen TH (2006) Magma evolution of the Sete Cidades volcano, São Miguel, Azores. J Petrol 47(7):1375–1411. doi: 10.1093/petrology/egl014 CrossRefGoogle Scholar
  5. Bindeman IN, Eiler JM, Yogodzinski GM, Tatsumi Y, Stern CR, Grove TL, Portnyagin M, Hoernle K, Danyushevsky LV (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet Sci Lett 235(3–4):480–496. doi: 10.1016/j.epsl.2005.04.014 CrossRefGoogle Scholar
  6. Blattner P, Reid F (1982) The origin of lavas and ignimbrites of the Taupo Volcanic Zone, New-Zealand, in the light of oxygen isotope data. Geochim Cosmochim Acta 46(8):1417–1429. doi: 10.1016/0016-7037(82)90276-9 CrossRefGoogle Scholar
  7. Brandl PA, Beier C, Regelous M, Abouchami W, Haase KM, Garbe-Schönberg D, Galer SJG (2012) Volcanism on the flanks of the East Pacific Rise: quantitative constraints on mantle heterogeneity and melting processes. Chem Geol 289–299(3–4):41–56. doi: 10.1016/j.chemgeo.2011.12.015 CrossRefGoogle Scholar
  8. Cameron E, Gamble J, Price R, Smith I, McIntosh W, Gardner M (2010) The petrology, geochronology and geochemistry of Hauhungatahi volcano, S.W. Taupo Volcanic Zone. J Volcanol Geotherm Res 190(1–2):179–191CrossRefGoogle Scholar
  9. Castillo PR, Lonsdale PF, Moran CL, Hawkins JW (2009) Geochemistry of mid-Cretaceous Pacific crust being subducted along the Tonga-Kermadec Trench: implications for the generation of arc lavas. Lithos 112(1–2):87–102. doi: 10.1016/j.lithos.2009.03.041 CrossRefGoogle Scholar
  10. Castro A, Vogt K, Gerya T (2013) Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: a test of Taylor’s andesite model. Gondwana Res 23(4):1554–1566. doi: 10.1016/j.gr.2012.07.004 CrossRefGoogle Scholar
  11. Cole JW (1986) Distribution and tectonic setting of Late Cenozoic Volcanism in New Zealand. In: Smith IEM (ed) Late Cenozoic volcanism in New Zealand, vol 23. Royal Society of New Zealand Bulletin, Wellington, New Zealand, pp 7–20Google Scholar
  12. Coombs ML, Gardner JE (2004) Reaction rim growth on olivine in silicic melts: implications for magma mixing. Am Mineral 89(5–6):748–759CrossRefGoogle Scholar
  13. Danyushevsky LV, Sokolov S, Fallon TJ (2002) Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J Petrol 43(9):1651–1671CrossRefGoogle Scholar
  14. Davidson JP, Hora JM, Garrison JM, Dungan MA (2005) Crustal forensics in arc magmas. J Volcanol Geotherm Res 140(1–3):157–170. doi: 10.1016/j.jvolgeores.2004.07.019 CrossRefGoogle Scholar
  15. Deering CD, Bachmann O, Dufek J, Gravley DM (2011) Rift-related transition from andesite to rhyolite volcanism in the Taupo Volcanic Zone (New Zealand) controlled by crystal-melt dynamics in mush zones with variable mineral assemblages. J Petrol 52(11):2243–2263CrossRefGoogle Scholar
  16. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665CrossRefGoogle Scholar
  17. Donoghue SL, Gamble JA, Palmer AS, Stewart RB (1995) Magma mingling in an andesite pyroclastic flow of the Pourahu Member, Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 68(1–3):177–191CrossRefGoogle Scholar
  18. Edbrooke SW, Forsyth PJ, Jongens R (2014) Geology Map of New Zealand 1: 1 000 000. In, vol. Institute of Geological and Nuclear Sciences (GNS), Lower Hutt, New ZealandGoogle Scholar
  19. Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In: Valley JW, Cole DR (eds) Reviews in mineralogy and geochemistry, vol 43. Mineralogical Society of America, Chantilly, United States, pp 319–364Google Scholar
  20. Freund S, Beier C, Krumm S, Haase KM (2013) Oxygen isotope evidence for the formation of andesitic–dacitic magmas from the fast-spreading Pacific–Antarctic Rise by assimilation–fractional crystallisation. Chem Geol 347:271–283. doi: 10.1016/j.chemgeo.2013.04.013 CrossRefGoogle Scholar
  21. Gamble JA, Wood CP, Price RC, Smith IEM, Stewart RB, Waight T (1999) A fifty year perspective of magmatic evolution on Ruapehu Volcano, New Zealand: verification of open system behaviour in an arc volcano. Earth Planet Sci Lett 170(3):301–314CrossRefGoogle Scholar
  22. Gamble JA, Price RC, Smith IEM, McIntosh WC, Dunbar NW (2003) 40Ar/39Ar geochronology of magmatic activity, magma flux and hazards at Ruapehu volcano, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 120(3–4):271–287CrossRefGoogle Scholar
  23. Gao Y, Wei R, Hou Z, Tian S, Zhao R (2008) Eocene high-MgO volcanism in southern Tibet: new constraints for mantle source characteristics and deep processes. Lithos 105(1–2):63–72CrossRefGoogle Scholar
  24. Garbe-Schönberg C-D (1993) Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS. Geostand Newsl 17:81–97CrossRefGoogle Scholar
  25. Genske FS, Beier C, Haase KM, Turner SP, Krumm S, Brandl PA (2013) Oxygen isotopes in the Azores islands: crustal assimilation recorded in olivine. Geology 41(4):491. doi: 10.1130/G33911.1 CrossRefGoogle Scholar
  26. Graham IJ, Hackett WR (1987) Petrology of calc-alkaline lavas from Ruapehu Volcano and related vents, Taupo Volcanic Zone, New Zealand. J Petrol 28(3):531–567. doi: 10.1093/petrology/28.3.531 CrossRefGoogle Scholar
  27. Graham IJ, Blattner P, McCulloch MT (1990) Meta-igneous granulite xenoliths from Mount Ruapehu, New Zealand: fragments of altered oceanic crust? Contrib Mineral Petrol 105(6):650–661CrossRefGoogle Scholar
  28. Graham IJ, Cole JW, Briggs RM, Gamble JA, Smith IEM (1995) Petrology and petrogenesis of volcanic rocks from the Taupo Volcanic Zone: a review. J Volcanol Geotherm Res 68(1–3):59–87CrossRefGoogle Scholar
  29. Green TH, Ringwood AE (1968) Genesis of the calc-alkaline igneous rock suite. Contrib Mineral Petrol 18(2):105–162CrossRefGoogle Scholar
  30. Grove T, Parman S, Bowring S, Price R, Baker M (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142(4):375–396. doi: 10.1007/s004100100299 CrossRefGoogle Scholar
  31. Grove TL, Baker MB, Price RC, Parman SW, Elkins-Tanton LT, Chatterjee N, Muntener O (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib Mineral Petrol 148(5):542–565. doi: 10.1007/s00410-004-0619-6 CrossRefGoogle Scholar
  32. Grove TL, Till CB, Krawczynski MJ (2012) The role of H2O in subduction zone magmatism. Annu Rev Earth Planet Sci 40(1):413–439. doi: 10.1146/annurev-earth-042711-105310 CrossRefGoogle Scholar
  33. Gruender K, Stewart RB, Foley S (2010) Xenoliths from the sub-volcanic lithosphere of Mt Taranaki, New Zealand. J Volcanol Geotherm Res 190(1–2):192–202. doi: 10.1016/j.jvolgeores.2009.09.014 CrossRefGoogle Scholar
  34. Haase KA, Stroncik N, Garbe-Schönberg D, Stoffers P (2006) Formation of island are dacite magmas by extreme crystal fractionation: an example from Brothers Seamount, Kermadec island arc (SW Pacific). J Volcanol Geotherm Res 152(000237539600005):316–330. doi: 10.1016/j.jvolgeores.2005.10.010 CrossRefGoogle Scholar
  35. Haase KM, Krumm S, Regelous M, Joachimski M (2011) Oxygen isotope evidence for the formation of silicic Kermadec island arc and Havre-Lau backarc magmas by fractional crystallization rather than crustal re-melting Earth. Planet Sci Lett 309(3–4):348–355. doi: 10.1016/j.epsl.2011.07.014 CrossRefGoogle Scholar
  36. Hackett WR, Houghton BF (1989) A facies model for a quaternary andesitic composite volcano: Ruapehu, New Zealand. Bull Volcanol 51(1):51–68. doi: 10.1007/BF01086761 CrossRefGoogle Scholar
  37. Harrison AJ, White RS (2004) Crustal structure of the Taupo Volcanic Zone, New Zealand: stretching and igneous intrusion. Geophys Res Lett 31(13):L13615. doi: 10.1029/2004GL019885 CrossRefGoogle Scholar
  38. Harrison A, White RS (2006) Lithospheric structure of an active backarc basin: the Taupo Volcanic Zone, New Zealand. Geophys J Int 167(2):968–990. doi: 10.1111/j.1365-246X.2006.03166.x CrossRefGoogle Scholar
  39. Hart SR, Blusztajn J, Dick HJB, Meyer PS, Muehlenbachs K (1999) The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochim Cosmochim Acta 63(23–24):4059–4080CrossRefGoogle Scholar
  40. Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites form the Central Indian Ridge. J Petrol 43(12):2305–2338CrossRefGoogle Scholar
  41. Hermann J, Spandler CJ (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49(4):717–740CrossRefGoogle Scholar
  42. Hidalgo PJ, Rooney TO (2014) Petrogenesis of a voluminous Quaternary adakitic volcano: the case of Baru volcano. Contrib Mineral Petrol 168(3):1–19. doi: 10.1007/s00410-014-1011-9 CrossRefGoogle Scholar
  43. Hirose K (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res Lett 24(22):2837–2840CrossRefGoogle Scholar
  44. Hobden BJ, Houghton BF, Davidson JP, Weaver SD (1999) Small and short-lived magma batches at composite volcanoes: time windows at Tongariro volcano, New Zealand. J Geol Soc 156(5):865CrossRefGoogle Scholar
  45. Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42(4):655–671. doi: 10.1093/petrology/42.4.655 CrossRefGoogle Scholar
  46. Kamenetsky VS, Elburg M, Arculus R, Thomas R (2006) Magmatic origin of low-Ca olivine in subduction-related magmas: co-existence of contrasting magmas. Chem Geol 233(3–4):346–357CrossRefGoogle Scholar
  47. Kay RW (1978) Aleutian magnesian andesites: melts from subducted Pacific ocean crust. J Volcanol Geotherm Res 4(1–2):117–132. doi: 10.1016/0377-0273(78)90032-X CrossRefGoogle Scholar
  48. Kelemen PB (1986) Assimilation of ultramafic rock in subduction-related magmatic arcs. J Geol 94(6):829–843. doi: 10.1086/629090 CrossRefGoogle Scholar
  49. Kelemen PB (1995) Genesis of high Mg# andesites and the continental crust. Contrib Mineral Petrol 120(1):1–19CrossRefGoogle Scholar
  50. Kelemen PB, Yogodzinski G (2007) High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive melt: Comment and reply: comment. Geology 35(1):e149–e150CrossRefGoogle Scholar
  51. Kelemen PB, Yogodzinski GM, Scholl DW (2003) Along-strike variation in the Aleutian island arc: genesis of high Mg# andesite and implications for continental crust. In: Eiler J (ed) Inside the subduction factory, vol 138. American Geophysical Union, Washington, pp 223–274CrossRefGoogle Scholar
  52. Kelemen PB, Yogodzinski GM, Scholl DW (2004) Along-strike variation in the Aleutian Island Arc: genesis of high Mg# andesite and implications for continental crust. In: Inside the subduction factory. American Geophysical Union, pp 223–276. doi:  10.1029/138GM11
  53. Kelemen PB, Hanghøj K, Greene AR (2014) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treat Geochem 4:749–805CrossRefGoogle Scholar
  54. Kilgour G, Blundy J, Cashman K, Mader HM (2013) Small volume andesite magmas and melt–mush interactions at Ruapehu, New Zealand: evidence from melt inclusions. Contrib Mineral Petrol 166(2):371–392. doi: 10.1007/s00410-013-0880-7 CrossRefGoogle Scholar
  55. Li C, Thakurta J, Ripley EM (2012) Low-Ca contents and kink-banded textures are not unique to mantle olivine: evidence from the Duke Island Complex, Alaska. Mineral Petrol 104(3):147–153. doi: 10.1007/s00710-011-0188-0 CrossRefGoogle Scholar
  56. Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68(5–6):477–493Google Scholar
  57. Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J Geophys Res 112:B03211. doi: 10.1029/2005JB004223 Google Scholar
  58. Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243(3–4):581–593. doi: 10.1016/j.epsl.2005.12.034 CrossRefGoogle Scholar
  59. Manya S, Maboko MAH, Nakamura E (2007) The geochemistry of high-Mg andesite and associated adakitic rocks in the Musoma-Mara Greenstone Belt, northern Tanzania: possible evidence for Neoarchaean ridge subduction? Precambrian Res 159(3–4):241–259CrossRefGoogle Scholar
  60. Mattey DP, Lowry D, Macpherson CG (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Lett 128:231–241CrossRefGoogle Scholar
  61. McCulloch MT, Kyser TK, Woodhead JD, Kinsley L (1994) Pb–Sr–Nd–O isotopic constraints on the origin of rhyolites from the Taupo Volcanic Zone of New-Zealand—evidence for assimilation followed by fractionation from Basalt. Contrib Mineral Petrol 115(3):303–312. doi: 10.1007/Bf00310769 CrossRefGoogle Scholar
  62. Myers JD, Marsh BD, Sinha AK (1985) Strontium isotopic and selected trace element variations between two Aleutian volcanic centers (Adak and Atka): implications for the development of arc volcanic plumbing systems. Contrib Mineral Petrol 91(3):221–234. doi: 10.1007/bf00413349 CrossRefGoogle Scholar
  63. Nakamura M, Shimakita S (1998) Dissolution origin and syn-entrapment compositional change of melt inclusion in plagioclase. Earth Planet Sci Lett 161(1–4):119–133. doi: 10.1016/S0012-821X(98)00144-7 CrossRefGoogle Scholar
  64. Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am Mineral 77(11–12):1242–1249Google Scholar
  65. Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23(1):251–285. doi: 10.1146/annurev.ea.23.050195.001343 CrossRefGoogle Scholar
  66. Pertermann M, Hirschmann MM (2003) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J Petrol 44(12):2173–2201CrossRefGoogle Scholar
  67. Price RC, Gamble JA, Smith IEM, Stewart RB, Eggins S, Wright IC (2005) An integrated model for the temporal evolution of andesites and rhyolites and crustal development in New Zealand’s North Island. J Volcanol Geotherm Res 140(1–3):1–24CrossRefGoogle Scholar
  68. Price RC, George R, Gamble JA, Turner S, Smith IEM, Cook C, Hobden B, Dosseto A (2007) U–Th–Ra fractionation during crustal-level andesite formation at Ruapehu volcano, New Zealand. Chem Geol 244:437–451CrossRefGoogle Scholar
  69. Price RC, Turner S, Cook C, Hobden B, Smith IEM, Gamble JA, Handley H, Maas R, Möbis A (2010) Crustal and mantle influences and U–Th–Ra disequilibrium in andesitic lavas of Ngauruhoe volcano, New Zealand. Chem Geol 277(3–4):355–373CrossRefGoogle Scholar
  70. Price RC, Gamble JA, Smith IEM, Maas R, Waight T, Stewart RB, Woodhead J (2012) The anatomy of an andesite volcano: a time-stratigraphic study of andesite petrogenesis and crustal evolution at Ruapehu Volcano, New Zealand. J Petrol 53(10):2139–2189. doi: 10.1093/petrology/egs050 CrossRefGoogle Scholar
  71. Price RC, Mortimer N, Smith IEM, Maas R (2015) Whole-rock geochemical reference data for Torlesse and Waipapa terranes, North Island, New Zealand. NZ J Geol Geophys 58(3):213–228. doi: 10.1080/00288306.2015.1026832 CrossRefGoogle Scholar
  72. Price RC, Smith IEM, Stewart RB, Gamble JA, Gruender K, Maas R (2016) High-K andesite petrogenesis and crustal evolution: evidence from mafic and ultramafic xenoliths, Egmont Volcano (Mt. Taranaki) and comparisons with Ruapehu Volcano, North Island, New Zealand. Geochim Cosmochim Acta 185:328–357. doi: 10.1016/j.gca.2015.12.009 CrossRefGoogle Scholar
  73. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120. doi: 10.2138/rmg.2008.69.3 CrossRefGoogle Scholar
  74. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289CrossRefGoogle Scholar
  75. Rooney TO, Deering CD (2013) Conditions of melt generation beneath the Taupo Volcanic Zone: the influence of heterogeneous mantle inputs on large-volume silicic systems. Geology 42(1):3–6. doi: 10.1130/g34868.1 CrossRefGoogle Scholar
  76. Rowland JV, Sibson RH (2001) Extensional fault kinematics within the Taupo Volcanic Zone, New Zealand: soft-linked segmentation of a continental rift system. NZ J Geol Geophys 44(2):271–283. doi: 10.1080/00288306.2001.9514938 CrossRefGoogle Scholar
  77. Rowland JV, Wilson CJN, Gravley DM (2010) Spatial and temporal variations in magma-assisted rifting, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 190(1–2):89–108. doi: 10.1016/j.jvolgeores.2009.05.004 CrossRefGoogle Scholar
  78. Ruprecht P, Plank T (2013) Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500(7460):68–72. doi: 10.1038/nature12342 CrossRefGoogle Scholar
  79. Sekine T, Wyllie PJ (1982) Synthetic systems for modeling hybridization between hydrous siliceous magmas and peridotite in subduction zones. J Geol 90(6):734–741CrossRefGoogle Scholar
  80. Shiraki K, Saito T, Kuroda N, Urano H, Sugiura T, Cole JW (1994) Magnesian andesites from White Island, New Zealand: mineralogical Evidence for mixing of high-magnesian basalt and dacite magmas. Geosci Repr Shizuoka Univ 20:33–40Google Scholar
  81. Shukuno H, Tamura Y, Tani K, Chang Q, Suzuki T, Fiske RS (2006) Origin of silicic magmas and the compositional gap at Sumisu submarine caldera, Izu-Bonin arc, Japan. J Volcanol Geotherm Res 156(3–4):187–216. doi: 10.1016/j.jvolgeores.2006.03.018 CrossRefGoogle Scholar
  82. Sisson TW, Grove TL, Coleman DS (1996) Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib Mineral Petrol 126(1):81–108. doi: 10.1007/s004100050237 CrossRefGoogle Scholar
  83. Stern TA, Stratford WR, Salmon ML (2006) Subduction evolution and mantle dynamics at a continental margin: Central North Island, New Zealand. Rev Geophys 44(4):2005RG000171. doi: 10.1029/2005RG000171 CrossRefGoogle Scholar
  84. Stern T, Stratford W, Seward A, Henderson M, Savage M, Smith E, Benson A, Greve S, Salmon M (2010) Crust–mantle structure of the central North Island, New Zealand, based on seismological observations. J Volcanol Geotherm Res 190(1–2):58–74. doi: 10.1016/j.jvolgeores.2009.11.017 CrossRefGoogle Scholar
  85. Straub SM, Gomez-Tuena A, Stuart FM, Zellmer GF, Espinasa-Perena R, Cai Y, Iizuka Y (2011) Formation of hybrid arc andesites beneath thick continental crust. Earth Planet Sci Lett 303(3–4):337–347. doi: 10.1016/j.epsl.2011.01.013 CrossRefGoogle Scholar
  86. Streck MJ, Leeman WP, Chesley J (2007) High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35(4):351–354. doi: 10.1130/g23286a.1 CrossRefGoogle Scholar
  87. Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Int 183(1–2):73–90. doi: 10.1016/j.pepi.2010.02.004 CrossRefGoogle Scholar
  88. Tamura Y, Tatsumi Y (2002) Remelting of an andesitic crust as a possible origin for rhyolitic magma in oceanic arcs: an example from the Izu-Bonin arc. J Petrol 43(6):1029–1047CrossRefGoogle Scholar
  89. Taylor S, McLennan S (1985) The continental crust: its composition and evolution. Blackwell Scientific Publishing, Oxford, pp 1–312Google Scholar
  90. Tost M, Price RC, Cronin SJ, Smith IEM (2016) New insights into the evolution of the magmatic system of a composite andesite volcano revealed by clasts from distal mass-flow deposits: Ruapehu volcano, New Zealand. Bull Volcanol 78(5):38. doi: 10.1007/s00445-016-1030-7 CrossRefGoogle Scholar
  91. Wanless VD, Perfit MR, Ridley WI, Klein E (2010) Dacite petrogenesis on mid-ocean ridges: evidence for oceanic crustal melting and assimilation. J Petrol 51(12):2377–2410CrossRefGoogle Scholar
  92. Wilson CJN, Houghton BF, McWilliams MO, Lanphere MA, Weaver SD, Briggs RM (1995) Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review. J Volcanol Geotherm Res 68(1):1–28. doi: 10.1016/0377-0273(95)00006-G CrossRefGoogle Scholar
  93. Wood BJ, Turner SP (2009) Origin of primitive high-Mg andesite: constraints from natural examples and experiments. Earth Planet Sci Lett 283(1–4):59–66. doi: 10.1016/j.epsl.2009.03.032 CrossRefGoogle Scholar
  94. Yoder HS, Tilley CF (1962) Origin of basaltic magmas: an experimental study of natural and synthetic rock systems. J Petrol 3:342–532CrossRefGoogle Scholar
  95. Yogodzinski GM, Volynets ON, Koloskov AV, Seliverstov NI, Matvenkov VV (1994) Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, Far Western Aleutians. J Petrol 35(1):163–204. doi: 10.1093/petrology/35.1.163 CrossRefGoogle Scholar
  96. Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV, Kay SM (1995) Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geol Soc Am Bull 107(5):505–519. doi: 10.1130/0016-7606(1995)107<0505:maitwa>2.3.co;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.GeoZentrum NordbayernFriedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
  2. 2.GEOMAR Helmholtz-Zentrum für Ozeanforschung KielKielGermany

Personalised recommendations