Amphibole megacrysts as a probe into the deep plumbing system of Merapi volcano, Central Java, Indonesia

  • Stefan T. M. PetersEmail author
  • Valentin R. Troll
  • Franz A. Weis
  • Luigi Dallai
  • Jane P. Chadwick
  • Bernhard Schulz
Original Paper


Amphibole has been discussed to potentially represent an important phase during early chemical evolution of arc magmas, but is not commonly observed in eruptive arc rocks. Here, we present an in-depth study of metastable calcic amphibole megacrysts in basaltic andesites of Merapi volcano, Indonesia. Radiogenic Sr and Nd isotope compositions of the amphibole megacrysts overlap with the host rock range, indicating that they represent antecrysts to the host magmas rather than xenocrysts. Amphibole-based barometry suggests that the megacrysts crystallised at pressures of >500 MPa, i.e., in the mid- to lower crust beneath Merapi. Rare-earth element concentrations, in turn, require the absence of magmatic garnet in the Merapi feeding system and, therefore, place an uppermost limit for the pressure of amphibole crystallisation at ca. 800 MPa. The host magmas of the megacrysts seem to have fractionated significant amounts of amphibole and/or clinopyroxene, because of their low Dy/Yb ratios relative to the estimated compositions of the parent magmas to the megacrysts. The megacrysts’ parent magmas at depth may thus have evolved by amphibole fractionation, in line with apparently coupled variations of trace element ratios in the megacrysts, such as e.g., decreasing Zr/Hf with Dy/Yb. Moreover, the Th/U ratios of the amphibole megacrysts decrease with increasing Dy/Yb and are lower than Th/U ratios in the basaltic andesite host rocks. Uranium in the megacrysts’ parent magmas, therefore, may have occurred predominantly in the tetravalent state, suggesting that magmatic fO2 in the Merapi plumbing system increased from below the FMQ buffer in the mid-to-lower crust to 0.6–2.2 log units above it in the near surface environment. In addition, some of the amphibole megacrysts experienced dehydrogenation (H2 loss) and/or dehydration (H2O loss), as recorded by their variable H2O contents and D/H and Fe3+/Fe2+ ratios, and the release of these volatile species into the shallow plumbing system may facilitate Merapi’s often erratic eruptive behaviour.


Magmatic differentiation Rare-earth elements Arc magmas Barometry Dehydrogenation Dehydration 



We are grateful for the insightful comments by Othmar Müntener, Jon Davidson, Szabolcs Harangi, and two anonymous reviewers that helped to significantly improve the manuscript. This work furthermore benefited from discussions with John Hora, Pieter Vroon, Gareth Davies, Hans Annersten, Frances Deegan, Carsten Münker, and Sophie Omidian. We thank Henrik Skogby for his help with the IR and Mössbauer analysis. Support by the petrology department of VU University Amsterdam to S.P., the department of applied mineralogy at Erlangen to B.S., and the Swedish Science Foundation to V.R.T. (field sampling, sample preparation and D analyses) are gratefully acknowledged. In addition, S.P. and V.R.T. acknowledge financial support by the “U4” collaboration network of the German Academic Exchange Service (DAAD), in which Göttingen and Uppsala universities are active partners.

Supplementary material

410_2017_1338_MOESM1_ESM.xlsx (209 kb)
Appendix 1: Complete EMP data set with amphibole formulas and pressure calculations (XLSX 209 KB)
410_2017_1338_MOESM2_ESM.pdf (211 kb)
Appendix 2: Trace element concentrations in amphibole megacrysts normalised to their host magmas (PDF 210 KB)
410_2017_1338_MOESM3_ESM.pdf (71 kb)
Appendix 3: Mössbauer parameters (PDF 70 KB)
410_2017_1338_MOESM4_ESM.pdf (449 kb)
Appendix 4: Crystallisation temperatures of the amphibole megacrysts estimated from their major element compositions (PDF 449 KB)
410_2017_1338_MOESM5_ESM.docx (371 kb)
Appendix 5: DDy/Yb vs DLa/Yb from literature studies (DOCX 370 KB)


  1. Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Mineral Petrol 157(4):541–558CrossRefGoogle Scholar
  2. Aoki K (1963) The kaersutites and oxykaersutites from alkalic rocks of Japan and surrounding areas. J Petrol 4(2):198–210CrossRefGoogle Scholar
  3. Ballhaus C (1993) Redox states of lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol 114(3):331–348CrossRefGoogle Scholar
  4. Beard JS (1986) Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 14(10):848–851CrossRefGoogle Scholar
  5. Berthommier PC, Camus G, Condomines M, Vincent PM (1990) Le merapi (centre Java): elements de chronologie d’un stratovolcan andésitique. Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers. Sci Terre 311(1):213–218Google Scholar
  6. Blatter DL, Sisson TW, Hankins WB (2013) Crystallization of oxidized, moderately hydrous arc basalt at mid-to lower-crustal pressures: implications for andesite genesis. Contrib Mineral Petrol 166(3):861–886CrossRefGoogle Scholar
  7. Boettcher AL, O’Neil JR (1980) Stable isotope, chemical, and petrographic studies of high-pressure amphiboles and micas: evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. Am J Sci 280:594–621Google Scholar
  8. Borisova AY, Gurenko AA, Martel C, Kouzmanov K, Cathala A, Bohrson WA, Pratomo I, Sumarti S (2016) Oxygen isotope heterogeneity of arc magma recorded in plagioclase from the 2010 Merapi eruption (Central Java, Indonesia). Geochim Cosmochim Acta 190:13–34CrossRefGoogle Scholar
  9. Bottazzi P, Tiepolo M, Vannucci R, Zanetti A, Brumm R, Foley SF, Oberti R (1999) Distinct site preferences for heavy and light REE in amphibole and the prediction of Amph/LDREE. Contrib Mineral Petrol 137(1–2):36–45CrossRefGoogle Scholar
  10. Camus G, Gourgaud A, Mossand-Berthommier PC, Vincent PM (2000) Merapi (Central Java, Indonesia): an outline of the structural and magmatological evolution, with a special emphasis to the major pyroclastic events. J Volcanol Geotherm Res 100(1):139–163CrossRefGoogle Scholar
  11. Cawthorn RG, O’Hara MJ (1976) Amphibole fractionation in calc-alkaline magma genesis. Am J Sci 276(3):309–329CrossRefGoogle Scholar
  12. Chadwick JP, Troll VR, Ginibre C, Morgan D, Gertisser R, Waight TE, Davidson JP (2007) Carbonate assimilation at Merapi Volcano, Java, Indonesia: insights from crystal isotope stratigraphy. J Petrol 48(9):1793–1812CrossRefGoogle Scholar
  13. Chadwick JP, Troll VR, Waight TE, van der Zwan FM, Schwarzkopf LM (2013) Petrology and geochemistry of igneous inclusions in recent Merapi deposits: a window into the sub-volcanic plumbing system. Contrib Mineral Petrol 165(2):259–282CrossRefGoogle Scholar
  14. Conrad WK, Kay RW (1984) Ultramafic and mafic inclusions from Adak Island: crystallization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian Arc. J Petrol 25(1):88–125CrossRefGoogle Scholar
  15. Costa F, Andreastuti S, de Maisonneuve CB, Pallister JS (2013) Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. J Volcanol Geotherm Res 261:209–235CrossRefGoogle Scholar
  16. Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35(9):787–790CrossRefGoogle Scholar
  17. Davies GR, Stolz AJ, Mahotkin IL, Nowell GM, Pearson DG (2006) Trace element and Sr–Pb–Nd–Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan Shield lamproites. J Petrol 47(6):1119–1146CrossRefGoogle Scholar
  18. DeBari SM, Coleman RG (1989) Examination of the deep levels of an island arc: evidence from the tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J Geophys Res Solid Earth (1978–2012) 94(B4):4373–4391CrossRefGoogle Scholar
  19. Debari S, Kay SM, Kay RW (1987) Ultramafic xenoliths from Adagdak volcano, Adak, Aleutian Islands, Alaska: deformed igneous cumulates from the Moho of an island arc. J Geol 95:329–341CrossRefGoogle Scholar
  20. Demény A, Vennemann TW, Harangi S, Homonnay Z, Fórizs I (2006) H2O-δD-FeIII relations of dehydrogenation and dehydration processes in magmatic amphiboles. Rapid Commun Mass Spectrom 20(5):919–925CrossRefGoogle Scholar
  21. Dixon JE, Clague DA, Stolper EM (1991) Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea Volcano, Hawaii. J Geol 99:371–394CrossRefGoogle Scholar
  22. Donoghue E, Troll VR, Schwarzkopf LM, Clayton G, Goodhue R (2009) Organic block coatings in block-and-ash flow deposits at Merapi Volcano, central Java. Geol Mag 146(01):113–120CrossRefGoogle Scholar
  23. Downes H, Seghedi I, Szakacs A, Dobosi G, James DE, Vaselli O, Rigby IJ, Ingram GA, Rex D, Pecskay Z (1995) Petrology and geochemistry of late tertiary/quaternary mafic alkaline volcanism in Romania. Lithos 35(1):65–81CrossRefGoogle Scholar
  24. Downes H, Beard A, Hinton R (2004) Natural experimental charges: an ion-microprobe study of trace element distribution coefficients in glass-rich hornblendite and clinopyroxenite xenoliths. Lithos 75(1):1–17CrossRefGoogle Scholar
  25. Dyar MD, McGuire AV, Mackwell SJ (1992) Fe3+/H+ and D/H in kaersutites—misleading indicators of mantle source fugacities. Geology 20(6):565–568CrossRefGoogle Scholar
  26. Eggins SM, Woodhead JD, Kinsley LPJ, Mortimer GE, Sylvester P, McCulloch MT, Hergt JM, Handler MR (1997) A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem Geol 134(4):311–326CrossRefGoogle Scholar
  27. Erdmann S, Martel C, Pichavant M, Kushnir A (2014) Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contrib Mineral Petrol 167(6):1–23CrossRefGoogle Scholar
  28. Feeley TC, Sharp ZD (1996) Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers. Geology 24(11):1021–1024CrossRefGoogle Scholar
  29. Foden JD, Green DH (1992) Possible role of amphibole in the origin of andesite: some experimental and natural evidence. Contrib Mineral Petrol 109(4):479–493CrossRefGoogle Scholar
  30. Fonseca RO, Mallmann G, Sprung P, Sommer JE, Heuser A, Speelmanns IM, Blanchard H (2014) Redox controls on tungsten and uranium crystal/silicate melt partitioning and implications for the U/W and Th/W ratio of the lunar mantle. Earth Planet Sci Lett 404:1–13CrossRefGoogle Scholar
  31. Gertisser R (2001) Gunung Merapi (Java, Indonesien): Eruptionsgeschichte und magmatische Evolution eines Hochrisiko-Vulkans. Doctoral dissertation Albert Ludwigs University of Freiburg, pp 381Google Scholar
  32. Gertisser R, Keller J (2003) Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda Arc magma genesis. J Petrol 44(3):457–489CrossRefGoogle Scholar
  33. Gertisser R, Charbonnier SJ, Keller J, Quidelleur X (2012) The geological evolution of Merapi volcano, Central Java, Indonesia. Bull Volcanol 74(5):1213–1233CrossRefGoogle Scholar
  34. Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Mineral 97(11–12):2031–2048CrossRefGoogle Scholar
  35. Hoefs J (1997) Stable isotope geochemistry, 3rd edn. Springer, Heidelberg, p 241CrossRefGoogle Scholar
  36. Hut G (1987) Consultants’ group meeting on stable isotope reference samples for geochemical and hydrological investigations. IAEA, Vienna 16–18 september 1985. Report to the Director General, vol. International Atomic Energy AgencyGoogle Scholar
  37. Irving AJ, Frey FA (1984) Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis. Geochim Cosmochim Acta 48(6):1201–1221CrossRefGoogle Scholar
  38. Jagoutz O, Müntener O, Schmidt MW, Burg JP (2011) The roles of flux-and decompression melting and their respective fractionation lines for continental crust formation: evidence from the Kohistan arc. Earth Planet Sci Lett 303(1):25–36CrossRefGoogle Scholar
  39. Jolis EM (2013) Magma-Crust Interaction at Subduction Zone Volcanoes, Doctoral dissertation Acta Universitatis Upsaliensis, p 40Google Scholar
  40. Kiss B, Harangi S, Ntaflos T, Mason PR, Pál-Molnár E (2014) Amphibole perspective to unravel pre-eruptive processes and conditions in volcanic plumbing systems beneath intermediate arc volcanoes: a case study from Ciomadul volcano (SE Carpathians). Contrib Mineral Petrol 167(3):1–27CrossRefGoogle Scholar
  41. Klaver M, Djuly T, de Graaf S, Sakes A, Wijbrans J, Davies G, Vroon P (2015) Temporal and spatial variations in provenance of Eastern Mediterranean sea sediments: implications for Aegean and Aeolian arc volcanism. Geochim Cosmochim Acta 153:149–168CrossRefGoogle Scholar
  42. Koornneef JM, Bouman C, Schwieters JB, Davies GR (2013) Use of 1012 ohm current amplifiers in Sr and Nd isotope analyses by TIMS for application to sub-nanogram samples. J Anal At Spectrom 28(5):749–754CrossRefGoogle Scholar
  43. Koornneef JM, Bouman C, Schwieters JB, Davies GR (2014) Measurement of small ion beams by thermal ionisation mass spectrometry using new 1013 Ohm resistors. Anal Chim Acta 819:49–55CrossRefGoogle Scholar
  44. Krawczynski MJ, Grove TL, Behrens H (2012) Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity. Contrib Mineral Petrol 164(2):317–339CrossRefGoogle Scholar
  45. Lapierre H, Ortiz LE, Abouchami W, Monod O, Coulon C, Zimmermann J-L (1992) A crustal section of an intra-oceanic island arc: the late Jurassic-Early cretaceous guanajuato magmatic sequence, central Mexico. Earth Planet Sci Lett 108(1):61–77CrossRefGoogle Scholar
  46. Larocque J, Canil D (2010) The role of amphibole in the evolution of arc magmas and crust: the case from the Jurassic Bonanza arc section, vancouver Island, Canada. Contrib Mineral Petrol 159(4):475–492CrossRefGoogle Scholar
  47. Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms: a classification and glossary of terms: recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks, vol. Cambridge University Press, CambridgeGoogle Scholar
  48. Leake BE, Woolley AR, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird JO, Maresch WV, Schumacher JC, Stephenson NC, Whittaker EJ (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on new minerals and mineral names. Can Mineral 35:219–246Google Scholar
  49. Lee CTA, Luffi P, Le Roux V, Dasgupta R, Albaréde F, Leeman WP (2010) The redox state of arc mantle using Zn/Fe systematics. Nature 468(7324):681–685CrossRefGoogle Scholar
  50. Locock AJ (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput Geosci 62:1–11CrossRefGoogle Scholar
  51. Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243(3):581–593CrossRefGoogle Scholar
  52. Meyer I, Davies GR, Stuut JBW (2011) Grain size control on Sr-Nd isotope provenance studies and impact on paleoclimate reconstructions: an example from deep-sea sediments offshore NW Africa. Geochem Geophys Geosyst 12(3). doi: 10.1029/2010GC003355
  53. Murphy MD, Sparks RS, Barclay J, Carroll MR, Lejeune AM, Brewer TS, Macdonald R, Black S, Young S (1998) The role of magma mixing in triggering the current eruption at the Soufriere Hills Volcano, Montserrat. Geophys Res Lett 25(18):3433–3436CrossRefGoogle Scholar
  54. Nadeau O, Williams-Jones AE, Stix J (2013) Magmatic–hydrothermal evolution and devolatilization beneath Merapi volcano, Indonesia. J Volcanol Geotherm Res 261:50–68CrossRefGoogle Scholar
  55. Nandedkar RH, Ulmer P Müntener O (2014) Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol 167(6):1–27CrossRefGoogle Scholar
  56. Nandedkar RH, Hürlimann N, Ulmer P, Müntener O (2016) Amphibole–melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: an experimental study. Contrib Mineral Petrol 171(8–9):71CrossRefGoogle Scholar
  57. Newhall CG, Bronto S, Alloway B, Banks NG, Bahar I, Del Marmol MA, Hadisantono RD, Holcomb RT, McGeehin J, Miksic JN (2000) 10,000 years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications. J Volcanol Geotherm Res 100(1):9–50CrossRefGoogle Scholar
  58. Ozima M, Larson EE (1970) Low- and high-temperature oxidation of titanomagnetite in relation to irreversible changes in the magnetic properties of submarine basalts. J Geophys Res 75(5):1003–1017CrossRefGoogle Scholar
  59. Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim Acta 298(2):209–217CrossRefGoogle Scholar
  60. Preece K, Barclay J, Gertisser R, Herd RA (2013) Textural and micro-petrological variations in the eruptive products of the 2006 dome-forming eruption of Merapi volcano, Indonesia: implications for sub-surface processes. J Volcanol Geotherm Res 261:98–120CrossRefGoogle Scholar
  61. Prescher C, McCammon C, Dubrovinsky L (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J Appl Crystallogr 45:329–331CrossRefGoogle Scholar
  62. Raczek I, Jochum KP, Hofmann AW (2003) Neodymium and strontium isotope data for USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP-2 and eight MPI-DING reference glasses. Geostand Newsl 27(2):173–179CrossRefGoogle Scholar
  63. Richet P, Bottinga Y, Janoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope enrichment among gaseous molecules. Annu Rev Earth Planet Sci 5:65–110CrossRefGoogle Scholar
  64. Ridolfi F, Renzulli A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1130 °C and 2.2 GPa. Contrib Mineral Petrol 163(5):877–895CrossRefGoogle Scholar
  65. Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160(1):45–66CrossRefGoogle Scholar
  66. Ringwood AE (1974) The petrological evolution of island arc systems twenty-seventh William Smith Lecture. J Geol Soc 130(3):183–204CrossRefGoogle Scholar
  67. Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation, vol. Longman, UK, p 352Google Scholar
  68. Romick JD, Kay SM, Kay RW (1992) The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the central Aleutians, Alaska. Contrib Mineral Petrol 112(1):101–118CrossRefGoogle Scholar
  69. Rooney TO, Franceschi P, Hall CM (2011) Water-saturated magmas in the Panama Canal region: a precursor to adakite-like magma generation? Contrib Mineral Petrol 161(3):373–388CrossRefGoogle Scholar
  70. Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. J Geophys Res 98(19):667–685Google Scholar
  71. Sharp ZD, Atudorei V, Durakiewicz T (2001) A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chem Geol 178(1):197–210CrossRefGoogle Scholar
  72. Sigurdsson H, Shepherd JB (1974) Amphibole-bearing basalts from the submarine volcano Kick’em-Jenny in the Lesser Antilles island arc. Bull Volcanol 38(3):891–910CrossRefGoogle Scholar
  73. Sisson TW (1994) Hornblende-melt trace-element partitioning measured by ion microprobe. Chem Geol 117(1):331–344CrossRefGoogle Scholar
  74. Skogby H, Rossman GR (1991) The intensity of amphibole OH bands in the infrared absorption spectrum. Phys Chem Minerals 18:64–68CrossRefGoogle Scholar
  75. Stalder R, Prechtel F, Ludwig T (2012) No site-specific infrared absorption coefficients for OH-defects in pure enstatite. Eur J Mineral 24:465–470CrossRefGoogle Scholar
  76. Surono, Jousset P, Pallister J, Boichu M, Buongiorno MF, Budisantoso A, Costa F, Andreastuti S, Prata F, Schneider D, Clarisse L (2012) The 2010 explosive eruption of Java’s Merapi volcano—a ‘100-year’ event. J Volcanol Geotherm Res 241:121–135CrossRefGoogle Scholar
  77. Thirlwall MF (1991) Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chem Geol Isotope Geosci Sect 94(2):85–104CrossRefGoogle Scholar
  78. Tiede C, Camacho AG, Gerstenecker C, Fernandez J, Suyanto I (2005) Modeling the density at Merapi volcano area, Indonesia, via the inverse gravimetric problem. Geochem Geophys Geosyst 6(9). doi: 10.1029/2005GC000986
  79. Tiepolo M, Vannucci R, Oberti R, Foley S, Bottazzi P, Zanetti A (2000) Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal-chemical constraints and implications for natural systems. Earth Planet Sci Lett 176(2):185–201CrossRefGoogle Scholar
  80. Tiepolo M, Bottazzi P, Foley SF, Oberti R, Vannucci R, Zanetti A (2001) Fractionation of Nb and Ta from Zr and Hf at mantle depths: the role of titanian pargasite and kaersutite. J Petrol 42(1):221–232CrossRefGoogle Scholar
  81. Troll VR, Hilton DR, Jolis EM, Chadwick JP, Blythe LS, Deegan FM, Schwarzkopf LM, Zimmer M (2012) Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia. Geophysical Research Letters 39(11). doi: 10.1029/2012GL051307
  82. Troll VR, Deegan FM, Jolis EM, Harris C, Chadwick JP, Gertisser R, Schwarzkopf LM, Borisova AY, Bindeman IN, Sumarti S (2013) Magmatic differentiation processes at Merapi Volcano: inclusion petrology and oxygen isotopes. J Volcanol Geotherm Res 261:38–49. doi: 10.1029/2012GL051307 CrossRefGoogle Scholar
  83. Turner S, Foden J, George R, Evans P, Varne R, Elburg M, Jenner G (2003) Rates and processes of potassic magma evolution beneath Sangeang Api volcano, East Sunda arc, Indonesia. J Petrol 44(3):491–515CrossRefGoogle Scholar
  84. Untung M, Sato Y, Satou Y (1978) Gravity and geological studies in Jawa, Indonesia, vol. Geological Survey of JapanGoogle Scholar
  85. van Bemmelen RW (1949) The geology of Indonesia, vol. General Geology Of Indonesia And Adjacent ArchipelagoesGoogle Scholar
  86. Wölbern I, Rümpker G (2016) Crustal thickness beneath Central and East Java (Indonesia) inferred from P receiver functions. J Asian Earth Sci 115:69–79CrossRefGoogle Scholar
  87. van der Zwan FM, Chadwick JP, Troll VR (2013) Textural history of recent basaltic-andesites and plutonic inclusions from Merapi volcano. Contrib Mineral Petrol 166(1):43–63CrossRefGoogle Scholar
  88. Viccaro M, Ferlito C, Cristofolini R (2007) Amphibole crystallization in the Etnean feeding system: mineral chemistry and trace element partitioning between Mg-hastingsite and alkali basaltic melt. Eur J Mineral 19(4):499–511CrossRefGoogle Scholar
  89. Voight B, Constantine EK, Siswowidjoyo S, Torley R (2000) Historical eruptions of Merapi volcano, central Java, Indonesia, 1768–1998. J Volcanol Geotherm Res 100(1):69–138CrossRefGoogle Scholar
  90. Wulaningsih T, Humaida H, Harijoko A, Watanabe K (2013) Major element and rare earth elements investigation of Merapi Volcano, Central Java, Indonesia. Procedia Earth Planet Sci 6:202–211CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Stefan T. M. Peters
    • 1
    • 2
    Email author
  • Valentin R. Troll
    • 3
  • Franz A. Weis
    • 4
  • Luigi Dallai
    • 5
  • Jane P. Chadwick
    • 2
    • 6
  • Bernhard Schulz
    • 7
  1. 1.Abteilung IsotopengeologieGeowissenschaftliches Zentrum der Georg-August-Universität GöttingenGöttingenGermany
  2. 2.Faculteit der Aard- en LevenswetenschappenVrije Universiteit AmsterdamHV AmsterdamThe Netherlands
  3. 3.Department of Earth Sciences, Section for Mineralogy, Petrology and TectonicsUppsala UniversityUppsalaSweden
  4. 4.Department of GeosciencesSwedish Museum of Natural HistoryStockholmSweden
  5. 5.CNR-Istituto di Geoscienze e GeorisorsePisaItaly
  6. 6.Science Gallery, Trinity College DublinDublinIreland
  7. 7.Institut für Mineralogie, TU Bergakademie FreibergFreibergGermany

Personalised recommendations