Implications of near-rim compositional zoning in rutile for geothermometry, geospeedometry, and trace element equilibration

  • Matthew J. Kohn
  • Sarah C. Penniston-Dorland
  • Jean C. S. Ferreira
Original Paper

Abstract

In principle, compositional profiling of the near-rim region of minerals can provide insight into cooling rates, but presumes that loss or gain of material from the crystal rim is not kinetically restricted. Trace element depth profiles collected for Zr, Hf, Ta, Nb, and U in amphibolite-facies rutile grains of the Catalina Schist, southern California, show significant variability within a single rock: Profiles of the same element among different grains can have significantly different slopes, grains with indistinguishable Zr profiles show vastly different Nb profiles, and grains with indistinguishable Nb profiles show different Zr profiles. Textural and kinetic idiosyncrasies within the matrix apparently affect the ability of specific crystals to accept or release trace elements, and impugn the common assumption that mineral surfaces maintain equilibrium at amphibolite-facies conditions. A new model that limits the flux of Zr from rutile grains helps explain commonly observed compositional profiles, and implies that inversion of compositional profiles assuming equilibrium among grain surfaces will invariably overestimate cooling rates. Few grains may record the low closure temperatures that experimentally determined diffusivities imply. Rather, higher temperatures will be retained, depending on the proximity of reactants and products in the matrix. Silicon diffusion does not control Zr reequilibration in rutile, and relative diffusion coefficients (D’s) of trace elements in rutile are DZr ~ DHf ~ 10DNb ~ 20DTa ~ 40DU.

Keywords

Diffusion Geospeedometry LA-ICP-MS Kinetics HFSE Rutile 

Notes

Acknowledgments

This research was funded by NSF Grants EAR-1419865 to MJK and EAR-1419871 to SPD, and by a Government of Brazil undergraduate fellowship to JCSF. We thank Frank Spear for discussions about diffusion modeling approaches, Thomas Zack for providing the R10 rutile standard, Phil Piccoli for EPMA analysis of the Rietfontein rutile, and Marion Lytle for help with LA-ICP-MS analysis, Othmar Müntener for editorial handling, and Mike Jollands and Horst Marschall for extensive and educational reviews that substantially improved the quality of this study. The Catalina Island Conservancy is acknowledged for logistics and support of sample collection of the Catalina Schist.

Supplementary material

410_2016_1285_MOESM1_ESM.xlsx (339 kb)
Supplementary material 1 (XLSX 339 kb)
410_2016_1285_MOESM2_ESM.pdf (713 kb)
Supplementary material 2 (PDF 714 kb)

References

  1. Bebout GE, Barton MD (1993) Metasomatism during subduction; products and possible paths in the Catalina Schist, California. Chem Geol 108:61–92CrossRefGoogle Scholar
  2. Bebout GE, Barton MD (2002) Tectonic and metasomatic mixing in a high-T, subduction-zone mélange—insights into the geochemical evolution of the slab-mantle interface. Chem Geol 187:79–106CrossRefGoogle Scholar
  3. Carlson WD (2012) Rates and mechanism of Y, REE, and Cr diffusion in garnet. Am Mineral 97:1598–1618CrossRefGoogle Scholar
  4. Carlson WD, Gordon CL (2004) Effects of matrix grain size on the kinetics of intergranular diffusion. J Metamorph Geol 22(8):733–742. doi:10.1111/j.1525-1314.2004.00545.x CrossRefGoogle Scholar
  5. Chambers JA, Kohn MJ (2012) Titanium in muscovite, biotite, and hornblende: modeling, thermometry, and rutile activities of metapelites and amphibolites. Am Mineral 97:543–555CrossRefGoogle Scholar
  6. Cherniak DJ (2000) Pb diffusion in rutile. Contrib Mineral Petrol 139:198–207CrossRefGoogle Scholar
  7. Cherniak DJ (2006) Zr diffusion in titanite. Contrib Mineral Petrol 152:639–647CrossRefGoogle Scholar
  8. Cherniak DJ, Manchester J, Watson EB (2007) Zr and Hf diffusion in rutile. Earth Planet Sci Lett 261:267–279CrossRefGoogle Scholar
  9. Ewing TA, Hermann J, Rubatto D (2013) The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contrib Mineral Petrol 165:757–779CrossRefGoogle Scholar
  10. Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437CrossRefGoogle Scholar
  11. Fromkneckt R, Khubeis I, Meyer O (1996) La-, Sn- and Hf-implanted in TiO2 single crystals: lattice disorder and lattice site location. Nucl Instr Meth Phys Res B116:109–112CrossRefGoogle Scholar
  12. Ganguly J, Dasgupta S, Cheng W, Neogi S (2000) Exhumation history of a section of the Sikkim Himalayas, India: records in the metamorphic mineral equilibria and compositional zoning of garnet. Earth Planet Sci Lett 183:471–486CrossRefGoogle Scholar
  13. Golden EM, Giles NC, Yang S, Halliburton LE (2015) Interstitial silicon ions in rutile TiO2 crystals. Phys Rev B 91:134110CrossRefGoogle Scholar
  14. Grove M, Bebout GE, Jacobson CE, Barth AP, Kimbrough DL, King RL, Zou H, Lovera OM, Mahoney BJ, Gehrels GE (2008) The Catalina Schist: evidence for middle Cretaceous subduction erosion of southwestern North America. Geol Soc Am Spec Pap 436:335–361Google Scholar
  15. Kohn MJ (1999) Why most “dry” rocks should cool “wet”. Am Mineral 84:570–580CrossRefGoogle Scholar
  16. Kohn MJ, Corrie SL (2011) Preserved Zr-temperatures and U-Pb ages in high-grade metamorphic titanite: evidence for a static hot channel in the Himalayan orogen. Earth Planet Sci Lett 311:136–143CrossRefGoogle Scholar
  17. Kohn MJ, Corrie SL, Markley C (2015) The fall and rise of metamorphic zircon. Am Mineral 100:897–908CrossRefGoogle Scholar
  18. Kooijman E, Smit MA, Mezger K, Berndt J (2012) Trace element systematics in granulite facies rutile: implications for Zr geothermometry and provenance studies. J Metamorph Geol 30(4):397–412. doi:10.1111/j.1525-1314.2012.00972.x CrossRefGoogle Scholar
  19. Lasaga AC (1983) Geospeedometry: an extension of geothermometry. In: Saxena SK (ed) Kinetics and equilibrium in mineral reactions. Springer, New York, pp 81–114CrossRefGoogle Scholar
  20. Luvizotto GL, Zack T (2009) Nb and Zr behavior in rutile during high-grade metamorphism and retrogression: an example from the Ivrea-Verbano Zone. Chem Geol 261:303–317CrossRefGoogle Scholar
  21. Luvizotto GL, Zack T, Meyer HP, Ludwig T, Triebold S, Kronz A, Münker C, Stockli DF, Prowatke S, Klemme S, Jacob DE, von Eynatten H (2009) Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem Geol 261:346–369CrossRefGoogle Scholar
  22. Marschall HR, Dohmen R, Ludwig T (2013) Diffusion-induced fractionation of niobium and tantalum during continental crust formation. Earth Planet Sci Lett 375:361–371CrossRefGoogle Scholar
  23. Mattinson JM (1986) Geochronology of high pressure—low temperature Franciscan metabasites: a new approach using the U-Pb system. Geol Soc Am Mem 164:95–106CrossRefGoogle Scholar
  24. Meyer M, John T, Brandt S, Klemd R (2011) Trace element composition of rutile and the application of Zr-in-rutile thermometry to UHT metamorphism (Epupa Complex, NW Namibia). Lithos 126:388–401CrossRefGoogle Scholar
  25. Nowotny MK, Sheppard LR, Bak T, Nowotny J (2008) Defect chemistry of titanium dioxide. Application of defect engineering in processing TiO2-based photocatalysts. J Phys Chem C 112:5275–5300CrossRefGoogle Scholar
  26. Paton C, Hellstrom J, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Analyt Atom Spec 26:2508–2518CrossRefGoogle Scholar
  27. Pauly J, Marschall HR, Meyer H-P, Chatterjee N, Monteleone B (2016) Prolonged Ediacaran-Cambrian metamorphic history and short-lived high-pressure granulite-facies metamorphism in the H.U. Sverdrupfjella, Dronning Maud Land (East Antarctica): evidence for continental collision during Gondwana Assembly. J Petrol 57:185–228CrossRefGoogle Scholar
  28. Penniston-Dorland SC, Bebout GE, Pogge von Strandmann PAE, Elliott T, Sorensen SS (2012) Lithium and its isotopes as tracers of subduction zone fluids and metasomatic processes: evidence from the Catalina Schist, California, USA. Geochim Cosmochim Acta 77:530–545CrossRefGoogle Scholar
  29. Platt JP (1975) Metamorphic and deformational processes in the Franciscan Complex, California: some insights from the Catalina Schist terrane. Geol Soc Am Bull 86:1337–1347CrossRefGoogle Scholar
  30. Platt JP (1976) The petrology, structure and geologic history of the Catalina Schist terrain, southern California. Univ Calif Publ Geol Sci 112:1–111Google Scholar
  31. Sasaki J, Peterson NL, Hoshino K (1985) Tracer impurity diffusion in single-crystal rutile (TiO2−x). J Phys Chem Solids 46:1267–1283CrossRefGoogle Scholar
  32. Sheppard LR, Atanacio AJ, Bak T, Nowotny J, Prince KE (2007) Bulk diffusion of niobium in single-crystal titanium dioxide. J Phys Chem B 111:8126–8130CrossRefGoogle Scholar
  33. Sheppard LR, Atanacio AJ, Bak T, Nowotny J, Nowotny MK, Prince KE (2009) Niobium diffusion in niobium-doped titanium dioxide. J Solid State Electrochem 13(7):1115–1121. doi:10.1007/s10008-008-0717-x CrossRefGoogle Scholar
  34. Smye AJ, Stockli DF (2014) Rutile U-Pb age depth profiling: a continuous record of lithospheric thermal evolution. Earth Planet Sci Lett 408:171–182CrossRefGoogle Scholar
  35. Sorensen SS (1988) Petrology of amphibolite-facies mafic and ultramafic rocks from the Catalina Schist, southern California: metasomatism and migmatization in a subduction zone metamorphic setting. J Metamorph Geol 6:405–435CrossRefGoogle Scholar
  36. Sorensen SS, Barton MD (1987) Metasomatism and partial melting in a subduction complex: catalina Schist, southern California. Geology 15:115–118CrossRefGoogle Scholar
  37. Spear FS (2004) Fast cooling and exhumation of the Valhalla metamorphic core complex, southeastern British Columbia. Int Geol Rev 46:193–209CrossRefGoogle Scholar
  38. Taylor-Jones K, Powell R (2015) Interpreting zirconium-in-rutile thermometric results. J Metamorph Geol 33(2):115–122. doi:10.1111/jmg.12109 CrossRefGoogle Scholar
  39. Thomas JB, Watson EB, Spear FS, Shemella PT, Nayak SJ, Lanzirotti A (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib Mineral Petrol 160:743–759CrossRefGoogle Scholar
  40. Tomkins HS, Powell R, Ellis DJ (2007) The pressure dependence of the zirconium-in-rutile thermometer. J Metamorph Geol 25:703–713CrossRefGoogle Scholar
  41. van Orman JA, Crispin KL (2010) Diffusion in oxides. Rev Mineral Geochem 72(1):757–825CrossRefGoogle Scholar
  42. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433CrossRefGoogle Scholar
  43. Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Mineral Petrol 152:743–754CrossRefGoogle Scholar
  44. Yardley BWD (1981) Effect of cooling on the water content and mechanical behavior of metamorphosed rocks. Geology 9:405–408CrossRefGoogle Scholar
  45. Zack T, Foley SF, Rivers T (2002) Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). J Petrol 43:1947–1974CrossRefGoogle Scholar
  46. Zack T, Moraes R, Kronz A (2004) Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib Mineral Petrol 148:471–488CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of GeosciencesBoise State UniversityBoiseUSA
  2. 2.Department of GeologyUniversity of MarylandCollege ParkUSA

Personalised recommendations