Contribution of long-term hydrothermal experiments for understanding the smectite-to-chlorite conversion in geological environments

  • Régine Mosser-RuckEmail author
  • Isabella Pignatelli
  • Franck Bourdelle
  • Mustapha Abdelmoula
  • Odile Barres
  • Damien Guillaume
  • Delphine Charpentier
  • Davy Rousset
  • Michel Cathelineau
  • Nicolas Michau
Original Paper


The smectite-to-chlorite conversion is investigated through long-duration experiments (up to 9 years) conducted at 300 °C. The starting products were the Wyoming bentonite MX80 (79 % smectite), metallic iron and magnetite in contact with a Na–Ca chloride solution. The predominant minerals in the run products were an iron-rich chlorite (chamosite like) and interstratified clays interpreted to be chlorite/smectite and/or corrensite/smectite, accompanied by euhedral crystals of quartz, albite and zeolite. The formation of pure corrensite was not observed in the long-duration experiments. The conversion of smectite into chlorite over time appears to take place in several steps and through several successive mechanisms: a solid-state transformation, significant dissolution of the smectite and direct precipitation from the solution, which is over-saturated with respect to chlorite, allowing the formation of a chamosite-like mineral. The reaction mechanisms are confirmed by X-ray patterns and data obtained on the experimental solutions (pH, contents of Si, Mg, Na and Ca). Because of the availability of some nutrients in the solution, total dissolution of the starting smectite does not lead to 100 % crystallization of chlorite but to a mixture of two dominant clays: chamosite and interstratified chlorite/smectite and/or corrensite/smectite poor in smectite. The role of Fe/(Fe + Mg) in the experimental medium is highlighted by chemical data obtained on newly formed clay particles alongside previously published data. The newly formed iron-rich chlorite has the same composition as that predicted by the geothermometer for diagenetic to low-grade metamorphic conditions, and the quartz + Fe-chlorite + albite experimental assemblage in the 9-year experiment is close to that fixed by water–rock equilibrium.


Chlorite Corrensite Hydrothermal experiment Iron–clay interaction Hydrothermal metamorphism Diagenetic system 



We are grateful to the Paul Scherrer Institute, Swiss Light Source, and especially to Benjamin Watts. This research was financially supported by ANDRA – Agence Nationale pour la gestion des Dechets RadioActifs (the French National Agency for the Management of Radioactive Waste). Alice Williams is greatly thanked for proof reading the paper and her corrections of English. The authors wish also to thank O. Müntener, editor in chief, and the anonymous reviewers for comments and suggestions that greatly improved the paper.


  1. Abad I, Jimenez-Millan J, Molina JM, Nieto F, Vera JA (2003) Anomalous reverse zoning of saponite and corrensite caused by contact metamorphism and hydrothermal alteration of marly rocks associated with subvolcanic bodies. Clay Clay Miner 51:543–554CrossRefGoogle Scholar
  2. Alt JC, Honnorez J, Laverne C, Emmermann R (1986) Hydrothermal alteration of a 1 km section through the upper oceanic crust, DSDP Hole 504B: mineralogy, chemistry, and evolution of sea-water-basalt interactions. J Geophys Res 91:10309–10335CrossRefGoogle Scholar
  3. Bailey SW (1982) Nomenclature for regular interstratifications. Am Mineral 67:394–398Google Scholar
  4. Beaufort D, Meunier A (1994) Saponite, corrensite and chlorite-saponite mixed-layers in the Sancerre-Couy deep drill-hole (France). Clay Miner 29:47–61CrossRefGoogle Scholar
  5. Beaufort D, Baronnet A, Lanson B, Meunier A (1997) Corrensite: a single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case of Sancerre-Couy deep drill-hole (France). Am Mineral 82:109–124CrossRefGoogle Scholar
  6. Bettison LA, Schiffman P (1988) Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California. Am Mineral 73:62–76Google Scholar
  7. Bettison-Varga L, Mackinnon IDR (1997) The role of the randomly mixed-layered chlorite/smectite in the transformation of smectite to chlorite. Clay Clay Miner 45:506–516CrossRefGoogle Scholar
  8. Bevins RE, Robinson D, Rowbotham G (1991) Compositional variations in mafic phyllosilicates from regional low-grade metabasites and applications of the chlorite geothermometer. J Metamorp Geol 9:711–721CrossRefGoogle Scholar
  9. Bishop JL, Lane MD, Dyar MD, Brown J (2008) Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas. Clay Miner 43:35–54CrossRefGoogle Scholar
  10. Bourdelle F, Cathelineau M (2015) Low-temperature chlorite geothermometry: a graphical representation based on a T–R2+–Si diagram. Eur J Mineral 27:617–626CrossRefGoogle Scholar
  11. Bourdelle F, Parra T, Chopin C, Beyssac O (2013a) A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contrib Mineral Petrol 165:723–735CrossRefGoogle Scholar
  12. Bourdelle F, Benzerara K, Beyssac O, Cosmidis J, Neuville DR, Brown GE, Paineau E (2013b) Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X-ray microscopy at the Fe L2,3-edges. Contrib Mineral Petrol 166:423–434CrossRefGoogle Scholar
  13. Bourdelle F, Parra T, Beyssac O, Chopin C, Vidal O (2013c) Clay minerals as geo-thermometer: a comparative study based on high spatial analyses of illite and chlorite in Gulf Coast sandstones (Texas, USA). Am Mineral 98:914–926CrossRefGoogle Scholar
  14. Brigatti MF, Poppi L (1984) Crystal chemistry of corrensite: a review. Clay Clay Miner 32:391–399CrossRefGoogle Scholar
  15. Buatier M, Monnin C, Früh-Green G, Karpoff AM (1995) Mechanisms of Mg phyllosilicate formation in a hydrothermal system at a sedimented ridge (Middle Valley, Juan de Fuca). Contrib Mineral Petrol 122:134–151CrossRefGoogle Scholar
  16. Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer. Contrib Mineral Petrol 91:235–244CrossRefGoogle Scholar
  17. Chang HK, Mackenzie FT, Schoonmaker I (1986) Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins. Clay Clay Miner 31:407–423CrossRefGoogle Scholar
  18. Charpentier D, Devineau K, Mosser-Ruck R, Cathelineau M, Villieras F (2006) Bentonite-iron interactions under alkaline condition: an experimental approach. Appl Clay Sci 32:1–13CrossRefGoogle Scholar
  19. Cole RD, Ripley EM (1999) Oxygen isotope fractionation between chlorite and water from 170 to 350 °C: A preliminary assessment based on partial exchange and fluid/rock experiments. Geochim Cosmochim Acta 63:449–457CrossRefGoogle Scholar
  20. Curtis CD, Hughes CR, Whiteman JA, Whittle CK (1985) Compositional variation within some sedimentary chlorites and some comments on their origin. Mineral Mag 49:375–386CrossRefGoogle Scholar
  21. De Grave E, Vandenbruwaene J, Van Bockstael M (1987) 57Fe Mössbauer spectroscopic analysis of chlorite. Phys Chem Miner 15:173–180CrossRefGoogle Scholar
  22. Farmer VC (1974) The layer silicates. In: Farmer VC (ed) The infrared spectra of minerals. Monograph 4. Mineralogical Society, London, pp 331–363CrossRefGoogle Scholar
  23. Goodman, BA, Bain DC (1979) Mössbauer spectra of chlorites and their decomposition products. In: Mortland MM, Farmer VC (eds) International clay conference 1978, pp 65–74. Elsevier, AmsterdamGoogle Scholar
  24. Guillaume D (2002) Etude expérimentale du système fer—smectite en présence de solution à 80 °C et 300 °C. Ph.D. Thesis. Université Henri Poincaré. 3 avril 2002, p 216Google Scholar
  25. Guillaume D, Neaman A, Mosser-Ruck R, Dubessy J, Cathelineau M, Villiéras F (2001a) Experimental study of hydrothermal reactivity of bentonite at 80 and 300 °C in the presence of iron and/or iron oxides. Berichte der Deutsch en Mineralogischen Gesellshaft, Beihefte zum Eur J Miner 13:69Google Scholar
  26. Guillaume D, Pironon J, Ghanbaja J (2001b) Valence determination of iron in clays by electron energy loss spectroscopy. Berichte der Deutschen Mineralogischen Gesellshaft, Beihefte zum Eur J Miner 13:70Google Scholar
  27. Guillaume D, Neaman A, Cathelineau M, Mosser-Ruck R, Peiffert C, Abdelmoula M, Dubessy J, Villieras F, Baronnet A, Michau N (2003) Experimental synthesis of chlorite from smectite at 300 °C in the presence of metallic Fe. Clay Miner 38:281–302CrossRefGoogle Scholar
  28. Guillaume D, Neaman A, Cathelineau M, Mosser-Ruck R, Peiffert C, Abdelmoula M, Dubessy J, Villiéras F, Michau N (2004) Experimental study of the transformation of smectite at 80 °C and 300 °C in the presence of Fe oxides. Clay Miner 39:17–34CrossRefGoogle Scholar
  29. Hayashi H, Oinuma K (1965) Relationship between infrared absorption spectra in the region of 450-900 cm−1 and chemical composition of chlorite. Am Mineral 50:476–483Google Scholar
  30. Hitchcock AP (2012) aXis (2000) analysis of X-ray images and spectra. McMaster University, HamiltonGoogle Scholar
  31. Hoffman J, Hower J (1979) Clay minerals assemblages as low grade metamorphic geothermometers: application to the thrust fault disturbed belt of Montana, USA. In aspects of diagenesis, SEPM special publications, vol 26, pp 55–79Google Scholar
  32. Iijima A, Utada M (1971) Present-day zeolite diagenesis of the Neogene geosynclinals deposits in the Niigata oilfield, Japan. In: Gould RF (ed) Molecular sieve zeolites-I. Advance in chemistry series 101. American Chemical Society, Washington, pp 342–349Google Scholar
  33. Inoue A (1987) Conversion of smectite to chlorite by hydrothermal diagenetic alterations, Hokuroku Kuroko mineralization area, northeast Japan, pp 158–164. In: Schultz LG, van Olphen H, Mumpton FA (eds) Proceedings of the international clay conference, Denver, 1985. The Clay Minerals Society, BloomingtonGoogle Scholar
  34. Inoue A, Utada M (1991) Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, North Honshu, Japan. Am Mineral 76:628–640Google Scholar
  35. Inoue A, Utada M, Nagata H, Watanabe T (1984) Conversion of trioctahedral smectite to interstratified chlorite/smectite in Pliocene acidic pyroclastic sediments of the Ohyu district, Akita Prefecture, Japan. Clay Sci 6:103–106Google Scholar
  36. Inoue A, Meunier A, Patrier-Mas P, Rigault C, Beaufort D, Vieillard P (2009) Application of chemical geothermometry to low-temperature trioctahedral chlorites. Clay Clay Miner 57:371–382CrossRefGoogle Scholar
  37. Jiang WT, Peacor DR (1994a) Prograde transitions of corrensite and chlorite in low-grade pelitic rocks from the Gaspé Peninsula, Quebec. Clays Clay Miner 42:497–517CrossRefGoogle Scholar
  38. Jiang WT, Peacor DR (1994b) Formation of corrensite, chlorite and chlorite-mica stacks by replacement of detrital biotite in low-grade pelitic rocks. J Metamorph Geol 12:867–884CrossRefGoogle Scholar
  39. Jodin-Caumon MC, Mosser-Ruck R, Rousset D, Randi A, Cathelineau M, Michau N (2010) Effect of a thermal gradient on iron clay interactions. Clay Clay Miner 58:667–681CrossRefGoogle Scholar
  40. Kameda J, Ujiie K, Yamaguchi A, Kimura G (2011) Smectite to chlorite conversion by frictional heating along a subduction thrust. Earth Planet Sci Lett 305:161–170CrossRefGoogle Scholar
  41. Keith TE, Bargar KE (1988) Petrology and hydrothermal mineralogy of U.S. Geological Survey Newberry 2 Drill Core From Newberry Caldera, Oregon. J Geophys Res 93:10174–10190CrossRefGoogle Scholar
  42. Krismannsdottir H (1979) Alteration of basaltic rocks by hydrothermal activity at 100–300 °C. In: Mortland MM, Farmer VC (eds) Proceedings of the 6th international clay conference, pp 359–367. Elsevier, AmsterdamGoogle Scholar
  43. Krismannsdottir H (1983) Chemical evidence from Icelandic geothermal systems as compared to submarine geothermal systems. In: PA Roan, K Böstrom, L Laubier, KL Smith Jr (eds) Hydrothermal processes at Seafloor Spreading Centers. NATO Conference Series IV 12, Plenum, New York, pp 291–301Google Scholar
  44. Lanari P, Wagner T, Vidal O (2014) A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: applications to P–T sections and geothermometry. Contrib Miner Petrol 167(2):19. doi: 10.1007/s00410-014-0968-8 CrossRefGoogle Scholar
  45. Lanson B (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals. Clay Clay Miner 45:132–146CrossRefGoogle Scholar
  46. Lanson B, Lantenois S, Van Aken PA, Bauer A, Plançon A (2012) Experimental investigation of smectite interaction with metal iron at 80 °C: structural characterization of newly formed Fe-rich phyllosilicates. Am Mineral 97:864–871CrossRefGoogle Scholar
  47. Lantenois S, Lanson B, Muller F, Bauer A, Jullien M, Plançon A (2005) Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization. Clay Clay Miner 53:597–612CrossRefGoogle Scholar
  48. Liou JG, Seki Y, Guillemette RN, Sakai H (1985) Composition and paragenesis of secondary minerals in the Onikobe geothermal system, Japan. Chem Geol 49:1–20CrossRefGoogle Scholar
  49. Lougear A, Grodzicki M, Bertoldi C, Trautwein AX, Steiner K, Amthauer G (2007) Mössbauer and molecular orbital study of chlorites. Phys Chem Miner 27:258–269CrossRefGoogle Scholar
  50. Meunier A, Inoue A, Beaufort D (1991) Chemiographic analysis of trioctahedral smectite-to-chlorite conversionseries from the Ohyu Caldera, Japan. Clays Clay Miner 39(4):409–415CrossRefGoogle Scholar
  51. Mosser-Ruck R, Pironon J, Guillaume D, Cathelineau M (2003) Experimental alteration of Mg-vermiculite under hydrothermal conditions: formation of mixed-layered saponite chlorite minerals. Clay Miner 38:303–314CrossRefGoogle Scholar
  52. Mosser-Ruck R, Cathelineau M, Guillaume D, Charpentier D, Rousset D, Barres O, Michau N (2010) Effects of temperature, pH, and iron/clay and liquid/clay ratios on experimental conversion of dioctahedral smectite to berthierine, chlorite, vermiculite, or saponite. Clay Clay Miner 58:280–291CrossRefGoogle Scholar
  53. Murakami T, Sato T, Inoue A (1999) HRTEM evidence for the process and mechanism of saponite-to-chlorite conversion through corrensite. Am Mineral 84:1080–1087CrossRefGoogle Scholar
  54. Osacký M, Šucha V, Czímerová A, Madejová J (2010) Reaction of smectites with iron in a nitrogen atmosphere at 75 °C. Appl Clay Sci 50:237–244CrossRefGoogle Scholar
  55. Pelayo M, Garcia-Romero E, Labajo MA, Perez del Villar L (2011) Occurrence of Fe-Mg rich smectites and corrensite in the Morron de Mateo bentonite deposit (Cabo de Gata region, Spain): a natural analogue of the bentonite barrier in a radwaste repository. Appl Geochem 26(7):1153–1166CrossRefGoogle Scholar
  56. Perronnet M, Jullien M, Villiéras F, Raynal J, Bonnin D, Bruno G (2008) Evidence of a critical content in Fe(0) on Foca7 bentonite reactivity at 80 °C. Appl Clay Sci 38:187–202CrossRefGoogle Scholar
  57. Portner RA, Clague DA, Helo C, Dreyer BM, Paduan JB (2015) Contrasting styles of deep-marine pyroclastic eruptions revealed from Axial Seamount push core records. Earth Planet Sci Lett 423:219–231CrossRefGoogle Scholar
  58. Raabe J, Tzvetkov G, Flechsig U, Böge M, Jaggi A, Sarafimov B, Vernooij MGC, Huthwelker T, Ade H, Kilcoyne D, Tyliszczak T, Fink RH, Quitmann C (2008) PolLux: a new facility for soft X-ray spectromicroscopy at the Swiss Light Source. Rev Sci Instrum 79Google Scholar
  59. Rancourt DG (1994) Mössbauer spectroscopy of minerals. II. Problem of resolving cis and trans octahedral Fe2+ sites. Phys Chem Miner 21:250–257CrossRefGoogle Scholar
  60. Roberson HE, Reynolds RC, Jenkins DM (1999) Hydrothermal synthesis of corrensite: a study of the transformation of saponite to corrensite. Clay Clay Miner 47(2):212–218CrossRefGoogle Scholar
  61. Robinson D, Santana de Zamora A (1999) The smectite to chlorite transition in the Chipilapa geothermal system, El Salvador. Am Mineral 84:607–619CrossRefGoogle Scholar
  62. Robinson D, Bevin RE, Rowbotham G (1993) The characterization of mafic phyllosilicates in low grade metabasalts from eastern North Greenland. Am Mineral 78:377–390Google Scholar
  63. Robinson D, Th Schmidt S, Santana de Zamora A (2002) Reaction pathways and reaction progress for the smectite-to-chlorite transformation: evidence from hydrothermally altered metabasites. J Metamorph Geol 20:167–174CrossRefGoogle Scholar
  64. Schiffman P (1995) Low grade metamorphism of mafic rocks. Rev Geophys 33:81–86CrossRefGoogle Scholar
  65. Schiffman P, Fridleifsson GO (1991) The smectite–chlorite transition in drillhole Nj-15, Nesjavellir geothermal field, Iceland: XRD, BSE, and electron microprobe investigations. J Metamorph Geol 9:679–696CrossRefGoogle Scholar
  66. Schiffman P, Staudigel U (1995) The smectite to chlorite transition in a fossil seamount hydrothermal system: the basement complex of La Palma, Canary Islands. J Metamorp Geol 13:487–498CrossRefGoogle Scholar
  67. Schmidt S, Robinson D (1997) Metamorphic grade and porosity/permeability controls on mafic phyllosilicate distributions in a regional zeolite to greeschist facies transition of the North shore Volcanic Group, Minnesota. Geol Soc Am Bull 109:683–697CrossRefGoogle Scholar
  68. Shau YH, Peacor DR (1992) Phyllosilicates in hydrothermally altered basalts from DSDP Hole 504B, Leg 83—a TEM and AEM study. Contrib Miner Petrol 112:119–133CrossRefGoogle Scholar
  69. Shau YH, Peacor DR, Essene EJ (1990) Corrensite and mixed-layer chlorite/corrensite in metabasalts from northern Taiwan: TEM/AEM, EMPA, XRD and optical studies. Contrib Miner Petrol 105:123–142CrossRefGoogle Scholar
  70. Small JS, Hamilton DL, Habesch S (1992) Experimental simulation of clay precipitation within reservoir sandstones 1: techniques and examples. J Sediment Petrol 62:508–519CrossRefGoogle Scholar
  71. Sone H, Shimamoto T, Moore DE (2012) Frictional properties of saponite-rich gouge from a serpentinite-bearing fault zone along the Gokasho-Arashima Tectonic Line, Central Japan. J Struct Geol 38:172–182CrossRefGoogle Scholar
  72. Srodon J (1999) Nature of mixed-layer clays and mechanisms of their formation and alteration. Annu Rev Earth Planet Sci 27:19–53CrossRefGoogle Scholar
  73. Velde B (1973) Phase equilibria studies in the system MgO–AlO–SiO–UO: chlorite and associated minerals. Mineral Mag 39:297–312CrossRefGoogle Scholar
  74. Vidal O, de Andrade V, Lewin E, Muñoz M, Parra T, Pascarelli S (2006) P–T-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan). J Metamorph Geol 24:669–683CrossRefGoogle Scholar
  75. Walshe JL (1986) A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems. Econ Geol 81:681–703CrossRefGoogle Scholar
  76. Wiewiora A, Weiss Z (1990) Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Miner 25:83–92CrossRefGoogle Scholar
  77. Wilson J, Cressey G, Cressey B, Cuadros J, Ragnarsdottir KV, Savage D, Shibata M (2006) The effect of iron on montmorillonite stability. (II) Experimental investigation. Geochim Cosmochim Acta 70:323–336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Régine Mosser-Ruck
    • 1
    Email author
  • Isabella Pignatelli
    • 2
  • Franck Bourdelle
    • 3
  • Mustapha Abdelmoula
    • 4
  • Odile Barres
    • 1
  • Damien Guillaume
    • 5
  • Delphine Charpentier
    • 6
  • Davy Rousset
    • 7
  • Michel Cathelineau
    • 1
  • Nicolas Michau
    • 8
  1. 1.Faculté des sciences et technologiesGeoRessources UMR-CNRS 7359, Université de LorraineVandœuvre-lès-NancyFrance
  2. 2.CRPG Université de Lorraine, CNRS/INSU UMR 7358Vandœuvre-lès-NancyFrance
  3. 3.Laboratoire Génie Civil et géo-Environnement (LGCgE)Université Lille 1Villeneuve-d’Ascq cedexFrance
  4. 4.Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME) UMR-CNRS 7564Université de LorraineVillers-lès-NancyFrance
  5. 5.LMV, UMR 6524, Faculté des Sciences et TechniquesSaint Etienne Cedex 02France
  6. 6.Chrono-Environnement UMR-CNRS 6249Université de Franche-ComtéBesançon CedexFrance
  7. 7.Institut National de Recherche et de Sécurité (I.N.R.S)Vandœuvre-lès-NancyFrance
  8. 8.Agence nationale pour la gestion des déchets radioactifs (ANDRA), Parc de la Croix BlancheChâtenay-Malabry CedexFrance

Personalised recommendations