Continuous supply of recycled Pacific oceanic materials in the source of Cenozoic basalts in SE China: the Zhejiang case

  • Shao-Chen Liu
  • Qun-Ke XiaEmail author
  • Sung Hi Choi
  • Etienne Deloule
  • Pei Li
  • Jia Liu
Original Paper


Various enriched recycled oceanic components in the source of Cenozoic intra-plate alkaline basalts from eastern China were identified by previous studies. Due to the existence of a stagnant subducted Pacific slab in the mantle transition zone beneath eastern China, it is logical to connect the stagnant slab to the recycled oceanic materials. However, the recycled oceanic materials could also result from ancient subduction events (e.g., Paleo-Tethyan, Paleo-Asian or Izanagi plate subduction) because enriched geochemical signatures of a recycled slab can be preserved in the mantle for longer than 1 Gyr. Investigating the temporal variations of the recycled oceanic materials in the mantle source is a useful way to trace the origin of the basalts. In this article, we have conducted a detailed geochemical study, including major and trace elements and Sr–Nd–Pb isotopes, on two alkaline basalt groups from Zhejiang, SE China, which erupted 26–17 Ma and after 11 Ma, respectively. In particular, we recovered the H2O content of the initial magmas based on the H2O content of the clinopyroxene (cpx) phenocrysts and the partition coefficients of H2O between cpx and basaltic melts. The H2O contents of the Zhejiang basalts range from 1.3 to 2.6 (wt.%), which fall within the range of back-arc basin or island arc basalts. The older basalts are more alkaline and have lower Si and Al contents; higher trace element concentrations; higher La/Yb, Ce/Pb and Nb/La ratios; lower H2O/Ce and Ba/Th ratios; and stronger negative K, Pb, Hf and Ti anomalies than the younger ones. The co-relationships between Ba/La, H2O/Ce, Nb/La, Ce/Pb and Ba/Th in the two groups of the Zhejiang basalts indicate that a recycled dehydrated oceanic alkaline basalt component is needed in the source of the older rocks, along with a depleted mantle component. Meanwhile, an additional recycled dehydrated sediment component was required in the source of the younger rocks. The temporal change in the recycled oceanic materials in the mantle sources of Zhejiang Cenozoic basalts demonstrates that the recycled components can only originate in the stagnant Pacific slab that is the only plate subducted since 100 Ma in this area.


Water content Continental basalts Recycled oceanic crust Recycled oceanic sediments Southeast China 



This work was supported by the National Natural Science Foundation of China (No. 41225005) and the Fundamental Research Funds for the Central Universities. We appreciate constructive comments and suggestions from two reviewers and the editor Hans Keppler.

Supplementary material

410_2016_1310_MOESM1_ESM.doc (308 kb)
Supplementary material 1 (DOC 307 kb)
410_2016_1310_MOESM2_ESM.xlsx (338 kb)
Supplementary material 2 (XLSX 337 kb)


  1. Aizawa Y, Tatsumi Y, Yamada H (1999) Element transport by dehydration of subducted sediments: implication for arc and ocean island magmatism. Isl Arc 8:38–46. doi: 10.1046/j.1440-1738.1999.00217.x CrossRefGoogle Scholar
  2. Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827. doi: 10.1016/0016-7037(94)90116-3 CrossRefGoogle Scholar
  3. Balta JB, Asimow PD, Mosenfelder JL (2011) Hydrous, Low-carbon melting of garnet peridotite. J Petrol 52:2079–2105. doi: 10.1093/petrology/egr040 CrossRefGoogle Scholar
  4. Bell DR, Ihinger PD, Rossman GR (1995) Quantitative analysis of trace OH in garnet and pyroxenes. Am Miner 80:465–474CrossRefGoogle Scholar
  5. Bennett SL, Blundy J, Elliott T (2004) The effect of sodium and titanium on crystal-melt partitioning of trace elements. Geochim Cosmochim Acta 68:2335–2347. doi: 10.1016/j.gca.2003.11.006 CrossRefGoogle Scholar
  6. Castillo PR (2015) The recycling of marine carbonates and sources of HIMU and FOZO ocean island basalts. Lithos 216–217:254–263. doi: 10.1016/j.lithos.2014.12.005 CrossRefGoogle Scholar
  7. Chen F, Satir M, Ji J, Zhong D (2002) Nd-Sr-Pb isotopes of Tengchong Cenozoic volcanic rocks from western Yunnan, China: evidence for an enriched-mantle source. J Asian Earth Sci 21:39–45. doi: 10.1016/s1367-9120(02)00007-x CrossRefGoogle Scholar
  8. Chen C-H, Lee C-Y, Shinjo R (2008) Was there Jurassic paleo-Pacific subduction in South China?: constraints from 40Ar/39Ar dating, elemental and Sr–Nd–Pb isotopic geochemistry of the Mesozoic basalts. Lithos 106:83–92. doi: 10.1016/j.lithos.2008.06.009 CrossRefGoogle Scholar
  9. Chen LH, Zeng G, Jiang SY, Hofmann AW, Xu XS, Pan MB (2009) Sources of Anfengshan basalts: subducted lower crust in the Sulu UHP belt, China. Earth Planet Sci Lett 286:426–435. doi: 10.1016/j.epsl.2009.07.006 CrossRefGoogle Scholar
  10. Chen H, Xia Q-K, Ingrin J, Jia Z-B, Feng M (2015) Changing recycled oceanic components in the mantle source of the Shuangliao Cenozoic basalts, NE China: New constraints from water content. Tectonophysics 650:113–123. doi: 10.1016/j.tecto.2014.07.022 CrossRefGoogle Scholar
  11. Choi SH, Mukasa SB, Kwon ST, Andronikov AV (2006) Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chem Geol 232:134–151. doi: 10.1016/j.chemgeo.2006.02.014 CrossRefGoogle Scholar
  12. Chung S-L, Sun S-S (1992) A new genetic model for the East Taiwan Ophiolite and its implications for Dupal domains in the Northern Hemisphere. Earth Planet Sci Lett 109:133–145. doi: 10.1016/0012-821X(92)90079-B CrossRefGoogle Scholar
  13. Class C, Goldstein SL (1997) Plume-lithosphere interactions in the ocean basins: constraints from the source mineralogy. Earth Planet Sci Lett 150:245–260. doi: 10.1016/S0012-821X(97)00089-7 CrossRefGoogle Scholar
  14. Dai B-Z, Jiang S-Y, Jiang Y-H, Zhao K-D, Liu D-Y (2008) Geochronology, geochemistry and Hf–Sr–Nd isotopic compositions of Huziyan mafic xenoliths, southern Hunan Province. South China: petrogenesis and implications for lower crust evolution Lithos 102:65–87. doi: 10.1016/j.lithos.2007.08.010 Google Scholar
  15. Dasgupta R, Hirschmann MM, Withers AC (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett 227:73–85. doi: 10.1016/j.epsl.2004.08.004 CrossRefGoogle Scholar
  16. Dasgupta R, Hirschmann MM, Stalker K (2006) Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite plus CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol 47:647–671. doi: 10.1093/petrology.egi088 CrossRefGoogle Scholar
  17. Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48:2093–2124. doi: 10.1093/petrology/egm053 CrossRefGoogle Scholar
  18. Denis CMM, Demouchy S, Shaw CSJ (2013) Evidence of dehydration in peridotites from Eifel Volcanic Field and estimates of the rate of magma ascent. J Volcanol Geotherm Res 258:85–99. doi: 10.1016/j.jvolgeores.2013.04.010 CrossRefGoogle Scholar
  19. Dixon JE, Leist L, Langmuir C, Schilling JG (2002) Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420:385–389. doi: 10.1038/nature01215 CrossRefGoogle Scholar
  20. Dixon JE, Dixon TH, Bell DR, Malservisi R (2004) Lateral variation in upper mantle viscosity: role of water. Earth Planet Sci Lett 222:451–467. doi: 10.1016/j.epsl.2004.03.022 CrossRefGoogle Scholar
  21. Falloon TJ, Danyushevsky LV (2000) Melting of refractory mantle at 1.5, 2 and 2.5 GPa under, anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J Petrol 41:257–283. doi: 10.1093/petrology/41.2.257 CrossRefGoogle Scholar
  22. Fan QC, Hooper PR (1991) The Cenozoic basaltic rocks of eastern China: petrology and chemical composition. J Petrol 32:765–810CrossRefGoogle Scholar
  23. Fan WM, Zhang HF, Baker J, Jarvis KE, Mason PRD, Menzies MA (2000) On and off the North China Craton: where is the Archaean keel? J Petrol 41:933–950. doi: 10.1093/petrology/41.7.933 CrossRefGoogle Scholar
  24. Fan QC, Chen SS, Zhao YW, Zou HB, Li N, Sui JL (2014) Petrogenesis and evolution of Quaternary basaltic rocks from the Wulanhada area, North China. Lithos 206:289–302. doi: 10.1016/j.lithos.2014.08.007 CrossRefGoogle Scholar
  25. Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to Olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19:463–513. doi: 10.1093/petrology/19.3.463 CrossRefGoogle Scholar
  26. Fukao Y, Obayashi M, Inoue H, Nenbai M (1992) Subducting slabs stagnant in the mantle transition zone. J Geophys Res 97:4809–4822. doi: 10.1029/91jb02749 CrossRefGoogle Scholar
  27. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Miner Petrol 131:323–346. doi: 10.1007/s004100050396 CrossRefGoogle Scholar
  28. Gaetani GA, Kent AJR, Grove TL, Hutcheon ID, Stolper EM (2003) Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contrib Miner Petrol 145:391–405. doi: 10.1007/s00410-003-0447-0 CrossRefGoogle Scholar
  29. Gale A, Dalton CA, Langmuir CH, Su YJ, Schilling JG (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14:489–518. doi: 10.1029/2012gc004334 CrossRefGoogle Scholar
  30. Gao S et al (2008) Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett 270:41–53. doi: 10.1016/j.epsl.2008.03.008 CrossRefGoogle Scholar
  31. Ghosh S, Litasov K, Ohtani E (2014) Phase relations and melting of carbonated peridotite between 10 and 20 GPa: a proxy for alkali- and CO2-rich silicate melts in the deep mantle. Contrib Miner Petrol 167:964–986. doi: 10.1007/s00410-014-0964-z CrossRefGoogle Scholar
  32. Grove TL, Chatterjee N, Parman SW, Medard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89. doi: 10.1016/j.epsl.2006.06.043 CrossRefGoogle Scholar
  33. Guo PY et al (2014) Lithosphere thinning beneath west North China Craton: evidence from geochemical and Sr–Nd–Hf isotope compositions of Jining basalts. Lithos 202:37–54. doi: 10.1016/j.lithos.2014.04.024 CrossRefGoogle Scholar
  34. Hacker BR, Wallis SR, Ratschbacher L, Grove M, Gehrels G (2006) High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie–Sulu Orogen. Tectonics 25:17. doi: 10.1029/2005tc001937 CrossRefGoogle Scholar
  35. Halliday AN, Lee D-C, Tommasini S, Davies GR, Paslick CR, Godfrey Fitton J, James DE (1995) Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett 133:379–395. doi: 10.1016/0012-821X(95)00097-V CrossRefGoogle Scholar
  36. Hauff F, Hoernle K, Schmidt A (2003) Sr–Nd–Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochem Geophys Geosyst 4:8913. doi: 10.1029/2002gc000421 CrossRefGoogle Scholar
  37. Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th,U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117:149–166. doi: 10.1016/0009-2541(94)90126-0 CrossRefGoogle Scholar
  38. Hercule S, Ingrin J (1999) Hydrogen in diopside: diffusion, kinetics of extraction-incorporation, and solubility. Am Miner 84:1577–1587CrossRefGoogle Scholar
  39. Hirose K (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res Lett 24:2837–2840. doi: 10.1029/97gl02956 CrossRefGoogle Scholar
  40. Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114:477–489. doi: 10.1016/0012-821x(93)90077-m CrossRefGoogle Scholar
  41. Hirschmann MM, Tenner T, Aubaud C, Withers AC (2009) Dehydration melting of nominally anhydrous mantle: the primacy of partitioning. Phys Earth Planet In 176:54–68. doi: 10.1016/j.pepi.2009.04.001 CrossRefGoogle Scholar
  42. Ho KS, Chen JC, Lo CH, Zhao HL (2003) 40Ar/39Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang-Fujian region, SE China: eruption ages, magma evolution and petrogenesis. Chem Geol 197:287–318. doi: 10.1016/s0009-2541(02)00399-6 CrossRefGoogle Scholar
  43. Ho KS, Ge WC, Chen JC, You CF, Yang HJ, Zhang YL (2013) Late Cenozoic magmatic transitions in the central Great Xing’an range, Northeast China: Geochemical and isotopic constraints on petrogenesis. Chem Geol 352:1–18. doi: 10.1016/j.chemgeo.2013.05.040 CrossRefGoogle Scholar
  44. Hoernle K, Tilton G, Le Bas M, Duggen S, Garbe-Schönberg D (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib Miner Petrol 142:520–542. doi: 10.1007/s004100100308 CrossRefGoogle Scholar
  45. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314. doi: 10.1016/0012-821X(88)90132-X CrossRefGoogle Scholar
  46. Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79:33–45. doi: 10.1016/0012-821x(86)90038-5 CrossRefGoogle Scholar
  47. Huang JL, Zhao DP (2006) High-resolution mantle tomography of China and surrounding regions. J Geophys Res 111:B09305. doi: 10.1029/2005jb004066 Google Scholar
  48. Huang XL, Niu YL, Xu YG, Ma JL, Qiu HN, Zhong JW (2013) Geochronology and geochemistry of Cenozoic basalts from eastern Guangdong, SE China: constraints on the lithosphere evolution beneath the northern margin of the South China Sea. Contrib Miner Petrol 165:437–455. doi: 10.1007/s00410-012-0816-7 CrossRefGoogle Scholar
  49. Ingrin J, Blanchard M (2006) Diffusion of hydrogen in minerals. Rev Miner Geochem 62:291–320. doi: 10.2138/rmg.2006.62.13 CrossRefGoogle Scholar
  50. Ingrin J, Skogby H (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur J Miner 12:543–570CrossRefGoogle Scholar
  51. Jackson MG et al (2007) The return of subducted continental crust in Samoan lavas. Nature 448:684–687. doi: 10.1038/nature06048 CrossRefGoogle Scholar
  52. Jahn BM, Wu FY, Lo CH, Tsai CH (1999) Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem Geol 157:119–146. doi: 10.1016/s0009-2541(98)00197-1 CrossRefGoogle Scholar
  53. Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosyst 1:1007. doi: 10.1029/1999gc000014 Google Scholar
  54. Kelley KA, Plank T, Ludden J, Staudigel H (2003) Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochem Geophys Geosyst 4:8910. doi: 10.1029/2002gc000435 CrossRefGoogle Scholar
  55. Keshav S, Gudfinnsson GH, Sen G, Fei YW (2004) High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholefitic transition in ocean-island basalts. Earth Planet Sci Lett 223:365–379. doi: 10.1016/j.epsl.2004.04.029 CrossRefGoogle Scholar
  56. Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727. doi: 10.1038/nature03971 CrossRefGoogle Scholar
  57. Klemme S, Prowatke S, Hametner K, Gunther D (2005) Partitioning of trace elements between rutile and silicate melts: implications for subduction zones. Geochim Cosmochim Acta 69:2361–2371. doi: 10.1016/j.gca.2004.11.015 CrossRefGoogle Scholar
  58. Kogiso T, Hirschmann MM (2001) Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contrib Miner Petrol 142:347–360CrossRefGoogle Scholar
  59. Kogiso T, Hirschmann MM (2006) Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth Planet Sci Lett 249:188–199. doi: 10.1016/j.epsl.2006.07.016 CrossRefGoogle Scholar
  60. Kogiso T, Tatsumi Y, Nakano S (1997) Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett 148:193–205. doi: 10.1016/s0012-821x(97)00018-6 CrossRefGoogle Scholar
  61. Kogiso T, Hirschmann MM, Pertermann M (2004) High-pressure partial melting of mafic lithologies in the mantle. J Petrol 45:2407–2422. doi: 10.1093/petrology/egh057 CrossRefGoogle Scholar
  62. Kovacs I, Hermann J, O’Neill HSC, Gerald JF, Sambridge M, Horvath G (2008) Quantitative absorbance spectroscopy with unpolarized light: part II. Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra. Am Miner 93:765–778. doi: 10.2138/am.2008.2656 CrossRefGoogle Scholar
  63. Kovacs I, Green DH, Rosenthal A, Hermann J, O’Neill HS, Hibberson WO, Udvardi B (2012) An experimental study of water in nominally anhydrous minerals in the upper mantle near the water-saturated solidus. J Petrol 53:2067–2093. doi: 10.1093/petrology/egs044 CrossRefGoogle Scholar
  64. Kuang YS et al (2012) Petrogenetic evaluation of the Laohutai basalts from North China Craton: melting of a two-component source during lithospheric thinning in the late Cretaceous-early Cenozoic. Lithos 154:68–82. doi: 10.1016/j.lithos.2012.06.027 CrossRefGoogle Scholar
  65. Kuritani T, Ohtani E, Kimura JI (2011) Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nat Geosci 4:713–716. doi: 10.1038/ngeo1250 CrossRefGoogle Scholar
  66. Laporte D, Toplis MJ, Seyler M, Devidal JL (2004) A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib Miner Petrol 146:463–484. doi: 10.1007/s00410-003-0509-3 CrossRefGoogle Scholar
  67. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total Alkali–Silica diagram. J Petrol 27:745–750. doi: 10.1093/petrology/27.3.745 CrossRefGoogle Scholar
  68. Le Roux V, Dasgupta R, Lee CTA (2011) Mineralogical heterogeneities in the Earth’s mantle: constraints from Mn Co, Ni and Zn partitioning during partial melting. Earth Planet Sci Lett 307:395–408. doi: 10.1016/j.epsl.2011.05.014 CrossRefGoogle Scholar
  69. Lepvrier C, Maluski H, Van Tich V, Leyreloup A, Thi PT, Van Vuong N (2004) The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics 393:87–118. doi: 10.1016/j.tecto.2004.07.030 CrossRefGoogle Scholar
  70. Li C, van der Hilst RD (2010) Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. J Geophys Res 115:19. doi: 10.1029/2009jb006882 Google Scholar
  71. Li XH, Li ZX, Ge WC, Zhou HW, Li WX, Liu Y, Wingate MTD (2003a) Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Res 122:45–83. doi: 10.1016/s0301-9268(02)00207-3 CrossRefGoogle Scholar
  72. Li ZX, Li XH, Kinny PD, Wang J, Zhang S, Zhou H (2003b) Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Res 122:85–109. doi: 10.1016/s0301-9268(02)00208-5 CrossRefGoogle Scholar
  73. Li ZXA, Lee CTA, Peslier AH, Lenardic A, Mackwell SJ (2008) Water contents in mantle xenoliths from the Colorado Plateau and vicinity: implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J Geophys Res 113:269–283. doi: 10.1029/2007jb005540 Google Scholar
  74. Li HY, Huang XL, Guo H (2014) Geochemistry of Cenozoic basalts from the Bohai Bay Basin: implications for a heterogeneous mantle source and lithospheric evolution beneath the eastern North China Craton. Lithos 196:54–66. doi: 10.1016/j.lithos.2014.02.026 CrossRefGoogle Scholar
  75. Li Y-Q, Ma C-Q, Robinson PT, Zhou Q, Liu M-L (2015) Recycling of oceanic crust from a stagnant slab in the mantle transition zone: evidence from Cenozoic continental basalts in Zhejiang Province, SE China. Lithos 230:146–165. doi: 10.1016/j.lithos.2015.05.021 CrossRefGoogle Scholar
  76. Liu SF, Steel R, Zhang GW (2005) Mesozoic sedimentary basin development and tectonic implication, northern Yangtze Block, eastern China: record of continent—continent collision. J Asian Earth Sci 25:9–27. doi: 10.1016/j.jseaes.2004.01.010 CrossRefGoogle Scholar
  77. Liu YS, Gao S, Kelemen PB, Xu WL (2008) Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim Cosmochim Acta 72:2349–2376. doi: 10.1016/j.gca.2008.02.018 CrossRefGoogle Scholar
  78. Liu CZ, Wu FY, Sun J, Chu ZY, Qiu ZL (2012) The Xinchang peridotite xenoliths reveal mantle replacement and accretion in southeastern China. Lithos 150:171–187. doi: 10.1016/j.lithos.2012.03.019 CrossRefGoogle Scholar
  79. Liu J, Xia Q-K, Deloule E, Chen H, Feng M (2015a) Recycled oceanic crust and marine sediment in the source of alkali basalts in Shandong, eastern China: evidence from magma water content and oxygen isotopes. J Geophys Res Solid Earth 120:8281–8303. doi: 10.1002/2015JB012476 CrossRefGoogle Scholar
  80. Liu J, Xia Q-K, Deloule E, Ingrin J, Chen H, Feng M (2015b) Water content and oxygen isotopic composition of Alkali Basalts from the Taihang Mountains, China: recycled oceanic components in the mantle source. J Petrol 56:681–702. doi: 10.1093/petrology/egv013 CrossRefGoogle Scholar
  81. Ma XY, Wu DN (1987) Cenozoic extensional tectonics in China. Tectonophysics 133:243–255. doi: 10.1016/0040-1951(87)90268-x CrossRefGoogle Scholar
  82. MacDonald GA, Katsura T (1964) Chemical composition of Hawaiian Lavas1. J Petrol 5:82–133. doi: 10.1093/petrology/5.1.82 CrossRefGoogle Scholar
  83. Michael P (1995) egionally distinctive sources of depleted MORB: evidence from trace elements and H2O. Earth Planet Sci Lett 131:301–320. doi: 10.1016/0012-821x(95)00023-6 CrossRefGoogle Scholar
  84. Müller RD, Sdrolias M, Gaina C, Steinberger B, Heine C (2008) Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319:1357–1362. doi: 10.1126/science.1151540 CrossRefGoogle Scholar
  85. Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Miner Petrol 135:18–40. doi: 10.1007/s004100050495 CrossRefGoogle Scholar
  86. Nishi M (2015) Deep water cycle: mantle hydration. Nat Geosci 8:9–10. doi: 10.1038/ngeo2326 CrossRefGoogle Scholar
  87. Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y, Fujino K, Higo Y (2014) Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat Geosci 7:224–227. doi: 10.1038/ngeo2074 CrossRefGoogle Scholar
  88. Niu YL (2005) Generation and evolution of Basaltic Magmas: some basic concepts and a new view on the origin of Mesozoic–Cenozoic basaltic volcanism in Eastern China. Geol J China Univ 11:9–46. doi: 10.3969/j.issn.1006-7493.2005.01.002 Google Scholar
  89. Niu YL (2013) Subduction initiation, trench retreat and global tectonic consequences: the origin of backarc basins in the western Pacific and effect on eastern China geology since the Mesozoic. In: Zhai MG, Xiao WJ (eds) Plate tectonics, geological events and resources: new advances in geological sciences. Science Press, Beijing, pp 1–25Google Scholar
  90. Niu YL, O’Hara MJ (2003) Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations. J Geophys Res 108:19. doi: 10.1029/2002jb002048 Google Scholar
  91. Ohtani E (2005a) Recent progress in experimental mineral physics: Phase relations of hydrous systems and the role of water in slab dynamics. In: VanDerHilst RD, Bass JD, Matas J, Trampert J (eds) Earth’s Deep Mantle: Structure, Composition, and Evolution, vol 160. Geophysical Monograph Series. Amer Geophysical Union, Washington, pp 321–334. doi: 10.1029/160gm19
  92. Ohtani E (2005b) Water in the mantle. Elements 1:25–30. doi: 10.2113/gselements.1.1.25 CrossRefGoogle Scholar
  93. O’Leary JA, Gaetani GA, Hauri EH (2010) The effect of tetrahedral Al3 + on the partitioning of water between clinopyroxene and silicate melt. Earth Planet Sci Lett 297:111–120. doi: 10.1016/j.epsl.2010.06.011 CrossRefGoogle Scholar
  94. O'Reilly SY, Griffin WL (2010) Rates of magma ascent: constraints from mantle-derived xenoliths. In: Dosseto A, Turner S, Van-Orman J (eds) Timescales of magmatic processes. Wiley, pp 116-124. doi: 10.1002/9781444328509.ch6
  95. Parman SW, Grove TL (2004) Harzburgite melting with and without H2O: experimental data and predictive modeling. J Geophys Res 109:B02201. doi: 10.1029/2003jb002566 CrossRefGoogle Scholar
  96. Pertermann M, Hirschmann MM (2003a) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J Petrol 44:2173–2201. doi: 10.1093/petrology/egg074 CrossRefGoogle Scholar
  97. Pertermann M, Hirschmann MM (2003b) Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J Geophys Res 108:2125. doi: 10.1029/2000jb000118 CrossRefGoogle Scholar
  98. Peslier AH, Luhr JF, Post J (2002) Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth Planet Sci Lett 201:69–86. doi: 10.1016/s0012-821x(02)00663-5 CrossRefGoogle Scholar
  99. Pilet S, Hernandez J, Sylvester P, Poujol M (2005) The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth Planet Sci Lett 236:148–166. doi: 10.1016/j.epsl.2005.05.004 CrossRefGoogle Scholar
  100. Pilet S, Baker MB, Stolper EM (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916–919. doi: 10.1126/science.1156563 CrossRefGoogle Scholar
  101. Pilet S, Baker MB, Müntener O, Stolper EM (2011) Monte carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of Alkaline Basalts. J Petrol 52:1415–1442. doi: 10.1093/petrology/egr007 CrossRefGoogle Scholar
  102. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394. doi: 10.1016/s0009-2541(97)00150-2 CrossRefGoogle Scholar
  103. Poli S, Schmidt MW (2002) Petrology of subducted slabs. Annu Rev Earth Planet Sci 30:207–235. doi: 10.1146/ CrossRefGoogle Scholar
  104. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931CrossRefGoogle Scholar
  105. Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356. doi: 10.1016/s0009-2541(99)00106-0 CrossRefGoogle Scholar
  106. Rapp RP, Irifune T, Shimizu N, Nishiyama N, Norman MD, Inoue T (2008) Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle. Earth Planet Sci Lett 271:14–23. doi: 10.1016/j.epsl.2008.02.028 CrossRefGoogle Scholar
  107. Rehkämper M, Hofmann AW (1997) Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet Sci Lett 147:93–106. doi: 10.1016/s0012-821x(97)00009-5 CrossRefGoogle Scholar
  108. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Turekian HDHK (ed) Treatise on geochemistry. Pergamon, Oxford. doi: 10.1016/B0-08-043751-6/03016-4 Google Scholar
  109. Sakuyama T et al (2013) Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone: constraints from Cenozoic alkaline basalts in eastern China. Chem Geol 359:32–48. doi: 10.1016/j.chemgeo.2013.09.012 CrossRefGoogle Scholar
  110. Salters VJM, Longhi J (1999) Trace element partitioning during the initial stages of melting beneath mid-ocean ridges. Earth Planet Sci Lett 166:15–30. doi: 10.1016/S0012-821X(98)00271-4 CrossRefGoogle Scholar
  111. Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5:Q05B07. doi: 10.1029/2003GC000597 CrossRefGoogle Scholar
  112. Sambridge M, Gerald JF, Kovacs I, O’Neill HSC, Hermann J (2008) Quantitative absorbance spectroscopy with unpolarized light: part I. Physical and mathematical development. Am Miner 93:751–764. doi: 10.2138/am.2008.2657 CrossRefGoogle Scholar
  113. Schwab BE, Johnston AD (2001) Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. J Petrol 42:1789–1811. doi: 10.1093/petrology/42.10.1789 CrossRefGoogle Scholar
  114. Shaw AM, Hauri EH, Behn MD, Hilton DR, Macpherson CG, Sinton JM (2012) Long-term preservation of slab signatures in the mantle inferred from hydrogen isotopes. Nat Geosci 5:224–228. doi: 10.1038/ngeo1406 CrossRefGoogle Scholar
  115. Skogby H, Bell DR, Rossman GR (1990) Hydroxide in pyroxene: variations in the natural-environment. Am Miner 75:764–774Google Scholar
  116. Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597. doi: 10.1038/nature03411 CrossRefGoogle Scholar
  117. Sobolev AV et al (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417. doi: 10.1126/science.1138113 CrossRefGoogle Scholar
  118. Spath A, Le Roex AP, Opiyo-Akech N (2001) Plume-lithosphere interaction and the origin of continental rift-related alkaline volcanism—the Chyulu Hills Volcanic Province, southern Kenya. J Petrol 42:765–787. doi: 10.1093/petrology/42.4.765 CrossRefGoogle Scholar
  119. Staudigel H, Koppers AAP, Plank TA, Hanan BB (2010) Seamounts in the subduction factory. Oceanogr 23:176–181CrossRefGoogle Scholar
  120. Straub SM, Woodhead JD, Arculus RJ (2015) Temporal evolution of the mariana arc: mantle wedge and subducted slab controls revealed with a tephra perspective. J Petrol 56:409–439. doi: 10.1093/petrology/egv005 Google Scholar
  121. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, vol 42. Geological Society Special Publication, London, pp 313–345Google Scholar
  122. Sundvall R, Stalder R (2011) Water in upper mantle pyroxene megacrysts and xenocrysts: a survey study. Am Miner 96:1215–1227. doi: 10.2138/am.2011.3641 CrossRefGoogle Scholar
  123. Tang Y-J, Zhang H-F, Ying J-F (2006) Asthenosphere-lithospheric mantle interaction in an extensional regime: implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chem Geol 233:309–327. doi: 10.1016/j.chemgeo.2006.03.013 CrossRefGoogle Scholar
  124. Tatsumoto M, Basu AR, Huang WK, Wang JW, Xie GH (1992) Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth Planet Sci Lett 113:107–128. doi: 10.1016/0012-821x(92)90214-g CrossRefGoogle Scholar
  125. Thirlwall MF (1991) Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chem Geol 94:85–104. doi: 10.1016/0168-9622(91)90002-e CrossRefGoogle Scholar
  126. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60. doi: 10.1093/petrology/39.1.29 CrossRefGoogle Scholar
  127. Wang XL, Zhou JC, Qiu JS, Zhang WL, Liu XM, Zhang GL (2006) LA–ICP–MS U–Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution. Precambrian Res 145:111–130. doi: 10.1016/j.precamres.2005.11.014 CrossRefGoogle Scholar
  128. Wang Y, Fan W, Cawood PA, Li S (2008) Sr–Nd–Pb isotopic constraints on multiple mantle domains for Mesozoic mafic rocks beneath the South China Block hinterland. Lithos 106:297–308. doi: 10.1016/j.lithos.2008.07.019 CrossRefGoogle Scholar
  129. Wang Y, Zhao ZF, Zheng YF, Zhang JJ (2011) Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China. Lithos 125:940–955. doi: 10.1016/j.lithos.2011.05.007 CrossRefGoogle Scholar
  130. Wang XC et al (2012) Temperature, pressure, and composition of the mantle source region of late Cenozoic Basalts in Hainan Island, SE Asia: a consequence of a young thermal mantle plume close to subduction zones? J Petrol 53:177–233. doi: 10.1093/petrology/egr061 CrossRefGoogle Scholar
  131. Wang XC, Li ZX, Li XH, Li J, Xu YG (2013) Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: implications for potential linkages between plume and plate tectonics. Earth Planet Sci Lett 377:248–259. doi: 10.1016/j.epsl.2013.07.003 CrossRefGoogle Scholar
  132. Wasylenki LE, Baker MB, Kent AJR, Stolper EM (2003) Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J Petrol 44:1163–1191. doi: 10.1093/petrology/44.7.1163 CrossRefGoogle Scholar
  133. Wei W, Xu JD, Zhao DP, Shi YL (2012) East Asia mantle tomography: new insight into plate subduction and intraplate volcanism. J Asian Earth Sci 60:88–103. doi: 10.1016/j.jseaes.2012.08.001 CrossRefGoogle Scholar
  134. Windley BF, Maruyama S, Xiao WJ (2010) Delamination/thinning of sub-continental lithospheric mantle under Eastern China: the role of water and multiple subduction. Am J Sci. doi: 10.2475/10.2010.03 Google Scholar
  135. Woods SC, Mackwell S, Dyar D (2000) Hydrogen in diopside: diffusion profiles. Am Mineral 85:480–487CrossRefGoogle Scholar
  136. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72. doi: 10.1016/j.epsl.2004.12.005 CrossRefGoogle Scholar
  137. Workman RK et al (2004) Recycled metasomatized lithosphere as the origin of the enriched mantle II (EM2) end-member: evidence from the Samoan volcanic chain. Geochem Geophys Geosyst 5:Q04008. doi: 10.1029/2003gc000623 CrossRefGoogle Scholar
  138. Wu FY, Walker RJ, Ren XW, Sun DY, Zhou XH (2003) Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem Geol 196:107–129. doi: 10.1016/s0009-2541(02)00409-6 CrossRefGoogle Scholar
  139. Wu RX, Zheng YF, Wu YB, Zhao ZF, Zhang SB, Liu XM, Wu FY (2006) Reworking of juvenile crust: element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Res 146:179–212. doi: 10.1016/j.precamres.2006.01.012 CrossRefGoogle Scholar
  140. Xia QK, Yang XZ, Deloule E, Sheng YM, Hao YT (2006) Water in the lower crustal granulite xenoliths from Nushan, eastern China. J Geophys Res 111:B11202. doi: 10.1029/2006jb004296 CrossRefGoogle Scholar
  141. Xia QK et al (2010) Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. J Geophys Res 115:B07207. doi: 10.1029/2009jb006694 CrossRefGoogle Scholar
  142. Xia QK, Liu J, Liu SC, Kovacs I, Feng M, Dang L (2013) High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett 361:85–97. doi: 10.1016/j.epsl.2012.11.024 CrossRefGoogle Scholar
  143. Xia Y, Xu X, Zou H, Liu L (2014) Early Paleozoic crust–mantle interaction and lithosphere delamination in South China Block: evidence from geochronology, geochemistry, and Sr–Nd–Hf isotopes of granites. Lithos 184–187:416–435. doi: 10.1016/j.lithos.2013.11.014 CrossRefGoogle Scholar
  144. Xiao WJ, Windley BF, Hao J, Zhai MG (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics 22:21. doi: 10.1029/2002tc001484 CrossRefGoogle Scholar
  145. Xiao WJ et al (2009) End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. Int J Earth Sci 98:1189–1217. doi: 10.1007/s00531-008-0407-z CrossRefGoogle Scholar
  146. Xie X, Xu XS, Zou HB, Xing GF (2001) Trace element and Nd–Sr–Pb isotope studies of Mesozoic and Cenozoic basalts in coastal area of SE China. Acta Petrol Sin 17:617–628Google Scholar
  147. Xiong XL, Adam J, Green TH (2005) Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chem Geol 218:339–359. doi: 10.1016/j.chemgeo.2005.01.014 CrossRefGoogle Scholar
  148. Xu XS, O’Reilly SY, Griffin WL, Zhou XM (2000) Genesis of young lithospheric mantle in southeastern China: an LAM-ICPMS trace element study. J Petrol 41:111–148. doi: 10.1093/petrology/41.1.111 CrossRefGoogle Scholar
  149. Xu YG, Sun M, Yan W, Liu Y, Huang XL, Chen XM (2002) Xenolith evidence for polybaric melting and stratification of the upper mantle beneath South China. J Asian Earth Sci 20:937–954. doi: 10.1016/s1367-9120(01)00087-6 CrossRefGoogle Scholar
  150. Xu XS, O’Reilly SY, Griffin WL, Zhou XM (2003) Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China. Chem Geol 198:163–188. doi: 10.1016/s0009-2541(03)00004-4 CrossRefGoogle Scholar
  151. Xu YG, Ma JL, Frey FA, Feigenson MD, Liu JF (2005) Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem Geol 224:247–271. doi: 10.1016/j.chemgeo.2005.08.004 CrossRefGoogle Scholar
  152. Xu YG, Zhang HH, Qiu HN, Ge WC, Wu FY (2012a) Oceanic crust components in continental basalts from Shuangliao, Northeast China: derived from the mantle transition zone? Chem Geol 328:168–184. doi: 10.1016/j.chemgeo.2012.01.027 CrossRefGoogle Scholar
  153. Xu Z, Zhao ZF, Zheng YF (2012b) Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China: geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos 146:202–217. doi: 10.1016/j.lithos.2012.05.019 CrossRefGoogle Scholar
  154. Yan J, Zhao JX (2008) Cenozoic alkali basalts from Jingpohu, NE China: the role of lithosphere-asthenosphere interaction. J Asian Earth Sci 33:106–121. doi: 10.1016/j.jseaes.2007.11.001 CrossRefGoogle Scholar
  155. Yang HJ, Frey FA, Clague DA (2003) Constraints on the source components of lavas forming the Hawaiian North Arch and Honolulu volcanics. J Petrol 44:603–627. doi: 10.1093/petrology/44.4.603 CrossRefGoogle Scholar
  156. Yang X-Z, Deloule E, Xia Q-K, Fan Q-C, Feng M (2008) Water contrast between Precambrian and Phanerozoic continental lower crust in eastern China. J Geophys Res solid Earth 113:B08207. doi: 10.1029/2007JB005541 Google Scholar
  157. Yu Y, Xu XS, Griffin WL, O’Reilly SY, Xia QK (2011) H2O contents and their modification in the Cenozoic subcontinental lithospheric mantle beneath the Cathaysia block, SE China. Lithos 126:182–197. doi: 10.1016/j.lithos.2011.07.009 CrossRefGoogle Scholar
  158. Zeng G, Chen LH, Hofmann AW, Jiang SY, Xu XS (2011) Crust recycling in the sources of two parallel volcanic chains in Shandong, North China. Earth Planet Sci Lett 302:359–368. doi: 10.1016/j.epsl.2010.12.026 CrossRefGoogle Scholar
  159. Zhang HF, Sun M, Zhou XH, Fan WM, Zhai MG, Yin JF (2002a) Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr–Nd–Pb isotope studies of Fangcheng basalts. Contrib Miner Petrol 144:241–253. doi: 10.1007/s00410-002-0395-0 CrossRefGoogle Scholar
  160. Zhang ZC, Feng CY, Li ZN, Li SC, Xin Y, Li ZM, Wang XZ (2002b) Petrochemical study of the Jingpohu Holocene alkali basaltic rocks, northeastern China. Geochem J 36:133–153CrossRefGoogle Scholar
  161. Zhang M, Hu P, Niu Y, Su S (2007) Chemical and stable isotopic constraints on the nature and origin of volatiles in the sub-continental lithospheric mantle beneath eastern China. Lithos 96:55–66. doi: 10.1016/j.lithos.2006.10.006 CrossRefGoogle Scholar
  162. Zhang J-J, Zheng Y-F, Zhao Z-F (2009) Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos 110:305–326. doi: 10.1016/j.lithos.2009.01.006 CrossRefGoogle Scholar
  163. Zhang WH, Zhang HF, Fan WM, Han BF, Zhou MF (2012) The genesis of Cenozoic basalts from the Jining area, northern China: Sr–Nd–Pb–Hf isotope evidence. J Asian Earth Sci 61:128–142. doi: 10.1016/j.jseaes.2012.09.010 CrossRefGoogle Scholar
  164. Zhao D, Ohtani E (2009) Deep slab subduction and dehydration and their geodynamic consequences: evidence from seismology and mineral physics. Gondwana Res 16:401–413. doi: 10.1016/ CrossRefGoogle Scholar
  165. Zhao YW, Fan QC, Zou HB, Li N (2014) Geochemistry of Quaternary basaltic lavas from the Nuomin volcanic field, Inner Mongolia: Implications for the origin of potassic volcanic rocks in Northeastern China. Lithos 196:169–180. doi: 10.1016/j.lithos.2014.03.011 CrossRefGoogle Scholar
  166. Zhou X, Armstrong RL (1982) Cenozoic volcanic rocks of eastern China: secular and geographic trends in chemistry and strontium isotopic composition. Earth Planet Sci Lett 58:301–329. doi: 10.1016/0012-821x(82)90083-8 CrossRefGoogle Scholar
  167. Zhou MF, Kennedy AK, Sun M, Malpas J, Lesher CM (2002a) Neoproterozoic arc-related mafic intrusions along the northern margin of South China: implications for the accretion of Rodinia. J Geol 110:611–618. doi: 10.1086/341762 CrossRefGoogle Scholar
  168. Zhou MF, Yan DP, Kennedy AK, Li YQ, Ding J (2002b) SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet Sci Lett 196:51–67. doi: 10.1016/s0012-821x(01)00595-7 CrossRefGoogle Scholar
  169. Zhou MF, Ma YX, Yan DP, Xia XP, Zhao JH, Sun M (2006) The Yanbian terrane (Southern Sichuan Province, SW China): a neoproterozoic are assemblage in the western margin of the Yangtze block. Precambrian Res 144:19–38. doi: 10.1016/j.precamres.2005.11.002 CrossRefGoogle Scholar
  170. Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571CrossRefGoogle Scholar
  171. Zindler A, Staudigel H, Batiza R (1984) Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity. Earth Planet Sci Lett 70:175–195. doi: 10.1016/0012-821X(84)90004-9 CrossRefGoogle Scholar
  172. Zou HB, Fan QC (2010) U-Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island. Lithos 116:145–152. doi: 10.1016/j.lithos.2010.01.010 CrossRefGoogle Scholar
  173. Zou HB, Zindler A, Xu XS, Qi Q (2000) Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chem Geol 171:33–47. doi: 10.1016/s0009-2541(00)00243-6 CrossRefGoogle Scholar
  174. Zou HB, Reid MR, Liu YS, Yao YP, Xu XS, Fan QC (2003) Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data. Chem Geol 200:189–201. doi: 10.1016/s0009-2541(03)00188-8 CrossRefGoogle Scholar
  175. Zou HB, Fan QC, Yao YP (2008) U-Th systematics of dispersed young volcanoes in NE China: asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab. Chem Geol 255:134–142. doi: 10.1016/j.chemgeo.2008.06.022 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.School of Earth SciencesZhejiang UniversityHangzhouChina
  3. 3.CRPG, UMR 7358, CNRSUniversité de LorraineVandœuvre-lès-Nancy cedexFrance
  4. 4.Department of Geology and Earth Environmental SciencesChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations