Experimental melting of phlogopite-peridotite in the garnet stability field

  • Pierre CondamineEmail author
  • Etienne Médard
  • Jean-Luc Devidal
Original Paper


Melting experiments have been performed at 3 GPa, between 1150 and 1450 °C, on a phlogopite-peridotite source in the garnet stability field. We succeeded to extract and determine the melt compositions of both phlogopite-bearing lherzolite and harzburgite from low to high degrees of melting (ϕ = 0.008–0.256). Accounting for the presence of small amounts of F in the mantle, we determined that phlogopite coexists with melt >150 °C above the solidus position (1150–1200 °C). Fluorine content of phlogopite continuously increases during partial melting from 0.2 to 0.9 wt% between 1000 and 1150 °C and 0.5 to 0.6 wt% between 1150 and 1300 °C at 1 and 3 GPa, respectively. The phlogopite continuous breakdown in the lherzolite follows the reaction: 0.59 phlogopite + 0.52 clinopyroxene + 0.18 garnet = 0.06 olivine + 0.23 orthopyroxene + 1.00 melt. In the phlogopite-harzburgite, the reaction is: 0.93 phlogopite + 0.46 garnet = 0.25 olivine + 0.14 orthopyroxene + 1.00 melt. Melts from phlogopite-peridotite sources at 3 GPa are silica-undersaturated and are foiditic to trachybasaltic in composition from very low (0.8 wt%) to high (25.6 wt%) degrees of melting. As observed at 1 GPa, the potassium content of primary mantle melts is buffered by the presence of phlogopite, but the buffering values are higher, from 6.0 to 8.0 wt% depending on the source fertility. We finally show that phlogopite garnet-peridotite melts are very close to the composition of the most primitive post-collisional lavas described worldwide.


Phlogopite Hydrous melting Garnet-peridotite Fluorine Potassic Ultrapotassic 



We thank Peter Ulmer and Travis Tenner for their constructive reviews as well as Timothy Grove for his editorial handling. We thank Didier Laporte for helpful comments and for providing us with the Bri5 peridotite and Christian Pin for the Finero phlogopite-peridotite sample. This study was funded by the Syster program of CNRS-INSU. This is Laboratory of Excellence ClerVolc Contribution No. 219.


  1. Adam J, Green T (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contrib Mineral Petrol 152:1–17CrossRefGoogle Scholar
  2. Albarède F, Provost A (1977) Petrological and geochemical mass-balance equations: an algorithm for least-square fitting and general error analysis. Comput Geosci 3(2):309–326CrossRefGoogle Scholar
  3. Aoki K, Kanisawa S (1979) Fluorine contents of some hydrous minerals derived from upper mantle and lower crust. Lithos 12(3):167–171CrossRefGoogle Scholar
  4. Aoki K, Ishiwaka K, Kanisawa S (1981) Fluorine geochemistry of basaltic rocks from continental and oceanic regions and petrogenetic application. Contrib Miner Petrol 76(1):53–59CrossRefGoogle Scholar
  5. Avanzinelli R, Lustrino M, Mattei M, Melluso L, Conticelli S (2009) Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos 113(1–2):213–227CrossRefGoogle Scholar
  6. Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58(13):2811–2827CrossRefGoogle Scholar
  7. Balta JB, Asimow PD, Mosenfelder JL (2011) Hydrous, low-carbon melting of garnet peridotite. J Petrol 52(11):2079–2105CrossRefGoogle Scholar
  8. Barr JA, Grove TL (2010) AuPdFe ternary solution model and applications to understanding the fO2 of hydrous, high-pressure experiments. Contrib Miner Petrol 160(5):631–643CrossRefGoogle Scholar
  9. Beyer C, Klemme S, Wiedenbeck M, Stracke A, Vollmer C (2012) Fluorine in nominally fluorine-free mantle minerals: experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes. Earth Planet Sci Lett 337–338:1–9CrossRefGoogle Scholar
  10. Bézos A, Humler E (2005) The Fe3 +/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69(3):711–725CrossRefGoogle Scholar
  11. Borom MP, Hanneman RE (1967) Local compositional changes in alkali silicate glasses during electron microprobe analysis. J Appl Phys 38(5):2406–2407CrossRefGoogle Scholar
  12. Bravo MS, O’Hara MJ (1975) Partial melting of phlogopite-bearing synthetic spinel- and garnet-lherzolites. Phys Chem Earth 9:845–854CrossRefGoogle Scholar
  13. Chung S-L, Yang TF, Lee C-Y, Chen C-H (1995) The igneous provinciality in Taiwan: consequence of continental rifting superimposed by Luzon and Ryukyu subduction systems. J Southeast Asian Earth Sci 11(2):73–80CrossRefGoogle Scholar
  14. Chung S-L, Wang K-L, Crawford AJ, Kamenetsky VS, Chen C-H, Lan C-Y, Chen C-H (2001) High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas. Lithos 59:153–170CrossRefGoogle Scholar
  15. Conceição RV, Green DH (2004) Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite + pargasite lherzolite. Lithos 72(3–4):209–229CrossRefGoogle Scholar
  16. Condamine P, Médard E (2014) Experimental melting of phlogopite-bearing mantle at 1 GPa: implications for potassic magmatism. Earth Planet Sci Lett 397:80–92CrossRefGoogle Scholar
  17. Conticelli S, D’Antonio M, Pinarelli L, Civetta L (2002) Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr-Nd-Pb isotope data from Roman Province and Southern Tuscany. Mineral Petrol 74:189–222CrossRefGoogle Scholar
  18. Dalou C, Koga KT, Shimizu N, Boulon J, Devidal J-L (2011) Experimental determination of F and Cl partitioning between lherzolite and basaltic melt. Contrib Miner Petrol 163:591–609CrossRefGoogle Scholar
  19. Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48(11):2093–2124CrossRefGoogle Scholar
  20. Davis FA, Hirschmann MM (2013) The effects of K2O on the compositions of near-solidus melts of garnet peridotite at 3 GPa and the origin of basalts from enriched mantle. Contrib Miner Petrol 166:1029–1046CrossRefGoogle Scholar
  21. Davis FA, Hirschmann MM, Humayun M (2011) The composition of the incipient partial melt of garnet peridotite at 3 GPa and the origin of OIB. Earth Planet Sci Lett 308:380–390CrossRefGoogle Scholar
  22. Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80(3–4):319–328CrossRefGoogle Scholar
  23. Edgar AD, Arima M (1985) Fluorine and chlorine contents of phlogopites crystallized from ultrapotassic rock compositions in high pressure experiments; implication for halogen reservoirs in source regions. Am Mineral 70(5–6):529–536Google Scholar
  24. Edgar AD, Vukadinovic D (1992) Implications of experimental petrology to the evolution of ultrapotassic rocks. Lithos 28:205–220CrossRefGoogle Scholar
  25. Edgar AD, Pizzolato LA, Sheen J (1996) Fluorine in igneous rocks and minerals with emphasis on ultrapotassic mafic and ultramafic magmas and their mantle source regions. Mineral Mag 60(2):243–257CrossRefGoogle Scholar
  26. Elkins-Tanton LT, Grove TL (2003) Evidence for deep melting of hydrous metasomatized mantle: pliocene high-potassium magmas from the Sierra Nevadas. J Geophys Res Solid Earth 108(B7):2350CrossRefGoogle Scholar
  27. Ersoy YE, Palmer MR, Uysal İ, Gündoğan İ (2014) Geochemistry and petrology of the Early Miocene lamproites and related volcanic rocks in the Thrace Basin, NW Anatolia. J Volcanol Geoth Res 283:143–158CrossRefGoogle Scholar
  28. Falloon TJ, Green DH (1987) Anhydrous partial melting of MORB pyrolite and other peridotite compositions at 10 kbar: implications for the origin of primitive MORB glasses. Mineral Petrol 37:181–219CrossRefGoogle Scholar
  29. Falloon TJ, Danyushevsky LV, Green DH (2001) Peridotite melting at 1 GPa: reversal experiments on partial melt compositions produced by peridotite-basalt sandwich experiments. J Petrol 42(12):2363–2390CrossRefGoogle Scholar
  30. Feldstein SN, Lange RA (1999) Pliocene potassic magmas from the Kings River region, Sierra Nevada, California: evidence for melting of a subduction-modified mantle. J Petrol 40(8):1301–1320CrossRefGoogle Scholar
  31. Flanagan FJ (1984) Three USGS mafic rock reference samples. W-2, DNC-1, and BIR-1. US Government Printing OfficeGoogle Scholar
  32. Foley S (1991) High-pressure stability of the fluor- and hydroxy-endmembers of pargasite and K-richterite. Geochim Cosmochim Acta 55(9):2689–2694CrossRefGoogle Scholar
  33. Foley S (1992a) Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos 28(3–6):187–204CrossRefGoogle Scholar
  34. Foley S (1992b) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28(3–6):435–453CrossRefGoogle Scholar
  35. Foley S, Peccerillo A (1992) Potassic and ultrapotassic magmas and their origin. Lithos 28(3–6):181–185CrossRefGoogle Scholar
  36. Foley SF, Taylor WR, Green DH (1986a) The effect of fluorine on phase relationships in the system KAlSiO4–Mg2SiO4–SiO2 at 28 kbar and the solution mechanism of fluorine in silicate melts. Contrib Miner Petrol 93(1):46–55CrossRefGoogle Scholar
  37. Foley SF, Taylor WR, Green DH (1986b) The role of fluorine and oxygen fugacity in the genesis of the ultrapotassic rocks. Contrib Miner Petrol 94:183–192CrossRefGoogle Scholar
  38. Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth Sci Rev 24(2):81–134CrossRefGoogle Scholar
  39. Frost DJ (2006) The stability of hydrous mantle phases. Rev Mineral Geochem 62(1):243–271CrossRefGoogle Scholar
  40. Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420CrossRefGoogle Scholar
  41. Fumagalli P, Zanchetta S, Poli S (2009) Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: a high-pressure study. Contrib Miner Petrol 158(6):723–737CrossRefGoogle Scholar
  42. Funk SP, Luth RW (2013) Melting phase relations of a mica–clinopyroxenite from the Milk River area, southern Alberta, Canada. Contrib Mineral Petrol 1–17Google Scholar
  43. Gaeta M, Freda C, Marra F, Di Rocco T, Gozzi F, Arienzo I, Giaccio B, Scarlato P (2011) Petrology of the most recent ultrapotassic magmas from the Roman Province (Central Italy). Lithos 127(1–2):298–308CrossRefGoogle Scholar
  44. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Miner Petrol 131:323–346CrossRefGoogle Scholar
  45. Gagnon JE, Fryer BJ, Samson IM, Williams-Jones AE (2008) Quantitative analysis of silicate certified reference materials by LA-ICPMS with and without an internal standard. J Anal At Spectrom 23(11):1529–1537CrossRefGoogle Scholar
  46. Giannetti B, Luhr JF (1990) Phlogopite-clinopyroxenite nodules from high-K magmas, Roccamonfina Volcano, Italy: evidence for a low-pressure metasomatic origin. Earth Planet Sci Lett 101(2–4):404–424CrossRefGoogle Scholar
  47. Giordano D, Romano C, Dingwell DB, Poe B, Behrens H (2004) The combined effects of water and fluorine on the viscosity of silicic magmas. Geochim Cosmochim Acta 68(24):5159–5168CrossRefGoogle Scholar
  48. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271(1–4):123–134CrossRefGoogle Scholar
  49. Grove TL, Chatterjee N, Parman SW, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89CrossRefGoogle Scholar
  50. Grove TL, Holbig ES, Barr JA, Till CB, Krawczynski MJ (2013) Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite. Contrib Miner Petrol 166(3):887–910CrossRefGoogle Scholar
  51. Guo Z, Wilson M, Liu J, Mao Q (2006) Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau: constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. J Petrol 47(6):1177–1220CrossRefGoogle Scholar
  52. Hall L (1999) The effect of water on mantle melting. PhD Thesis, University of Bristol, Bristol. 159Google Scholar
  53. Hirose K (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res Lett 24(22):2837–2840CrossRefGoogle Scholar
  54. Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133:463–473CrossRefGoogle Scholar
  55. Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114:477–489CrossRefGoogle Scholar
  56. Hirschmann MM, Dasgupta R (2007) A modified iterative sandwich method for determination of near-solidus partial melt compositions. I. Theoretical considerations. Contrib Miner Petrol 154(6):635–645CrossRefGoogle Scholar
  57. Hirschmann MM, Baker MB, Stolper EM (1998) The effect of alkalis on the silica content of mantle-derived melts. Geochim Cosmochim Acta 62(5):883–902CrossRefGoogle Scholar
  58. Hirschmann MM, Tenner T, Aubaud C, Withers AC (2009) Dehydration melting of nominally anhydrous mantle: The primacy of partitioning. Phys Earth Planet Inter 176(1–2):54–68CrossRefGoogle Scholar
  59. Holloway JR, Ford CE (1975) Fluid-absent melting of the fluoro-hydroxy amphibole pargasite to 35 kilobars. Earth Planet Sci Lett 25(1):44–48CrossRefGoogle Scholar
  60. Humayun M, Simon SB, Grossman L (2007) Tungsten and hafnium distribution in calcium–aluminum inclusions (CAIs) from Allende and Efremovka. Geochim Cosmochim Acta 71(18):4609–4627CrossRefGoogle Scholar
  61. Humayun M, Davis FA, Hirschmann MM (2010) Major element analysis of natural silicates by laser ablation ICP-MS. J Anal At Spectrom 25(7):998–1005CrossRefGoogle Scholar
  62. Ionov DA, Wood BJ (1992) The oxidation state of subcontinental mantle: oxygen thermobarometry of mantle xenoliths from central Asia. Contrib Miner Petrol 111(2):179–193CrossRefGoogle Scholar
  63. Jochum KP, Dingwell DB, Rocholl A, Stoll B, Hofmann AW, Becker S, Besmehn A, Bessette D, Dietze HJ, Dulski P, Erzinger J, Hellebrand E, Hoppe P, Horn I, Janssens K, Jenner GA, Klein M, McDonough WF, Maetz M, Mezger K, Müker C, Nikogosian IK, Pickhardt C, Raczek I, Rhede D, Seufert HM, Simakin SG, Sobolev AV, Spettel B, Straub S, Vincze L, Wallianos A, Weckwerth G, Weyer S, Wolf D, Zimmer M (2000) The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-situ microanalysis. Geostand Newsl 24(1):87–133CrossRefGoogle Scholar
  64. Kägi R, Müntener O, Ulmer P, Ottolini L (2005) Piston-cylinder experiments on H2O undersaturated Fe-bearing systems: an experimental setup approaching fO2 conditions of natural calc-alkaline magmas. Am Mineral 90(4):708–717CrossRefGoogle Scholar
  65. Kamenetsky VS, Métrich N, Cioni R (1995) Potassic primary melts of Vulsini (Roman Province): evidence from mineralogy and melt inclusions. Contrib Miner Petrol 120(2):186–196CrossRefGoogle Scholar
  66. Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res Solid Earth 102(B1):853–874CrossRefGoogle Scholar
  67. Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Miner Petrol 108(1):82–92CrossRefGoogle Scholar
  68. Kushiro I (1972) Effect of water on the composition of magmas formed at high pressures. J Petrol 13(2):311–334CrossRefGoogle Scholar
  69. Kushiro I (1996) Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. In: Earth processes: reading the isotopic code, vol 95. AGU, Washington, DC, pp 109–122Google Scholar
  70. Kushiro I, Syono Y, Akimoto S (1967) Stability of phlogopite at high pressures and possible presence of phlogopite in the Earth’s upper mantle. Earth Planet Sci Lett 3:197–203CrossRefGoogle Scholar
  71. Laporte D, Lambart S, Schiano P, Ottolini L (2014) Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites. Earth Planet Sci Lett 404:319–331CrossRefGoogle Scholar
  72. LaTourrette T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135:13–30CrossRefGoogle Scholar
  73. Le Bas MJ, Le Maitre RW (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750CrossRefGoogle Scholar
  74. Lesher CE, Walker D (1988) Cumulate maturation and melt migration in a temperature gradient. J Geophys Res Solid Earth 93(B9):10295–10311CrossRefGoogle Scholar
  75. Lloyd FE, Arima M, Edgar AD (1985) Partial melting of a phlogopite-clinopyroxenite nodule from south-west Uganda: an experimental study bearing on the origin of highly potassic continental rift volcanics. Contrib Miner Petrol 91:321–329CrossRefGoogle Scholar
  76. Lundstrom CC (2003) An experimental investigation of the diffusive infiltration of alkalis into partially molten peridotite: implications for mantle melting processes. Geochem Geophys Geosyst 4(9):8614CrossRefGoogle Scholar
  77. Luth RW (1997) Experimental study of the system phlogopite-diopside from 3.5 to 17 GPa. Am Mineral 82:1198–1209CrossRefGoogle Scholar
  78. Marianelli P, Métrich N, Santacroce R, Sbrana A (1995) Mafic magma batches at Vesuvius: a glass inclusion approach to the modalities of feeding stratovolcanoes. Contrib Miner Petrol 120(2):159–169CrossRefGoogle Scholar
  79. McDade P, Wood BJ, Van Westrenen W, Brooker R, Gudmundsson G, Soulard H, Najorka J, Blundy J (2002) Pressure corrections for a selection of piston-cylinder cell assemblies. Mineral Mag 66(6):1021–1028CrossRefGoogle Scholar
  80. McKenzie D (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett 95:53–72CrossRefGoogle Scholar
  81. Médard E, Schmidt MW, Schiano P, Ottolini L (2006) Melting of amphibole-bearing wehrlites: an experimental study on the origin of ultra-calcic nepheline-normative melts. J Petrol 47(3):481–504CrossRefGoogle Scholar
  82. Melzer S, Foley SF (2000) Phase relations and fractionation sequences in potassic magma series modelled in the system CaMgSi2O6–KAlSiO4–Mg2SiO4–SiO2–F2O−1 at 1 bar to 18 kbar. Contrib Miner Petrol 138:186–197CrossRefGoogle Scholar
  83. Mirnejad H, Bell K (2006) Origin and source evolution of the leucite hills lamproites: evidence from Sr–Nd–Pb–O isotopic compositions. J Petrol 47(12):2463–2489CrossRefGoogle Scholar
  84. Mitchell RH, Bergman SC (1991) Petrology of lamproites. Plenum Press, New YorkCrossRefGoogle Scholar
  85. MM (2000) Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochemistry Geophysics Geosystems 1(10)Google Scholar
  86. Modreski PJ, Boettcher AL (1972) The stability of phlogopite + enstatite at high pressures: a model for micas in the interior of the Earth. Am J Sci 272:852–869CrossRefGoogle Scholar
  87. Modreski PJ, Boettcher AL (1973) Phase relationships of phlogopite in the system K2O–MgO–CaO–Al2O3–SiO2–H2O to 35 kilobars: a better model for micas in the interior of the Earth. Am J Sci 273:385–414CrossRefGoogle Scholar
  88. Motoyoshi Y, Hensens BJ (2001) F-rich phlogopite stability in ultra-high-temperature metapelites from the Napier Complex, East Antarctica. Am Mineral 86:1404–1413CrossRefGoogle Scholar
  89. Nelson DR (1992) Isotopic characteristics of potassic rocks: evidence for the involvement of subducted sediments in magma genesis. Lithos 28(3–6):403–420CrossRefGoogle Scholar
  90. Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Miner Petrol 135:18–40CrossRefGoogle Scholar
  91. Nikogosian IK, van Bergen MJ (2010) Heterogeneous mantle sources of potassium-rich magmas in central-southern Italy: melt inclusion evidence from Roccamonfina and Ernici (Mid Latina Valley). J Volcanol Geoth Res 197(1–4):279–302CrossRefGoogle Scholar
  92. O’Hara MJ (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci Rev 4:69–133CrossRefGoogle Scholar
  93. O’Neill HSC (1987) Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am Mineral 72(1–2):67–75Google Scholar
  94. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21(1):115–144CrossRefGoogle Scholar
  95. Peccerillo A (1985) Roman comagmatic province (central Italy): evidence for subduction-related magma genesis. Geology 13(2):103–106CrossRefGoogle Scholar
  96. Peccerillo A (2001) Geochemical similarities between the Vesuvius, Phlegraean Fields and Stromboli Volcanoes: petrogenetic, geodynamic and volcanological implications. Mineral Petrol 73(1–3):93–105CrossRefGoogle Scholar
  97. Peterson JW, Chacko T, Kuehner SM (1991) The effects of fluorine on the vapor-absent melting of phlogopite + quartz: implications for deep-crustal processes. Am Mineral 76:470–476Google Scholar
  98. Prelević D, Akal C, Foley SF, Romer RL, Stracke A, van Den Bogaard P (2012) Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. J Petrol 53:1019–1055CrossRefGoogle Scholar
  99. Putirka KD, Johnson M, Kinzler R, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Miner Petrol 123:92–108CrossRefGoogle Scholar
  100. Rieder M, Cavazzini G, D’Yakonov YS (1998) Nomenclature of the micas. Can Mineral 36:41–48Google Scholar
  101. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 29:275–289CrossRefGoogle Scholar
  102. Rogers NW, Hawkesworth CJ, Parker RJ, Marsh JR (1985) The geochemistry of potassic lavas from Vulsini, Central Italy, and implications for mantle enrichment processes beneath the Roman region. Contrib Miner Petrol 90:244–257CrossRefGoogle Scholar
  103. Sato K, Katsura T, Ito E (1997) Phase relations of natural phlogopite with and without enstatite up to 8 GPa: implication for mantle metasomatism. Earth Planet Sci Lett 146:511–526CrossRefGoogle Scholar
  104. Schiano P, Clocchiatti R, Ottolini L, Sbrana A (2004) The relationship between potassic, calc-alkaline and Na-alkaline magmatism in South Italy volcanoes: a melt inclusion approach. Earth Planet Sci Lett 220(1–2):121–137CrossRefGoogle Scholar
  105. Sekine T, Wyllie PJ (1982) Phase relationships in the system KAISiO4–Mg2SiO4–SiO2–H2O as a model for hybridization between hydrous siliceous melts and peridotite. Contrib Miner Petrol 79:368–374CrossRefGoogle Scholar
  106. Smith JV (1981) Halogen and phosphorus storage in the Earth. Nature 289(5800):762–765CrossRefGoogle Scholar
  107. Sorbadere F, Médard E, Laporte D, Schiano P (2013) Experimental melting of hydrous peridotite-pyroxenite mixed sources: constraints on the genesis of silica-undersaturated magmas beneath volcanic arcs. Earth Planet Sci Lett 384:42–56CrossRefGoogle Scholar
  108. Sudo A, Tatsumi Y (1990) Phlogopite and K-amphibole in the upper mantle: implication for magma genesis in subduction zones. Geophys Res Lett 17(1):29–32CrossRefGoogle Scholar
  109. Tareen JAK, Keshava Prasad AV, Basavalingu B, Ganesha AV (1995) The effect of fluorine and titanium on the vapour-absent melting of phlogopite and quartz. Mineral Mag 59(3):566–570CrossRefGoogle Scholar
  110. Tareen JAK, Keshava Prasad AV, Basavalingu B, Ganesha AV (1998) Stability of F-Ti-phlogopite in the system phlogopite-sillimanite-quartz: an experimental study of dehydration melting in H2O-saturated and undersaturated conditions. Mineral Mag 62(3):373–380CrossRefGoogle Scholar
  111. Tenner TJ, Hirschmann MM, Humayun M (2012) The effect of H2O on partial melting of garnet peridotite at 3.5 GPa. Geochem Geophys Geosyst 13(3):28CrossRefGoogle Scholar
  112. Thibault Y, Edgar AD, Lloyd FE (1992) Experimental investigation of melts from a carbonated phlogopite lherzolite: implications for metasomatism in the continental lithospheric mantle. Am Mineral 77:784–794Google Scholar
  113. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Miner Petrol 149(1):22–39CrossRefGoogle Scholar
  114. Trønnes RG (2002) Stability range and decomposition of potassic richterite and phlogopite end members at 5–15 GPa. Mineral Petrol 74:129–148CrossRefGoogle Scholar
  115. Tumiati S, Fumagalli P, Tiraboschi C, Poli S (2013) An experimental study on COH-bearing peridotite up to 3·2 GPa and Implications for crust-mantle recycling. J Petrol 54(3):453–479CrossRefGoogle Scholar
  116. Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, van Calsteren P, Deng W (1996) Post-collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37(1):45–71CrossRefGoogle Scholar
  117. Ulmer P (2001) Partial melting in the mantle wedge—the role of H2O in the genesis of mantle-derived ‘arc-related’ magmas. Phys Earth Planet Inter 127:215–232CrossRefGoogle Scholar
  118. Van den Bleeken G, Müntener O, Ulmer P (2011) Melt variability in percolated peridotite: an experimental study applied to reactive migration of tholeiitic basalt in the upper mantle. Contrib Miner Petrol 161(6):921–945CrossRefGoogle Scholar
  119. Van Kooten GK (1980) Mineralogy, petrology, and geochemistry of an ultrapotassic basaltic suite, central Sierra Nevada, California, USA. J Petrol 21(4):651–684CrossRefGoogle Scholar
  120. Vielzeuf D, Clemens JD (1992) The fluid-absent melting of phlogopite + quartz: experiments and models. Am Mineral 77:1206–1222Google Scholar
  121. Vukadinovic D, Edgar AD (1993) Phase relations in the phlogopite-apatite system at 20 kbar; implications for the role of fluorine in mantle melting. Contrib Miner Petrol 114:247–254CrossRefGoogle Scholar
  122. Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335(6188):343–346CrossRefGoogle Scholar
  123. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60CrossRefGoogle Scholar
  124. Wang K-L, Chung S-L, Chen C-H, Shinjo R, Yang TF, Chen C-H (1999) Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough. Tectonophysics 308:363–376CrossRefGoogle Scholar
  125. Wang K-L, Chung S-L, O’Reilly SY, Sun S-S, Shinjo R, Chen C-H (2004) Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the northern Taiwan region. J Petrol 45(5):975–1011CrossRefGoogle Scholar
  126. Wendlandt RF, Eggler DH (1980a) The origins of potassic magmas: 1. Melting relations in the systems KAlSiO4–Mg2SiO4–SiO2 and KAlSiO4–MgO–SiO2–CO2 to 30 kilobars. Am J Sci 280:385–420CrossRefGoogle Scholar
  127. Wendlandt RF, Eggler DH (1980b) The origins of potassic magmas: 2. Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4–MgO–SiO2–H2O–CO2 at high pressures and high temperatures. Am J Sci 280:421–458CrossRefGoogle Scholar
  128. Wilson SA (1997) Basalt, Columbia River, BCR-2. United States Geological Survey Certificate of AnalysisGoogle Scholar
  129. Wyllie PJ, Sekine T (1982) The formation of mantle phlogopite in subduction zone hybridization. Contrib Miner Petrol 79:375–380CrossRefGoogle Scholar
  130. Yoder HS, Eugster HP (1954) Phlogopite synthesis and stability range. Geochim Cosmochim Acta 6(4):157–185CrossRefGoogle Scholar
  131. Yoder HS, Kushiro I (1969) Melting of hydrous phase: phlogopite. Am J Sci 267:558–582Google Scholar
  132. Yoder HS, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J Petrol 3(3):342–532CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pierre Condamine
    • 1
    Email author
  • Etienne Médard
    • 1
  • Jean-Luc Devidal
    • 1
  1. 1.Laboratoire Magmas et VolcansUniversité Blaise Pascal - CNRS - IRD, OPGC, Campus Universitaire des CézeauxAubièreFrance

Personalised recommendations