Origin of felsic volcanism in the Izu arc intra-arc rift

  • Satoru HaraguchiEmail author
  • Jun-Ichi Kimura
  • Ryoko Senda
  • Koichiro Fujinaga
  • Kentaro Nakamura
  • Yutaro Takaya
  • Teruaki Ishii
Original Paper


An intra-arc rift (IAR) is developed behind the volcanic front in the Izu arc, Japan. Bimodal volcanism, represented by basalt and rhyolite lavas and hydrothermal activity, is active in the IAR. The constituent minerals in the rhyolite lavas are mainly plagioclase and quartz, whereas mafic minerals are rare and are mainly orthopyroxene without any hydrous minerals such as amphibole and biotite. Both the phenocryst and groundmass minerals have felsic affinities with a narrow compositional range. The petrological and bulk chemical characteristics are similar to those of melts from some partial melting experiments that also yield dry rhyolite melts. The hydrous mineral-free narrow mineral compositions and low-Al2O3 affinities of the IAR rhyolites are produced from basaltic middle crust under anhydrous low-temperature melting conditions. The IAR basalt lavas display prominent across-arc variation, with depleted elemental compositions in the volcanic front side and enriched compositions in the rear-arc side. The across-arc variation reflects gradual change in the slab-derived components, as demonstrated by decreasing Ba/Zr and Th/Zr values to the rear-arc side. Rhyolite lavas exhibit different across-arc variations in either the fluid-mobile elements or the immobile elements, such as Nb/Zr, La/Yb, and chondrite-normalized rare earth element patterns, reflecting that the felsic magmas had different source. The preexisting arc crust formed during an earlier stage of arc evolution, most probably during the Oligocene prior to spreading of the Shikoku back-arc basin. The lack of systematic across-arc variation in the IAR rhyolites and their dry/shallow crustal melting origin combines to suggest re-melting of preexisting Oligocene middle crust by heat from the young basaltic magmatism.


Intra-arc rifting Bimodal volcanism Across-arc geochemical variation Mantle-derived basalt Rhyolite crustal melt Izu arc 



We are much indebted to the captain and crew of R/V MOANA WAVE for sample recovery. We express gratitude to Prof. Hidekazu Tokuyama, Dr. Shiki Machida, and Dr. Takashi Miyazaki for the discussions. We would like to thank Dr. Marc Humblet for detailed comments on the manuscript. We also would like to thank Mr. Taichi Sato for drawing maps used in this study by Generic Mapping Tool (GMT) and discussions. We would like to thank Drs. Timothy L. Grove and James B. Gill and anonymous reviewers for their constructive comments. The authors would like to thank Enago ( for the English language review.

Supplementary material

410_2017_1345_MOESM1_ESM.tif (14.1 mb)
Supplementary material 1 Fig. A1. Dredged rhyolite samples from the IAR during the cruise MW9507. a. Massive rhyolites of sample MWD42-1. b. Rhyolite with macroscopic flow structure in sample MWD40-5 (TIF 14426 KB)
410_2017_1345_MOESM2_ESM.tif (25.4 mb)
Supplementary material 2 Fig. A2. a. Typical aphyric rhyolite dredged from site MWD61 (sample MWD61-5). Groundmass shows fine hyaloophitic texture. Open polars. b. Typical pl microphenocrysts in the aphyric rhyolite. This sample was dredged from site MWD40 (sample MWD40-5). Open polars. c. Typical opx microphenocrysts in the aphyric rhyolite. This sample was dredged from site MWD84 (sample MWD84-3). Open polars. d. Cpx (left and center), oopx (upper), and pl (center) microphenocryst in a typical 2-px andesite dredged from site MWD50 (sample MWD50-1). twinning texture is observed in the some plagioclase phenocrysts. Groundmass shows fine intersertal texture. Crossed polars. e. Cpx (left) and (upper) phenocrysts in a typical 2-px basalt dredged from site MWD32 (Sample MWD32-4). Mineral assemblage and groundmass texture show characteristics similar to andesite. Crossed polars. f Ol (center) and pl (lower) in a typical primitive basalt dredged from site MWD08 (Sample MWD08-7). Groundmass shows fine intersertal textures. Open polars (TIF 26016 KB)
410_2017_1345_MOESM3_ESM.xls (117 kb)
Supplementary material 3 Table A1. All bulk-rock composition data obtained by XRF and ICP–MS for volcanic rocks dredged during cruise MW9507. Comparison of standard analyses is shown in Table 2 (XLS 117 KB)
410_2017_1345_MOESM4_ESM.xls (61 kb)
Supplementary material 4 Table A2. Selected data of mineral composition measured by the EPMA (XLS 61 KB)


  1. Aoike K (1996) Field excursion guide to Hayato river, Tanzawa Mountains. In: Arima M, Stern RJ et al (eds) Field guide book, IBM arc system workshop: geochemical and geophysical studies of the Izu–Bonin–Mariana arc system: cooperative studies between Japan and the United States, pp 43–65Google Scholar
  2. Aramaki S, Itoh J (1992) Rocks of Niijima Volcano. In: Characterization of volcanic rocks in Izu Islands: data set for prevention of volcanic hazard pp 7–29, Bureau of General Affairs, Disaster Prevention Division, Tokyo Metropolitan GovernmentGoogle Scholar
  3. Arculus RJ, Pearce JA, Multon BJ, van der Laan SR (1992) Igneous stratigraphy and major-element geochemistry of holes 786 A and 786B. In Fryer P, Pearce JA, Stolling LB et al (eds) Proceedings of ODP science research, vol 125, pp 143–168. doi: 10.2973/
  4. Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol 32:365–401. doi: 10.1093/petrology/32.2.365 CrossRefGoogle Scholar
  5. Bence SE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76:382–403CrossRefGoogle Scholar
  6. Bryant CJ, Arculus AL, Eggins SM (2003) The geochemical evolution of the Izu–Bonin arc system: a perspective from tephras recovered by deep-sea drilling. Geochem Geophys Geosys 4:1094. doi: 10.1029/2002GC000427 CrossRefGoogle Scholar
  7. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665. doi: 10.1038/347662a0 CrossRefGoogle Scholar
  8. Expedition 350 Scientists (2014) Izu-Bonin-Mariana rear arc: the missing half of the subduction factory. IODP Prelim Rep.  10.14379/ Google Scholar
  9. Fujioka K, Matsuo Y, Nishimura A, Koyama M, Rodolfo KS (1992) Tephras of the Izu–Bonin forearc (Sites 787, 792, and 793). In: Taylor B, Fujioka K et al. (eds) Proc ODP Sci Res 126:47–74. doi: 10.2973/
  10. Gill JB, Hiscott RN, Vidal P (1994) Turbidite geochemistry and evolution of the Izu–Bonin arc and continents. Lithos 33:135–168. doi: 10.1016/0024-4937(94)90058-2 CrossRefGoogle Scholar
  11. Goto A, Tatsumi Y (1991) Quantitative analysis of rock sample using X-ray fluorescence analyzer. Rigaku-Denki J 22:28–44 (in Japanese) Google Scholar
  12. Haraguchi S, Ishii T (2007) Simultaneous boninitic and tholeiitic volcanisms in the Izu forearc region during early arc volcanism based on ODP Leg 125 site 786. Contrib Mineral Petrol 153:509–531. doi: 10.1007/s00410-006-0164-6 CrossRefGoogle Scholar
  13. Haraguchi S, Ishii T, Kimura J-I, Ohara Y (2003) Formation of tonalite from basaltic magma at the Komahashi–Daini Seamount, northern Kyushu–Palau Ridge in the Philippine Sea, and growth of Izu–Ogasawara (Bonin)–Mariana arc crust. Contrib Mineral Petrol 145:151–168. doi: 10.1007/s00410-002-0433-y CrossRefGoogle Scholar
  14. Haraguchi S, Ishii T, Kimura J-I, Kato Y (2012) The early Miocene (~25 Ma) volcanism in the northern Kyushu–Palau Ridge, enriched mantle source injection during rifting prior to the Shikoku backarc basin opening. Contrib Mineral Petrol 163(3):483–504. doi: 10.1007/s00410-011-0680-x CrossRefGoogle Scholar
  15. Hochstaedter AG, Gill JB, Kusakabe M, Newman A, Pringle M, Taylor B, Fryer P (1990a) Volcanism in the Sumisu Rift, I. Major element, volatile and stable isotope geochemistry. Earth Planet Sci Lett 100:179–194. doi: 10.1016/0012-821X(90)90185-Z CrossRefGoogle Scholar
  16. Hochstaedter AG, Gill JB, Morris JD (1990b) Volcanism in the Sumisu Rift, II. Subduction and nonsubduction related components. Earth Planet Sci Lett 100:195–209. doi: 10.1016/0012-821X(90)90185-Z CrossRefGoogle Scholar
  17. Hochstaedter AG, Gill JG, Taylor B, Ishizuka O, Yuasa M, Morita S (2000) Across-arc geochemical trends in the Izu–Bonin arc: constraints on source composition and mantle melting. J Geophys Res 105(B1):495–512. doi: 10.1029/1999JB900125 CrossRefGoogle Scholar
  18. Hochstaedter AG, Gill J, Peters R, Broughton P, Holden P, Taylor B (2001) Across-arc geochemical trends in the Izu–Bonin arc: contributions from the subducting slab. Geochem Geophys Geosys 2:1019. doi: 10.1029/2000GC000105 CrossRefGoogle Scholar
  19. Ishizuka O, Uto K, Yuasa M, Hochstaedter AG (1998) K–Ar age from seamount chains in the back-arc region of the Izu–Ogasawara arc. Isl Arc 7:408–421. doi: 10.1111/j.1440-1738.1998.00199.x CrossRefGoogle Scholar
  20. Ishizuka O, Taylor RN, Milton, JA Nesbitt RW (2003a) Fluid-mantle interaction in an intra-oceanic arc: constraints from high-precision Pb isotopes. Earth Planet Sci Lett 211:211–236. doi: 10.1016/s0012-821x(03)00201-2 CrossRefGoogle Scholar
  21. Ishizuka O, Uto K, Yuasa M (2003b) Volcanic history of the backarc region of the Izu–Bonin (Ogasawara) arc. Geol Soc Lond Spec Publ 219:187–205. doi: 10.1144/GSL.SP.2003.219.01.09 CrossRefGoogle Scholar
  22. Ishizuka O, Uto K, Yuasa M, Hochstaedter AG (2003c) Volcanism in the earliest stage of back-arc rifting in the Izu–Bonin arc revealed by laser-heating 40Ar/39Ar dating. J Volcanol Geotherm Res 120:71–85. doi: 10.1016/S0377-0273(02)00365-7 CrossRefGoogle Scholar
  23. Ishizuka O, Kimura J-I, Li Y, Stern RJ, Reagan M, Taylor RN, Ohara Y, Bloomer SH, Ishii T, Hargrove US, Haraguchi S (2006a) Temporal variations of infant arc volcanism in the Izu–Bonin forearc: new age, chemical, and isotopic constraints. Earth Planet Sci Lett 250:385–401. doi: 10.1016/j.epsl.2006.08.007 CrossRefGoogle Scholar
  24. Ishizuka O, Taylor RN, Milton JA, Nesbitt RW, Yuasa M, Sakamoto I (2006b) Variation in the mantle sources of the northern Izu arc with time and space-constraints from high-precision Pb isotope. J Volcanol Geotherm Res 156:266–290. doi: 10.1016/j.jvolgeores.2006.03.005 CrossRefGoogle Scholar
  25. Ishizuka O, Yuasa M, Taylor RN, Sakamoto I (2009) Two contrasting magmatic types coexist after the cessation of back-arc spreading. Chem Geol 266:274–296. doi: 10.1016/j.chemgeo.2009.06.014 CrossRefGoogle Scholar
  26. Ishizuka O, Taylor RN, Yuasa M, Ohara Y (2011) Making and breaking an island arc: a new perspective from the Oligocene Kyushu–Palau arc, Philippine Sea. Geochem Geophys Geosyst. doi: 10.1029/2010GC003440 Google Scholar
  27. Kato Y, Fujinaga K, Suzuki K (2005) Major and trace element geochemistry and Os isotopic composition of metalliferous umbers from the Late Cretaceous Japanese accretionary complex. Geochem Geophys Geosyst 6:Q07004. doi: 10.1029/2005GC000920 CrossRefGoogle Scholar
  28. Kawate S, Arima M (1998) Petrogenesis of the Tanzawa plutonic complex, central Japan; exposed felsic middle crust of the Izu–Bonin–Mariana arc. Isl Arc 7:342–358. doi: 10.1111/j.1440-1738.1998.00194.x CrossRefGoogle Scholar
  29. Kay RW, Kay SM (1988) Crustal recycling and the Aleutian arc. Geochim Cosmochim Acta 52:1351–1359. doi: 10.1016/0016-7037(88)90206-2 CrossRefGoogle Scholar
  30. Kimura J-I, Kent AJR, Rowe MC, Katakuse M, Nakano F, Hacker BR, van Keken PE, Kawabata H, Stern RJ (2010) Origin of cross-chain geochemical variation in Quaternary lavas form the northern Izu arc: using a quantitative mass balance approach to identify mantle sources and mantle wedge processes. Geochem Geophys Geosyst 11:Q10011. doi: 10.1029/2010GC993959 CrossRefGoogle Scholar
  31. Kodaira S, Sato S, Takahashi N, Miura S, Tamura Y, Tatsumi Y, Kaneda Y (2007) New seismological constraints on growth of continental crust in the Izu–Bonin intra-oceanic arc. Geology 35:1031–1034. doi: 10.1130/g23901a.1 CrossRefGoogle Scholar
  32. Kodaira S, Sato S, Takahashi N, Yamashita M, No T, Kaneda Y (2008) Seismic imaging of a possible paleoarc in the Izu–Bonin intraoceanic arc and its implications for arc evolution processes. Geochem Geophys Geosyst 9:Q10X01. doi: 10.1029/2008GC002073 CrossRefGoogle Scholar
  33. Machida S, Ishii T (2003) Backarc volcanism along the en echelon seamounts: the Enpo seamount chain in the northern Izu–Ogasawara arc. Geochem Geophys Geosys 4:9006. doi: 10.1029/2003GC000554 CrossRefGoogle Scholar
  34. Machida S, Ishii T, Kimura J-I, Awaji S, Kato Y (2008) Petrology and geochemistry of cross-chains in the Izu–Bonin back-arc: three mantle components with contributions of hydrous liquids from a deeply subducted slab. Geochem Geophys Geosyst 9:Q05002. doi: 10.1029/2007GC001641 CrossRefGoogle Scholar
  35. Martin H (1993) The mechanisms of petrogenesis of the Archean continental crust—comparison with modern processes. Lithos 30:373–388. doi: 10.1016/0024-4937(93)90046-F CrossRefGoogle Scholar
  36. Meijer A (1983) The origin of low-K rhyolites from the Mariana frontal arc. Contrib Mineral Petrol 83:45–51. doi: 10.1007/BF00373078 CrossRefGoogle Scholar
  37. Morita S (1998) Structural and volcanic evolution of the northern Izu–Bonin Arc, Ph.D. thesis, University of Tokyo, Tokyo, JapanGoogle Scholar
  38. Nakajima K, Arima M (1998) Melting experiments on hydrous low-L tholeiite: implications for the genesis of tonalitic crust in the Izu–Bonin–Mariana arc. Isl Arc 7:359–373. doi: 10.1111/j.1440-1738.1998.00195.x CrossRefGoogle Scholar
  39. Nakamura Y, Kushiro I (1970) Compositional relations of coexisting orthopyroxene, pigeonite, and augite in a tholeiitic andesite from Hakone Volcano. Contrib Mineral Petrol 26:265–275. doi: 10.1007/BF00390075 CrossRefGoogle Scholar
  40. Okino K, Shimakawa Y, Nagaoka J (1994) Evolution of the Shikoku Basin. J Geomag Geoelect 46:463–479. doi: 10.5636/jgg.46.46 CrossRefGoogle Scholar
  41. Okino K, Ohara Y, Kasuga S, Kato Y (1999) The Philippine Sea: new survey results reveal the structure and the history of the marginal basins. Geophys Res Lett 26:2287–2290. doi: 10.5636/jgg.46.46 CrossRefGoogle Scholar
  42. Pearce JA, Stern RJ, Bloomer SH, Fryer P (2005) Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochem Geophys Geosyst. doi: 10.1029/2004gc000895 Google Scholar
  43. Senda R, Kimura J-I, Chang Q (2014) Evaluation of a rapid, effective sample digestion method for trace element analysis of granitoid samples containing acid-resistant minerals: alkali fusion after acid digestion. Geochem J 48:99–103. doi: 10.2343/geochemj.2.0280 CrossRefGoogle Scholar
  44. Shukuno H, Tamura Y, Tani K, Chang Q, Suzumi T, Fiske RS (2006) Origin of silicic magmas and the compositional gap at Sumisu submarine caldera, Izu–Bonin arc, Japan. J Volcanol Geotherm Res 156:187–216. doi: 10.1016/j.jvolgeores.2006.03.018 CrossRefGoogle Scholar
  45. Straub SM (2003) The evolution of the Izu Bonin–Mariana volcanic arcs (NW Pacific) in terms of major element chemistry. Geochem Geophys Geosys 4:1018. doi: 10.1029/2002GC000357 Google Scholar
  46. Sun S-s, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geological Society of London, London, pp 313–345. doi: 10.1144/GSL.SP.1989.042.01.19 Google Scholar
  47. Suyehiro K, Takahashi N, Ariie Y, Yokoi Y, hino R, Shinohara M, Kanazawa T, Hirata N, Tokuyama H, Taira A (1996) Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc. Science 272:390–392. doi: 10.1126/science.272.5260.390 CrossRefGoogle Scholar
  48. Takahashi M (1989) Neogene granitic magmatism un the South Fossa Magna collision zone, central Japan. Mod Geol 14:127–143Google Scholar
  49. Tamura Y (1994) Genesis of island arc magmas by mantle-derived bimodal magmatsim: evidence from the Shirahama Group, Japan. J Petrol 35:619–645. doi: 10.1093/petrology/35.3.619 CrossRefGoogle Scholar
  50. Tamura Y, Tatsumi Y (2002) Remelting of an andesitic crust as a possible origin for rhyolitic magma in oceanic arcs: an example from the Izu–Bonin arc. J Petrol 43:1029–1047. doi: 10.1093/petrology/43.6.1029 CrossRefGoogle Scholar
  51. Tamura Y, Tani K, Ishizuka O, Chang Q, Shikuno H, Fiske RS (2005) Are arc basalts dry, wet, or both? evidence from the Sumisu Caldera Volcano, Izu–Bonin arc, Japan. J Petrol 46:1769–1803. doi: 10.1093/petrology/egi033 CrossRefGoogle Scholar
  52. Tamura Y, Gill JB, Tollstrup D, Kawabata H, Shukuno H, Chang Q, Miyazaki T, Takahashi T, Hirahara Y, Kodaira S, Ishizuka O, Suzuki T, Kido Y, Fiske RS, Tatsumi Y (2009) Silicic magmas in the Izu-Bonin oceanic arc and implications for crustal evolution. J Petrol 50:685–723. doi: 10.1093/petrology/egp017 CrossRefGoogle Scholar
  53. Tamura Y, Ishizuka O, Aoike K, Kawate S, Kawabata H, Chang Q, Saito S, Tatsumi Y, Arima M, Takahashi M, Kanamaru T, Kodaira S, Fiske RS (2010) Missing Oligocene crust of the Izu–Bonin arc: consumed or rejuvenated during collision? J Petrol 51:823–846. doi: 10.1093/petrology/egq002 CrossRefGoogle Scholar
  54. Tani K, Dunkley DJ, Kimura J-I, Wysoczanski RJ, Yamada K, Tatsumi Y (2010) Syncollisional rapid granitic magma formation in an arc–arc collision zone: evidence from the Tanzawa plutonic complex, Japan. Geology 38:215–218. doi: 10.1130/G30526.1 CrossRefGoogle Scholar
  55. Tani K, Fiske RS, Dunkley DJ, Ishizuka O, Oikawa T, Isobe I, Tatsumi Y (2011) The Izu Peninsula, Japan: Zircon geochronology reveals a record of intra-oceanic rear-arc magmatism in an accreted block of Izu–Bonin upper crust. Earth Planet Sci Lett 303:225–239. doi: 10.1016/j.epsl.2010.12.052 CrossRefGoogle Scholar
  56. Tatsumi Y, Stern RJ (2006) Manufacturing continental crust in the subduction factory. Oceanography 19(4):104–112. doi: 10.5670/oceanog.2006.09.CrossRefGoogle Scholar
  57. Tollstrup D, Gill J, Kent A, Prinkey D, Williams R, Tamura Y, Ishizuka O (2010) Across-arc geochemical trends in the Izu–Bonin arc: contributions from the subducting slab, revisited. Geochem Geophys Geosyst 11:Q01X10. doi: 10.1029/2009GC002847 CrossRefGoogle Scholar
  58. Tomiya A, Takahashi E (2005) Evolution of the magma chamber beneath Usu volcano since 1663: a natural laboratory for observation changing phenocryst compositions ant textures. J Petrol 46:2395–2426. doi: 10.1093/petrology/egi057 CrossRefGoogle Scholar
  59. Urabe T, Kusakabe M (1990) Barite silica chimneys from the Sumisu Rift, Izu–Bonin arc: possible analog to hematitic chert associated with Kuroko deposits. Earth Planet Sci Lett 100:283–290. doi: 10.1016/0012-821X(90)90191-Y CrossRefGoogle Scholar
  60. Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: the effect of temperature and time. Contrib Mineral Petrol 115:369–383. doi: 10.1007/BF00320972 CrossRefGoogle Scholar
  61. Yuasa M (1985) Sofugan tectonic line, a new tectonic boundary separating northern and southern parts of the Ogasawara (Bonin) arc, Northwest Pacific. In: Nasu N, Kobayashi K, Uyeda S, Kushiro I, Kagami H (eds) Formation of active ocean margins. Terrapub. Tokyo, pp 483–496Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Satoru Haraguchi
    • 1
    Email author
  • Jun-Ichi Kimura
    • 1
  • Ryoko Senda
    • 2
  • Koichiro Fujinaga
    • 3
  • Kentaro Nakamura
    • 4
  • Yutaro Takaya
    • 5
  • Teruaki Ishii
    • 6
  1. 1.Department of Solid Earth GeochemistryJAMSTECYokosukaJapan
  2. 2.Graduate School of Social and Cultural StudiesKyushu UniversityFukuokaJapan
  3. 3.Ocean Resources Research Center for Next GenerationChiba Institute of TechnologyNarashinoJapan
  4. 4.Department of System Innovation, Graduate School of EngineeringUniversity of TokyoTokyoJapan
  5. 5.Department of Resources and Environmental Engineering, School of Creative Science and EngineeringWaseda UniversityTokyoJapan
  6. 6.Center for Integrated Research and Education of Natural HazardsShizuoka UniversityShizuokaJapan

Personalised recommendations