Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts

  • Antonin T. Laurent
  • Anne-Magali Seydoux-Guillaume
  • Stéphanie Duchene
  • Bernard Bingen
  • Valérie Bosse
  • Lucien Datas
Original Paper

Abstract

Microgeochemical data and transmission electron microscope (TEM) imaging of S-rich monazite crystals demonstrate that S has been incorporated in the lattice of monazite as a clino-anhydrite component via the following exchange Ca2+ + S6+ = REE3+ + P5+, and that it is now partly exsolved in nanoclusters (5–10 nm) of CaSO4. The sample, an osumilite-bearing ultra-high-temperature granulite from Rogaland, Norway, is characterized by complexly patchy zoned monazite crystals. Three chemical domains are distinguished as (1) a sulphate-rich core (0.45–0.72 wt% SO2, Th incorporated as cheralite component), (2) secondary sulphate-bearing domains (SO2 >0.05 wt%, partly clouded with solid inclusions), and (3) late S-free, Y-rich domains (0.8–2.5 wt% Y2O3, Th accommodated as the huttonite component). These three domains yield distinct isotopic U–Pb ages of 1034 ± 6, 1005 ± 7, and 935 ± 7 Ma, respectively. Uranium–Th–Pb EPMA dating independently confirms these ages. This study illustrates that it is possible to discriminate different generations of monazite based on their S contents. From the petrological context, we propose that sulphate-rich monazite reflects high-temperature Fe–sulphide breakdown under oxidizing conditions, coeval with biotite dehydration melting. Monazite may therefore reveal the presence of S in anatectic melts from high-grade terrains at a specific point in time and date S mobilization from a reduced to an oxidized state. This property can be used to investigate the mineralization potential of a given geological event within a larger orogenic framework.

Keywords

Monazite Sulphate U–Pb Geochronology Metamorphism S cycle 

Notes

Acknowledgments

We thank Ph. De Parseval and S. Gouy for their technical assistance with the microprobe and J.M. Montel for synthesizing the Pb-free (REE)PO4 crystals used in this study. This work was supported by the CNRS NEEDS program and a PHC Aurora grant (Ministry of Foreign Affairs, Norway and France). The access to the FIB facility was possible thanks to the French RENATECH network. Constructive reviews by D. Harlov, M. Williams and editorial handling by S. Reddy are greatly appreciated.

Supplementary material

410_2016_1301_MOESM1_ESM.xls (128 kb)
ESM 1: EPMA chemical analyses of monazite. Monazite formula is recalculated on the basis of 4 O (XLS 128 kb)
410_2016_1301_MOESM2_ESM.xls (54 kb)
ESM 2: LA–ICP–MS analysis of the full suite of REE and selected trace elements in monazite in ppm (XLS 54 kb)
410_2016_1301_MOESM3_ESM.pdf (7.2 mb)
ESM 3: SEM EDS maps of polymineralic inclusions within S-bearing D2 and S-free D3 monazite (PDF 7345 kb)
410_2016_1301_MOESM4_ESM.xls (534 kb)
ESM 4: U–Th–Pb isotopic ratio and age of monazite measured by LA–ICP–MS (XLS 534 kb)
410_2016_1301_MOESM5_ESM.xls (46 kb)
ESM 5: U–Th–Pb abundance and age of monazite measured by EPMA (XLS 45 kb)

References

  1. Ancey M, Bastenaire F, Tixier R (1977) Statistical control and optimization of X-ray intensity measurements. J Phys Appl Phys 10:817CrossRefGoogle Scholar
  2. Aseri AA, Linnen RL, Dong Che X, Thibault Y, Holtz F (2015) Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts. Ore Geol Rev 64:736–746CrossRefGoogle Scholar
  3. Baker DR, Alletti M (2012) Fluid saturation and volatile partitioning between melts and hydrous fluids in crustal magmatic systems: the contribution of experimental measurements and solubility models. Earth Sci Rev 114:298–324CrossRefGoogle Scholar
  4. Baker DR, Moretti R (2011) Modeling the solubility of sulfur in magmas: a 50 year old geochemical challenge. Rev Miner Geochem 73:167–213CrossRefGoogle Scholar
  5. Bingen B, Stein H (2003) Molybdenite Re–Os dating of biotite dehydration melting in the Rogaland high-temperature granulites, S Norway. Earth Planet Sci Lett 208:181–195CrossRefGoogle Scholar
  6. Bingen B, Van Breemen O (1998) U–Pb monazite ages in amphibolite- to granulite-facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway. Contrib Miner Petrol 132:336–353CrossRefGoogle Scholar
  7. Bingen B, Demaiffe D, Hertogen J (1990) Evolution of feldspars at the amphibolite-granulite-facies transition in augen gneisses (SW Norway): geochemistry and Sr isotopes. Contrib Miner Petrol 105:275–288CrossRefGoogle Scholar
  8. Bingen B, Davis WJ, Hamilton MA, Engvik AK, Stein HJ, Skar O, Nordgulen O (2008a) Geochronology of high-grade metamorphism in the Sveconorwegian belt, S. Norway: U–Pb, Th–Pb and Re–Os data. Norw J Geol 88:13–42Google Scholar
  9. Bingen B, Nordgulen O, Viola G (2008b) A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Norw J Geol 88:43–72Google Scholar
  10. Boger SD, White RW, Schulte B (2012) The importance of iron speciation (Fe2+/Fe3+) in determining mineral assemblages: an example from the high-grade aluminous metapelites of southeastern Madagascar. J Metamorph Geol 30:997–1018CrossRefGoogle Scholar
  11. Boynton W (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare Earth element geochemistry. Elsevier, Amsterdam, pp 63–114CrossRefGoogle Scholar
  12. Bradbury SE, Williams Q (2009) X-ray diffraction and infrared spectroscopy of monazite-structured CaSO4 at high pressures: implications for shocked anhydrite. J Phys Chem Solids 70:134–141CrossRefGoogle Scholar
  13. Budzyn B, Harlov DE, Williams ML, Jercinovic MJ (2011) Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. Am Miner 96:1547–1567CrossRefGoogle Scholar
  14. Bulakh AG, Nesterov AR, Zaitsev AN, Pilipiuk AN, Wall F, Kirillov AS (2000) Monazite-(Ce) from late-stage mineral assemblage at the Kandaguba and Vuoriyarvi carbonatite complexes, Kola peninsula, Russia. Neues Jahrb Miner Mon 217–233Google Scholar
  15. Chakhmouradian AR, Mitchell RH (1999) Niobian ilmenite, hydroxylapatite and sulfatian monazite: alternative hosts for incompatible elements in calcite kimberlite from Internatsional’naya, Yakutia. Can Miner 37:1177–1189Google Scholar
  16. Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306CrossRefGoogle Scholar
  17. Clemente B, Scaillet B, Pichavant M (2004) The solubility of sulphur in hydrous rhyolitic melts. J Petrol 45:2171–2196CrossRefGoogle Scholar
  18. Coint N, Slagstad T, Roberts NMW, Marker M, Røhr T, Sørensen BE (2015) The Late Mesoproterozoic Sirdal Magmatic Belt, SW Norway: relationships between magmatism and metamorphism and implications for Sveconorwegian orogenesis. Precambrian Res 265:57–77CrossRefGoogle Scholar
  19. Connolly JAD, Cesare B (1993) C–O–H–S fluid composition and oxygen fugacity in graphictic metapelites. J Metamorph Geol 11:379–388CrossRefGoogle Scholar
  20. Corfu F (1988) Differential response of U–Pb systems in coexisting accessory minerals, Winnipeg River Subprovince, Canadian Shield: implications for Archean crustal growth and stabilization. Contrib Miner Petrol 98:312–325CrossRefGoogle Scholar
  21. Cressey G, Wall F, Cressey BA (1999) Differential REE uptake by sector growth of monazite. Miner Mag 63:813–828CrossRefGoogle Scholar
  22. Crichton WA (2005) Evidence for monazite-, barite-, and AgMnO4 (distorted barite)-type structures of CaSO4 at high pressure and temperature. Am Miner 90:22–27CrossRefGoogle Scholar
  23. Das K, Dasgupta S, Miura H (2001) Stability of osumilite coexisting with spinel solid solution in metapelitic granulites at high oxygen fugacity. Am Miner 86:1423–1434CrossRefGoogle Scholar
  24. Didier A, Bosse V, Boulvais P, Bouloton J, Paquette J-L, Montel J-M, Devidal J-L (2013) Disturbance versus preservation of U–Th–Pb ages in monazite during fluid–rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France). Contrib Miner Petrol 165:1051–1072CrossRefGoogle Scholar
  25. Didier A, Bosse V, Bouloton J, Mostefaoui S, Viala M, Paquette JL, Devidal JL, Duhamel R (2015) NanoSIMS mapping and LA–ICP–MS chemical and U–Th–Pb data in monazite from a xenolith enclosed in andesite (Central Slovakia Volcanic Field). Contrib Miner Petrol 170:1–21CrossRefGoogle Scholar
  26. Diener JFA, Powell R (2010) Influence of ferric iron on the stability of mineral assemblages. J Metamorph Geol 28:599–613CrossRefGoogle Scholar
  27. Dong Z, White TJ (2004) Calcium–lead fluoro-vanadinite apatites. I. Disequilibrium structures. Acta Crystallogr B 60:138–145CrossRefGoogle Scholar
  28. Drüppel K, Elsasser L, Brandt S, Gerdes A (2013) Sveconorwegian mid-crustal ultrahigh-temperature metamorphism in Rogaland, Norway: U–Pb LA–ICP–MS geochronology and pseudosections of sapphirine granulites and associated paragneisses. J Petrol 54:305–350CrossRefGoogle Scholar
  29. Dumond G, Goncalves P, Williams ML, Jercinovic MJ (2015) Monazite as a monitor of melting, garnet growth, and feldspar recrystallization in continental lower crust. J Metamorph Geol 33:735–762CrossRefGoogle Scholar
  30. Engvik AK, Mezger K, Wortelkamp S, Bast R, Corfu F, Korneliussen A, Ihlen P, Bingen B, Austrheim H (2011) Metasomatism of gabbro—mineral replacement and element mobilization during the Sveconorwegian metamorphic event. J Metamorph Geol 29:399–423CrossRefGoogle Scholar
  31. Evans KA, Powell R, Holland TJB (2010) Internally consistent data for sulphur-bearing phases and application to the construction of pseudosections for mafic greenschist facies rocks in Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–CO2–O–S–H2O. J Metamorph Geol 28:667–687CrossRefGoogle Scholar
  32. Falkum T (1982) Geologisk kart over Norge, berggrunnskart Mandal, 1:250000. Norges Geologiske Undersøkelse, TrondheimGoogle Scholar
  33. Ferraris C, White TJ, Plévert J, Wegner R (2005) Nanometric modulation in apatite. Phys Chem Miner 32:485–492CrossRefGoogle Scholar
  34. Finger F, Krenn E (2007) Three metamorphic monazite generations in a high-pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos 95:103–115CrossRefGoogle Scholar
  35. Fleet ME (2006) Phase equilibria at high temperatures. Rev Miner Geochem 61:365–419CrossRefGoogle Scholar
  36. Fletcher IR, McNaughton NJ, Davis WJ, Rasmussen B (2010) Matrix effects and calibration limitations in ion probe U–Pb and Th–Pb dating of monazite. Chem Geol 270:31–44CrossRefGoogle Scholar
  37. Gasquet D, Bertrand J-M, Paquette J-L, Lehmann J, Ratzov G, De Ascenção Guedes R, Tiepolo M, Boullier A-M, Scaillet S, Nomade S (2010) Miocene to Messinian deformation and hydrothermal activity in a pre-Alpine basement massif of the French western Alps: new U–Th–Pb and argon ages from the Lauzière massif. Bull Soc Geol Fr 181:227–241CrossRefGoogle Scholar
  38. Gnos E, Janots E, Berger A, Whitehouse M, Walter F, Pettke T, Bergemann C (2015) Age of cleft monazites in the eastern Tauern Window: constraints on crystallization conditions of hydrothermal monazite. Swiss J Geosci 108:55–74CrossRefGoogle Scholar
  39. Grand’homme A, Janots E, Seydoux-Guillaume AM, Guillaume D, Bosse V, Magnin V (2016) Partial resetting of the U–Th–Pb systems in experimentally altered monazite: nano-scale evidence of incomplete replacement. Geology 44:431–434CrossRefGoogle Scholar
  40. Harlov DE (1992) Comparative oxygen barometry in granulites, Bamble Sector, SE Norway. J Geology 100:447–464CrossRefGoogle Scholar
  41. Harlov DE (2000) Titaniferous magnetite–ilmenite thermometry and titaniferous magnetite–ilmenite–orthopyroxene–quartz oxygen barometry in granulite facies gneisses, Bamble Sector, SE Norway: implications for the role of high-grade CO2-rich fluids during granulite genesis. Contrib Miner Petrol 139:180–197CrossRefGoogle Scholar
  42. Harlov DE, Hansen EC (2005) Oxide and sulphide isograds along a Late Archean, deep-crustal profile in Tamil Nadu, south India. J Metamorph Geol 23:241–259CrossRefGoogle Scholar
  43. Harlov DE, Newton RC, Hansen EC, Janardhan AS (1997) Oxide and sulfide minerals in highly oxidized, Rb-depleted, Archean granulites of the Shevaroy Hills Massif, South India: oxidation states and the role of metamorphic fluids. J Metamorph Geol 15:701–717CrossRefGoogle Scholar
  44. Heinrich W, Andrehs G, Franz G (1997) Monazite–xenotime miscibility gap thermometry. I. An empirical calibration. J Metamorph Geol 15:3–16CrossRefGoogle Scholar
  45. Hermans GAE, Tobi AC, Poorter RP, Maijer C (1975) The high-grade metamorphic Precambrian of the Sirdal-Ørsdal area, Rogaland/Vest-Agder, south-west Norway. Norg Geol Unders B 318:51–74Google Scholar
  46. Hetherington CJ, Harlov DE, Budzyń B (2010) Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Miner Petrol 99:165–184CrossRefGoogle Scholar
  47. Holland TJB, Babu E, Waters DJ (1996) Phase relations of osumilite and dehydration melting in pelitic rocks: a simple thermodynamic model for the KFMASH system. Contrib Miner Petrol 124:383–394CrossRefGoogle Scholar
  48. Jacquemet N, Guillaume D, Zwick A, Pokrovski GS (2014) In situ Raman spectroscopy identification of the S3- ion in S-rich hydrothermal fluids from synthetic fluid inclusions. Am Miner 99:1109–1118CrossRefGoogle Scholar
  49. Janots E, Engi M, Berger A, Allaz J, Schwarz J-O, Spandler C (2008) Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite–monazite–xenotime phase relations from 250 to 610 °C. J Metamorph Geol 26:509–526CrossRefGoogle Scholar
  50. Jansen JBH, Blok RJ, Bos A, Scheelings M (1985) Geothermometry and geobarometry in Rogaland and preliminary results from the Bamble area, S Norway. In: Tobi AC, Touret JLR (eds) The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, pp 477–497Google Scholar
  51. Jercinovic MJ (2005) Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: background acquisition, interferences, and beam irradiation effects. Am Miner 90:526–546CrossRefGoogle Scholar
  52. Kars H, Jansen JBH, Tobi AC, Poorter RP (1980) The metapelitic rocks of the polymetamorphic Precambrian of Rogaland, SW Norway. Contrib Miner Petrol 74:235–244CrossRefGoogle Scholar
  53. Kelly NM, Harley SL, Möller A (2012) Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration. Chem Geol 322–323:192–208CrossRefGoogle Scholar
  54. Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212CrossRefGoogle Scholar
  55. Keppler H (1999) Experimental evidence for the source of excess sulfur in explosive volcanic eruptions. Science 284:1652–1654CrossRefGoogle Scholar
  56. Keppler H (2010) The distribution of sulfur between haplogranitic melts and aqueous fluids. Geochim Cosmochim Acta 74:645–660CrossRefGoogle Scholar
  57. Kirkland CL, Erickson TM, Johnson TE, Danišík M, Evans NJ, Bourdet J, McDonald BJ (2016) Discriminating prolonged, episodic or disturbed monazite age spectra: an example from the Kalak Nappe Complex, Arctic Norway. Chem Geol 424:96–110CrossRefGoogle Scholar
  58. Krenn E, Putz H, Finger F, Paar WH (2011) Sulfur-rich monazite with high common Pb in ore-bearing schists from the Schellgaden mining district (Tauern Window, Eastern Alps). Miner Petrol 102:51–62CrossRefGoogle Scholar
  59. Kukharenko AA, Bulakh AG, Balanova KA (1961) Sulfate-monazite from the Kola Peninsula carbonatites. Zap Vses Miner Obshchest 90:373–381Google Scholar
  60. Liu Y, Samaha N-T, Baker DR (2007) Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts. Geochim Cosmochim Acta 71:1783–1799CrossRefGoogle Scholar
  61. Ma YM, Zhou Q, He Z, Li FF, Yang KF, Cui QL, Zou GT (2007) High-pressure and high-temperature study of the phase transition in anhydrite. J Phys Condens Matter 19:425221CrossRefGoogle Scholar
  62. Maijer CP (1987) The metamorphic envelope of the Rogaland intrusive complex. In: Maijer C, Padget P (eds) The geology of southermost Norway: an excursion guide, 1st edn. Norges Geologiske undersokelse special publication, Trondheim, pp 68–72Google Scholar
  63. Maijer C, Andriessen PAM, Hebeda EH, Jansen JBH, Verschure RH (1981) Osumilite, an approximately 970 Ma old high-temperature index mineral of the granulite-facies metamorphism in Rogaland, SW Norway. Geol Mijnbouw 60:267–272Google Scholar
  64. Mcfarlane CRM (2006) Palaeoproterozoic evolution of the Challenger Au deposit, South Australia, from monazite geochronology. J Metamorph Geol 24:75–87CrossRefGoogle Scholar
  65. Métrich N, Mandeville CW (2010) Sulfur in magmas. Elements 6:81–86CrossRefGoogle Scholar
  66. Migdisov A, Williams-Jones AE, Brugger J, Caporuscio FA (2016) Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem Geol 439:13–42CrossRefGoogle Scholar
  67. Milke R, Neusser G, Kolzer K, Wunder B (2013) Very little water is necessary to make a dry solid silicate system wet. Geology 41:247–250CrossRefGoogle Scholar
  68. Möller A, O’brien PJ, Kennedy A, Kröner A (2002) Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. J Metamorph Geol 20:727–740CrossRefGoogle Scholar
  69. Möller A, O’Brien PJ, Kennedy A, Kröner A (2003) Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). Geol Soc Lond Spec Publ 220:65–81CrossRefGoogle Scholar
  70. Montel J-M, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53CrossRefGoogle Scholar
  71. Montel J-M, Devidal J-L, Avignant D (2002) X-ray diffraction study of brabantite–monazite solid solution. Chem Geol 191:89–104CrossRefGoogle Scholar
  72. Muhling JR, Fletcher IR, Rasmussen B (2012) Dating fluid flow and Mississippi Valley type base-metal mineralization in the Paleoproterozoic Earaheedy Basin, Western Australia. Precambrian Res 212–213:75–90CrossRefGoogle Scholar
  73. Ni Y, Hughes JM, Mariano AN (1995) Crystal chemistry of the monazite and xenotime structures. Am Miner 80:21–26CrossRefGoogle Scholar
  74. Ondrejka M, Uher P, Pršek J, Ozdín D (2007) Arsenian monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec-Rejkovo rhyolite, Western Carpathians, Slovakia: composition and substitutions in the (REE, Y)XO4 system (X = P, As, Si, Nb, S). Lithos 95:116–129CrossRefGoogle Scholar
  75. Paquette JL, Tiepolo M (2007) High resolution (5 μm) U–Th–Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol 240:222–237CrossRefGoogle Scholar
  76. Parat F, Holtz F (2004) Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions. Contrib Miner Petrol 147:201–212CrossRefGoogle Scholar
  77. Parat F, Holtz F, Streck MJ (2011) Sulfur-bearing magmatic accessory minerals. Rev Miner Geochem 73:285–314CrossRefGoogle Scholar
  78. Prsek J, Ondrejka M, Bacik P, Budzyn B, Uher P (2010) Metamorphic-hydrothermal REE minerals in the Bacuch magnetite deposit, Western Carpathians, Slovakia: (S, Sr)-rich monazite-(Ce) and Nd-dominant hingganite. Can Miner 48:81–94CrossRefGoogle Scholar
  79. Putnis A (2009) Mineral replacement reactions. Rev Miner Geochem 70:87–124CrossRefGoogle Scholar
  80. Rasmussen B, Muhling JR (2007) Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism. Contrib Miner Petrol 154:675–689CrossRefGoogle Scholar
  81. Rasmussen B, Sheppard S, Fletcher IR (2006) Testing ore deposit models using in situ U–Pb geochronology of hydrothermal monazite: paleoproterozoic gold mineralization in northern Australia. Geology 34:77–80CrossRefGoogle Scholar
  82. Rasmussen B, Fletcher IR, Muhling JR, Thorne WS, Broadbent GC (2007) Prolonged history of episodic fluid flow in giant hematite ore bodies: evidence from in situ U–Pb geochronology of hydrothermal xenotime. Earth Planet Sci Lett 258:249–259CrossRefGoogle Scholar
  83. Satish-Kumar M, Hermann J, Tsunogae T, Osanai Y (2006) Carbonation of Cl-rich scapolite boudins in Skallen, East Antarctica: evidence for changing fluid condition in the continental crust. J Metamorph Geol 24:241–261CrossRefGoogle Scholar
  84. Schandl ES, Gorton MP (2004) A textural and geochemical guide to the identification of hydrothermal monazite: criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Econ Geol 99:1027–1035CrossRefGoogle Scholar
  85. Schärer U, Wilmart E, Duchesne J-C (1996) The short duration and anorogenic character of anorthosite magmatism: U–Pb dating of the Rogaland complex, Norway. Earth Planet Sci Lett 139:335–350CrossRefGoogle Scholar
  86. Seo JH, Guillong M, Heinrich CA (2009) The role of sulfur in the formation of magmatic–hydrothermal copper–gold deposits. Earth Planet Sci Lett 282:323–328CrossRefGoogle Scholar
  87. Seydoux-Guillaume A-M, Paquette J-L, Wiedenbeck M, Montel J-M, Heinrich W (2002) Experimental resetting of the U–Th–Pb systems in monazite. Chem Geol 191:165–181CrossRefGoogle Scholar
  88. Seydoux-Guillaume A-M, Goncalves P, Wirth R, Deutsch A (2003) Transmission electron microscope study of polyphase and discordant monazites: site-specific specimen preparation using the focused ion beam technique. Geology 31:973–976CrossRefGoogle Scholar
  89. Seydoux-Guillaume A-M, Montel J-M, Wirth R, Moine B (2009) Radiation damage in diopside and calcite crystals from uranothorianite inclusions. Chem Geol 261:318–332CrossRefGoogle Scholar
  90. Seydoux-Guillaume A-M, Montel J-M, Bingen B, Bosse V, de Parseval P, Paquette J-L, Janots E, Wirth R (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution–precipitation, irradiation damage, and disturbance of the U–Pb and Th–Pb chronometers. Chem Geol 330–331:140–158CrossRefGoogle Scholar
  91. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767CrossRefGoogle Scholar
  92. Simon AC, Ripley EM (2011) The role of magmatic sulfur in the formation of ore deposits. Rev Miner Geochem 73:513–578CrossRefGoogle Scholar
  93. Spear FS, Pyle JM, Cherniak D (2009) Limitations of chemical dating of monazite. Chem Geol 266:218–230CrossRefGoogle Scholar
  94. Stacey J, Kramers J (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  95. Stein HJ, Markey RJ, Morgan JW et al (2001) The remarkable Re–Os chronometer in molybdenite: how and why it works. Terra Nova 13:479–486CrossRefGoogle Scholar
  96. Stepanov AS, Hermann J, Rubatto D, Rapp RP (2012) Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem Geol 300–301:200–220CrossRefGoogle Scholar
  97. Suzuki K, Kato T (2008) CHIME dating of monazite, xenotime, zircon and polycrase: protocol, pitfalls and chemical criterion of possibly discordant age data. Gondwana Res 14:569–586CrossRefGoogle Scholar
  98. Tobi AC, Hermans GAE, Maijer C, Jansen JBH (1985) Metamorphic zoning in the high-grade proterozoic of Rogaland-Vest Agder SW Norway. In: Tobi AC, Touret JLR (eds) The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, pp 477–497CrossRefGoogle Scholar
  99. Tomkins AG (2010) Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis. Geochim Cosmochim Acta 74:3246–3259CrossRefGoogle Scholar
  100. Tomkins HS, Williams IS, Ellis DJ (2005) In situ U–Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway. J Metamorph Geol 23:201–215CrossRefGoogle Scholar
  101. Tomkins AG, Pattison DRM, Frost BR (2007) On the initiation of metamorphic sulfide anatexis. J Petrol 48:511–535CrossRefGoogle Scholar
  102. Touret J (2001) Fluids in metamorphic rocks. Lithos 55:1–25CrossRefGoogle Scholar
  103. Tracy RJ, Robinson P (1988) Silicate-sulfide-oxide fluid reactions in granulitic-grade pelitic rocks, Central Massachusetts. Am J Sci 288:45–74Google Scholar
  104. Van Achterbergh E, Ryan C, Jackson S, Griffin W (2001) Data reduction software for LA–ICP–MS. In: Sylvester P (ed) Laser ablation-ICP–MS in the Earth sciences. Miner Assoc Can 29:239–243Google Scholar
  105. Villa IM, Williams ML (2013) Geochronology of metasomatic events. In: Harlov D, Austrheim H (eds) Metasomatism and the chemical transformation OF Rock: the role of fluids in terrestrial and extraterrestrial processes. Springer, Berlin, pp 171–202CrossRefGoogle Scholar
  106. Villa-Vialaneix N, Montel J-M, Seydoux-Guillaume A-M (2013) NiLeDAM: monazite datation for the NiLeDAM team. R package version 0.1. http://niledam.r-forge.r-project.org. Accessed 06 Oct 2016
  107. Webster JD, Botcharnikov RE (2011) Distribution of sulfur between melt and fluid in S–O–H–C–Cl-bearing magmatic systems at shallow crustal pressures and temperatures. Rev Miner Geochem 73:247–283CrossRefGoogle Scholar
  108. Webster JD, Goldoff B, Shimizu N (2011) C-O–H–S fluids and granitic magma: how S partitions and modifies CO2 concentrations of fluid-saturated felsic melt at 200 MPa. Contrib Miner Petrol 162:849–865CrossRefGoogle Scholar
  109. Westphal M, Schumacher JC, Boschert S (2003) High-temperature metamorphism and the role of magmatic heat sources at the Rogaland anorthosite complex in southwestern Norway. J Petrol 44:1145–1162CrossRefGoogle Scholar
  110. Whitney J (1984) Fugacities of sulfurous gases in pyrrhotite-bearing silicic magmas. Am Miner 69:69–78Google Scholar
  111. Wilke M, Behrens H (1999) The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity. Contrib Miner Petrol 137:102–114CrossRefGoogle Scholar
  112. Wilke M, Klimm K, Kohn SC (2011) Spectroscopic studies on sulfur speciation in synthetic and natural glasses. Rev Miner Geochem 73:41–78CrossRefGoogle Scholar
  113. Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Planet Sci 35:137–175CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Antonin T. Laurent
    • 1
  • Anne-Magali Seydoux-Guillaume
    • 2
    • 3
  • Stéphanie Duchene
    • 1
  • Bernard Bingen
    • 4
  • Valérie Bosse
    • 3
  • Lucien Datas
    • 5
  1. 1.GET, UMR 5563 CNRS–UPS–IRDUniversité de Toulouse IIIToulouseFrance
  2. 2.LMV, UMR 6524 CNRS–UJM–IRDUniversité Jean MonnetSaint-EtienneFrance
  3. 3.LMV, UMR 6524 CNRS–UBP–IRDUniversité Blaise PascalClermont-FerrandFrance
  4. 4.Geological Survey of NorwayTrondheimNorway
  5. 5.Centre de micro-caractérisation Raimond Castaing, UMS 3623 CNRS–UPSUniversité de ToulouseToulouseFrance

Personalised recommendations