The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada

  • Y. BussweilerEmail author
  • R. S. Stone
  • D. G. Pearson
  • R. W. Luth
  • T. Stachel
  • B. A. Kjarsgaard
  • A. Menzies
Original Paper


Megacrystic (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) xenocrysts within kimberlites from Lac de Gras (Northwest Territories, Canada) contain fully crystallized melt inclusions. These ‘polymineralic inclusions’ have previously been interpreted to form by necking down of melts at mantle depths. We present a detailed petrographical and geochemical investigation of polymineralic inclusions and their host crystals to better understand how they form and what they reveal about the evolution of kimberlite melt. Genetically, the megacrysts are mantle xenocrysts with peridotitic chemical signatures indicating an origin within the lithospheric mantle (for the Cr-diopsides studied here ~4.6 GPa, 1015 °C). Textural evidence for disequilibrium between the host crystals and their polymineralic inclusions (spongy rims in Cr-diopside, kelyphite in Cr-pyrope) is consistent with measured Sr isotopic disequilibrium. The preservation of disequilibrium establishes a temporal link to kimberlite eruption. In Cr-diopsides, polymineralic inclusions contain phlogopite, olivine, chromite, serpentine, and calcite. Abundant fluid inclusion trails surround the inclusions. In Cr-pyropes, the inclusions additionally contain Al-spinel, clinopyroxene, and dolomite. The major and trace element compositions of the inclusion phases are generally consistent with the early stages of kimberlite differentiation trends. Extensive chemical exchange between the host phases and the inclusions is indicated by enrichment of the inclusions in major components of the host crystals, such as Cr2O3 and Al2O3. This chemical evidence, along with phase equilibria constraints, supports the proposal that the inclusions within Cr-diopside record the decarbonation reaction: dolomitic melt + diopside → forsterite + calcite + CO2, yielding the observed inclusion mineralogy and producing associated (CO2-rich) fluid inclusions. Our study of polymineralic inclusions in megacrysts provides clear mineralogical and chemical evidence for an origin of kimberlite that involves the reaction of high-pressure dolomitic melt with diopside-bearing mantle assemblages producing a lower-pressure melt that crystallizes a calcite-dominated assemblage in the crust.


Kimberlite Cr-rich megacrysts Polymineralic inclusions Melt inclusions Decarbonation reaction Kimberlite evolution 



This study forms part of Y.B.’s Ph.D. research funded through D.G.P’s Canada Excellence Research Chair. Y.B. is grateful for a University of Alberta Doctoral Recruitment Scholarship. The staff at Diavik Diamond Mine, especially Yuri Kinakin and Gus Fomradas, are thanked for generously allowing access to drill core for sampling. Juanita Bellinger at Rio Tinto is thanked for providing additional concentrate samples. The authors wish to acknowledge the support of CISEM (Centro de Investigación y Servicios Mineralógicos), Universidad Católica del Norte, Antofagasta, Chile, for providing QEMSCAN® analytical time. At the University of Alberta, Sarah Gleeson is thanked for access to the fluid inclusion microscopy stage, Andrew Locock for assistance with EPMA, Yan Luo for assistance with LA-ICP-MS, and Chiranjeeb Sarkar for assistance with Sr column chemistry and TIMS. We are grateful to Vadim Kamenetsky for his constructive and insightful review and for kindly allowing us to use Fig. 2d. We also thank Dante Danil for a very helpful review and Tim Grove for the editorial handling.

Supplementary material

410_2016_1275_MOESM1_ESM.xlsx (72 kb)
Supplementary material 1 (XLSX 72 kb)
410_2016_1275_MOESM2_ESM.xlsx (34 kb)
Supplementary material 2 (XLSX 34 kb)
410_2016_1275_MOESM3_ESM.xlsx (23 kb)
Supplementary material 3 (XLSX 22 kb)
410_2016_1275_MOESM4_ESM.xlsx (44 kb)
Supplementary material 4 (XLSX 43 kb)
410_2016_1275_MOESM5_ESM.xlsx (27 kb)
Supplementary material 5 (XLSX 26 kb)
410_2016_1275_MOESM6_ESM.xlsx (35 kb)
Supplementary material 6 (XLSX 35 kb)
410_2016_1275_MOESM7_ESM.xlsx (20 kb)
Supplementary material 7 (XLSX 19 kb)
410_2016_1275_MOESM8_ESM.xlsx (18 kb)
Supplementary material 8 (XLSX 17 kb)
410_2016_1275_MOESM9_ESM.jpg (1.9 mb)
Supplementary Fig. 1 QEMSCAN® maps of polymineralic inclusions in Cr-diopside (a = PL_CPX_03 In01; b = PL_CPX_03 In10) and Cr-pyrope (c = PL_GRT_04 In13; d = PL_GRT_04 In05). Inclusions a) and c) are of the ‘carbonate-rich’, and b) and d) of the ‘silicate-rich’ end-member type. Modal proportions of the inclusions as obtained with QEMSCAN® are as follows: a) 10.3 % ol; 11.4 % srp; 11.2 % phl; 65.8 % cc; 0.1 % ap. b) 4.0 % ol; 60.4 % srp; 16.5 % phl; 15.2 % cc; 0.1 % ap. c) 8.2 % ol; 0.2 % cpx; 15.0 % srp; 30.2 % phl; 3.7 % spl; 40.7 % cc; 0.9 % dol; 0.1 % py. d) 0.8 % ol; 2.0 % cpx; 45.7 % srp; 31.1 % phl; 6.2 % spl; 0.1 % cc; 6.0 % dol; 0.1 % ap; 0.1 % py. Mineral abbreviations are as follows: ol = olivine; cpx = clinopyroxene; srp = serpentine; phl = phlogopite; spl = spinel; cc = calcite; dol = dolomite; ap = apatite; py = pyrite (JPEG 1925 kb)
410_2016_1275_MOESM10_ESM.jpg (1.1 mb)
Supplementary Fig. 2 Bivariate plots for major and minor elements in serpentine/chlorite in polymineralic inclusions resolved by megacryst host (Cr-diopside and Cr-pyrope) and in altered olivine mineral inclusions in Cr-pyrope. Reference data for kimberlitic serpentine are from Hayman et al. (2009) and Mitchell (1986) (JPEG 1150 kb)
410_2016_1275_MOESM11_ESM.jpg (235 kb)
Supplementary Fig. 3 ΔlogfO2 (FMQ) values for grt peridotites from different cratons (modified from Luth and Stachel 2014). Samples from the central Slave Craton (Creighton et al. 2010) are notably more oxidized than those from other cratons (JPEG 234 kb)


  1. Araújo DP, Griffin WL, O’Reilly SY (2009) Mantle melts, metasomatism and diamond formation: insights from melt inclusions in xenoliths from Diavik, Slave Craton. Lithos 112:675–682. doi: 10.1016/j.lithos.2009.06.005 CrossRefGoogle Scholar
  2. Armstrong JP, Wilson M, Barnett RL et al (2004) Mineralogy of primary carbonate-bearing hypabyssal kimberlite, Lac de Gras, Slave Province, Northwest Territories, Canada. Lithos 76:415–433. doi: 10.1016/j.lithos.2004.03.025 CrossRefGoogle Scholar
  3. Ayling B, Rose P, Petty S (2011) Using QEMSCAN to characterize fracture mineralization at the Newberry Volcano EGS Project, Oregon: a pilot study. GRC Trans 35:301–305Google Scholar
  4. Bleeker W, Ketchum J, Davis B, Sircombe K (2004) The Slave Craton from on top: the crustal view, pp 1–5.
  5. Boyd FR (1974) Olivine megacrysts from the kimberlites of Monastery and Frank Smith Mines, South Africa. Carnegie Inst Wash Yearb 73:282–285Google Scholar
  6. Brett RC, Russell JK, Moss S (2009) Origin of olivine in kimberlite: phenocryst or impostor? Lithos 112:201–212. doi: 10.1016/j.lithos.2009.04.030 CrossRefGoogle Scholar
  7. Brett RC, Russell JK, Andrews GDM, Jones TJ (2015) The ascent of kimberlite: insights from olivine. Earth Planet Sci Lett 424:119–131. doi: 10.1016/j.epsl.2015.05.024 CrossRefGoogle Scholar
  8. Brey G, Brice WR, Ellis DJ et al (1983) Pyroxene–carbonate reactions in the upper mantle. Earth Planet Sci Lett 62:63–74. doi: 10.1016/0012-821X(83)90071-7 CrossRefGoogle Scholar
  9. Brey GP, Kogarko LN, Ryabchikov ID (1991) Carbon dioxide in kimberlitic melts. Neues Jahrb für Mineral Monatshefte 4:159–168Google Scholar
  10. Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49:797–821. doi: 10.1093/petrology/egn002 CrossRefGoogle Scholar
  11. Bussweiler Y, Foley SF, Prelević D, Jacob DE (2015) The olivine macrocryst problem: new insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos 220–223:238–252. doi: 10.1016/j.lithos.2015.02.016 CrossRefGoogle Scholar
  12. Canil D, Bellis AJ (2008) Phase equilibria in a volatile-free kimberlite at 0.1 MPa and the search for primary kimberlite magma. Lithos 105:111–117. doi: 10.1016/j.lithos.2008.02.011 CrossRefGoogle Scholar
  13. Canil D, Fedortchouk Y (1999) Garnet dissolution and the emplacement of kimberlites. Earth Planet Sci Lett 167:227–237. doi: 10.1016/S0012-821X(99)00019-9 CrossRefGoogle Scholar
  14. Carpenter RL, Edgar AD, Thibault Y (2002) Origin of spongy textures in clinopyroxene and spinel from mantle xenoliths, Hessian Depression, Germany. Mineral Petrol 74:149–162. doi: 10.1007/s007100200002 CrossRefGoogle Scholar
  15. Creaser RA, Grütter H, Carlson J, Crawford B (2004) Macrocrystal phlogopite Rb–Sr dates for the Ekati property kimberlites, Slave Province, Canada: evidence for multiple intrusive episodes in the Paleocene and Eocene. Lithos 76:399–414. doi: 10.1016/j.lithos.2004.03.039 CrossRefGoogle Scholar
  16. Creighton S, Stachel T, McLean H et al (2008) Diamondiferous peridotitic microxenoliths from the Diavik Diamond Mine, NT. Contrib Mineral Petrol 155:541–554. doi: 10.1007/s00410-007-0257-x CrossRefGoogle Scholar
  17. Creighton S, Stachel T, Eichenberg D, Luth RW (2010) Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada. Contrib Mineral Petrol 159:645–657. doi: 10.1007/s00410-009-0446-x CrossRefGoogle Scholar
  18. Dalton J, Presnall D (1998a) Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib Mineral Petrol 131:123–135CrossRefGoogle Scholar
  19. Dalton JA, Presnall DC (1998b) The continuum of primary carbonatitic–kimberlitic melt compositions in equilibrium with lherzolite: data from at 6 GPa. J Petrol 39:1953–1964Google Scholar
  20. Davis W, Gariepy C, Van Breemen O (1996) Pb isotopic composition of late Archaean granites and the extent of recycling early Archaean crust in the Slave Province, northwest Canada. Chem Geol 130:255–269CrossRefGoogle Scholar
  21. Dawson JB (1971) Advances in kimberlite geology. Earth Sci Rev 7:187–214. doi: 10.1016/0012-8252(71)90120-6 CrossRefGoogle Scholar
  22. Dawson JB, Hawthorne JB (1973) Magmatic sedimentation and carbonatite differentiation in kimberlite sills at Benfontein, South Africa. J Geol Soc London 129:64–85CrossRefGoogle Scholar
  23. de Bruin D (2005) Multiple compositional megacryst groups from the Uintjiesberg and Witberg kimberlites, South Africa. S Afr J Geol 108:233–246. doi: 10.2113/108.2.233 CrossRefGoogle Scholar
  24. Donnelly CL, Stachel T, Creighton S et al (2007) Diamonds and their mineral inclusions from the A154 South pipe, Diavik Diamond Mine, Northwest territories, Canada. Lithos 98:160–176. doi: 10.1016/j.lithos.2007.03.003 CrossRefGoogle Scholar
  25. Eccles DR, Heaman LM, Luth RW, Creaser RA (2004) Petrogenesis of the Late Cretaceous northern Alberta kimberlite province. Lithos 76:435–459. doi: 10.1016/j.lithos.2004.03.046 CrossRefGoogle Scholar
  26. Eggler DH (1989) Kimberlites: how do they form? In: Kimberlites and related rocks, vol 1. pp 489–504Google Scholar
  27. Eggler DH, McCallum ME, Smith CB (1979) Megacryst assemblages in kimberlite from northern Colorado and southern Wyoming: petrology, geothermometry-barometry and areal distribution. Boyd Meyer 2:213–226Google Scholar
  28. Fedortchouk Y, Canil D (2004) Intensive Variables in kimberlite magmas, Lac de Gras, Canada and implications for diamond survival. J Petrol 45:1725–1745. doi: 10.1093/petrology/egh031 CrossRefGoogle Scholar
  29. Foley SF, Yaxley GM, Rosenthal A et al (2009) The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112:274–283. doi: 10.1016/j.lithos.2009.03.020 CrossRefGoogle Scholar
  30. Giuliani A, Phillips D, Kamenetsky VS et al (2014) Petrogenesis of mantle polymict breccias: insights into mantle processes coeval with kimberlite magmatism. J Petrol 55:831–858. doi: 10.1093/petrology/egu008 CrossRefGoogle Scholar
  31. Giuliani A, Phillips D, Kamenetsky VS, Goemann K (2016) Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos 240–243:189–201. doi: 10.1016/j.lithos.2015.11.013 CrossRefGoogle Scholar
  32. Grütter HS (2009) Pyroxene xenocryst geotherms: techniques and application. Lithos 112:1167–1178. doi: 10.1016/j.lithos.2009.03.023 CrossRefGoogle Scholar
  33. Gudfinnsson GH, Presnall DC (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3-8 GPa. J Petrol 46:1645–1659. doi: 10.1093/petrology/egi029 CrossRefGoogle Scholar
  34. Haggerty SE, Boyd FR (1975) Kimberlite inclusions in an olivine megacryst from Monastery. In: Kimberlite symposium. CambridgeGoogle Scholar
  35. Hayman PC, Cas RAF, Johnson M (2009) Characteristics and alteration origins of matrix minerals in volcaniclastic kimberlite of the Muskox pipe (Nunavut, Canada). Lithos 112:473–487. doi: 10.1016/j.lithos.2009.06.025 CrossRefGoogle Scholar
  36. Heaman LM, Kjarsgaard BA, Creaser RA (2004) The temporal evolution of North American kimberlites. Lithos 76:377–397. doi: 10.1016/j.lithos.2004.03.047 CrossRefGoogle Scholar
  37. Hunter RH, Taylor LA (1984) Magma-mixing in the low velocity zone: kimberlitic megacrysts from Fayette County, Pennsylvania. Am Mineral 69:16–29Google Scholar
  38. Ionov D (1998) Trace element composition of mantle-derived carbonates and coexisting phasesin peridotite xenoliths from alkali basalts. J Petrol 39:1931–1941. doi: 10.1093/petroj/39.11-12.1931 CrossRefGoogle Scholar
  39. Irving AJ, Wyllie PJ (1975) Subsolidus and melting relationships for calcite, magnesite and the join CaCO3–MgCO3 to 36 kb. Geochim Cosmochim Acta 39:35–53. doi: 10.1016/0016-7037(75)90183-0 CrossRefGoogle Scholar
  40. Isachsen C, Bowring S (1994) Evolution of the Slave craton. Geology 22:917–920CrossRefGoogle Scholar
  41. Kamenetsky VS (2016) Comment on: the ascent of kimberlite: insights from olivine” authored by Brett R.C. et al. [Earth Planet. Sci. Lett. 424 (2015) 119–131]. Earth Planet Sci Lett 440:187–189. doi: 10.1016/j.epsl.2016.02.016 CrossRefGoogle Scholar
  42. Kamenetsky VS, Yaxley GM (2015) Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim Cosmochim Acta 158:48–56. doi: 10.1016/j.gca.2015.03.004 CrossRefGoogle Scholar
  43. Kamenetsky VS, Kamenetsky MB, Sobolev AV et al (2008) Olivine in the Udachnaya–East kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49:823–839. doi: 10.1093/petrology/egm033 CrossRefGoogle Scholar
  44. Kamenetsky VS, Kamenetsky MB, Golovin AV et al (2012) Ultrafresh salty kimberlite of the Udachnaya–East pipe (Yakutia, Russia): a petrological oddity or fortuitous discovery? Lithos 152:173–186. doi: 10.1016/j.lithos.2012.04.032 CrossRefGoogle Scholar
  45. Kamenetsky VS, Grütter H, Kamenetsky MB, Gömann K (2013) Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chem Geol 353:96–111. doi: 10.1016/j.chemgeo.2012.09.022 CrossRefGoogle Scholar
  46. Kjarsgaard BA, Pearson DG, Tappe S et al (2009) Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: comparisons to a global database and applications to the parent magma problem. Lithos 112:236–248. doi: 10.1016/j.lithos.2009.06.001 CrossRefGoogle Scholar
  47. Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2007) Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim Cosmochim Acta 71:723–744. doi: 10.1016/j.gca.2006.10.008 CrossRefGoogle Scholar
  48. Kopylova MG, Russell JK, Cookenboo H (1999) Petrology of peridotite and pyroxenite xenoliths from the jericho kimberlite: implications for the thermal state of the mantle beneath the Slave Craton, Northern Canada. J Petrol 40:79–104. doi: 10.1093/petroj/40.1.79 CrossRefGoogle Scholar
  49. Kopylova MG, Matveev S, Raudsepp M (2007) Searching for parental kimberlite melt. Geochim Cosmochim Acta 71:3616–3629. doi: 10.1016/j.gca.2007.05.009 CrossRefGoogle Scholar
  50. Kopylova MG, Mogg T, Smith BS (2010) Mineralogy of the Snap Lake kimberlite, Northwest Territories, Canada, and compositions of phlogopite as records of its crystallization. Can Mineral 48:549–570. doi: 10.3749/canmin.48.3.549 CrossRefGoogle Scholar
  51. Kusky T (1989) Accretion of the Archean Slave province. Geology 17:63–67CrossRefGoogle Scholar
  52. Le Maitre RW, Streckeisen A, Zanettin B et al (eds) (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, CambridgeGoogle Scholar
  53. Le Roex AP, Bell DR, Davis P (2003) Petrogenesis of group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44:2261–2286. doi: 10.1093/petrology/egg077 CrossRefGoogle Scholar
  54. Lockhart G, Grütter H, Carlson J (2004) Temporal, geomagnetic and related attributes of kimberlite magmatism at Ekati, Northwest Territories, Canada. Lithos 77:665–682. doi: 10.1016/j.lithos.2004.03.029 CrossRefGoogle Scholar
  55. Lu J, Zheng JP, Griffin WL, O’Reilly SY (2015) Microscale effects of melt infiltration into the lithospheric mantle: peridotite xenoliths from Xilong, South China. Lithos 232:111–123. doi: 10.1016/j.lithos.2015.06.013 CrossRefGoogle Scholar
  56. Luth RW, Stachel T (2014) The buffering capacity of lithospheric mantle: implications for diamond formation. Contrib Mineral Petrol 168:1083. doi: 10.1007/s00410-014-1083-6 CrossRefGoogle Scholar
  57. Malarkey J, Pearson DG, Kjarsgaard BA et al (2010) From source to crust: tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry. Earth Planet Sci Lett 299:80–90. doi: 10.1016/j.epsl.2010.08.020 CrossRefGoogle Scholar
  58. McLean H, Banas A, Creighton S et al (2007) Garnet xenocrysts from the Diavik mine, NWT, Canada: composition, color, and paragenesis. Can Mineral 45:1131–1145. doi: 10.2113/gscanmin.45.5.1131 CrossRefGoogle Scholar
  59. Menzies A, Westerlund K, Grütter H et al (2004) Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, N.W.T., Canada: major element compositions and implications for the lithosphere beneath the central Slave craton☆. Lithos 77:395–412. doi: 10.1016/j.lithos.2004.04.013 CrossRefGoogle Scholar
  60. Menzies A, Alvarez E, Belmar M, et al (2015) Quantification of trace REE-minerals using automated mineralogy. In: Chilean Geological Congress, La Serena, ChileGoogle Scholar
  61. Mitchell RH (1986) Kimberlites: mineralogy, geochemistry and petrology. Plenum Press, New YorkCrossRefGoogle Scholar
  62. Mitchell RH (1995) Kimberlites, Orangeites, and Related Rocks. Plenum Press, New YorkCrossRefGoogle Scholar
  63. Moss S, Russell JK, Andrews GDM (2008) Progressive infilling of a kimberlite pipe at Diavik, Northwest Territories, Canada: insights from volcanic facies architecture, textures, and granulometry. J Volcanol Geotherm Res 174:103–116. doi: 10.1016/j.jvolgeores.2007.12.020 CrossRefGoogle Scholar
  64. Nielsen T, Sand K (2008) The Majuagaa kimberlite dike, Maniitsoq region, West Greenland: constraints on an Mg-rich silicocarbonatitic melt composition from groundmass mineralogy and bulk. Can Mineral 46:1043–1061CrossRefGoogle Scholar
  65. Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554. doi: 10.1007/s004100000156 CrossRefGoogle Scholar
  66. Nowicki T, Crawford B, Dyck D et al (2004) The geology of kimberlite pipes of the Ekati property, Northwest Territories, Canada. Lithos 76:1–27. doi: 10.1016/j.lithos.2004.03.020 CrossRefGoogle Scholar
  67. Padgham WA (1992) Mineral deposits in the Archean Slave Structural Province; lithological and tectonic setting. Precambrian Res 58:1–24CrossRefGoogle Scholar
  68. Paton C, Hellstrom J, Paul B et al (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518. doi: 10.1039/c1ja10172b CrossRefGoogle Scholar
  69. Pilbeam LH, Nielsen TFD, Waight TE (2013) Digestion fractional crystallization (dfc): an important process in the genesis of kimberlites. Evidence from olivine in the Majuagaa Kimberlite, Southern West Greenland. J Petrol. doi: 10.1093/petrology/egt016
  70. Pivin M, Féménias O, Demaiffe D (2009) Metasomatic mantle origin for Mbuji-Mayi and Kundelungu garnet and clinopyroxene megacrysts (Democratic Republic of Congo). Lithos 112:951–960. doi: 10.1016/j.lithos.2009.03.050 CrossRefGoogle Scholar
  71. Price SE, Russell JK, Kopylova MG (2000) Primitive magma from the Jericho Pipe, NWT, Canada: constraints on primary kimberlite melt chemistry. J Petrol 41:789–808CrossRefGoogle Scholar
  72. Reguir EP, Chakhmouradian AR, Halden NM et al (2009) Major- and trace-element compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator. Lithos 112:372–384. doi: 10.1016/j.lithos.2009.05.023 CrossRefGoogle Scholar
  73. Roedder E (1984) Fluid Inclusions, Volume 12. Mineralogical Society of AmericaGoogle Scholar
  74. Roeder PL, Schulze DJ (2008) Crystallization of groundmass spinel in kimberlite. J Petrol 49:1473–1495. doi: 10.1093/petrology/egn034 CrossRefGoogle Scholar
  75. Russell JK, Porritt LA, Lavallée Y, Dingwell DB (2012) Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481:352–356. doi: 10.1038/nature10740 CrossRefGoogle Scholar
  76. Sarkar C, Heaman LM, Pearson DG (2015) Duration and periodicity of kimberlite volcanic activity in the Lac de Gras kimberlite field, Canada and some recommendations for kimberlite geochronology. Lithos 218–219:155–166. doi: 10.1016/j.lithos.2015.01.017 CrossRefGoogle Scholar
  77. Schulze D (1985) Evidence for primary kimberlitic liquids in megacrysts from kimberlites in Kentucky, USA. J Geol 93:75–79CrossRefGoogle Scholar
  78. Skinner E, Clement C (1979) Mineralogical classification of southern African kimberlites. In: Kimberlites, diatremes, and diamonds: their geology, petrology, and geochemistry, pp 129–139Google Scholar
  79. Sokol AG, Kruk AN, Chebotarev DA, Palyanov YN (2016) Carbonatite melt–peridotite interaction at 5.5–7.0 GPa: implications for metasomatism in lithospheric mantle. Lithos 248–251:66–79. doi: 10.1016/j.lithos.2016.01.013 CrossRefGoogle Scholar
  80. Sparks RSJ, Brooker RA, Field M et al (2009) The nature of erupting kimberlite melts. Lithos 112:429–438. doi: 10.1016/j.lithos.2009.05.032 CrossRefGoogle Scholar
  81. Spetsius ZV, Taylor LA (2002) Partial melting in mantle eclogite xenoliths: connections with diamond paragenesis. Int Geol Rev 44:973–987. doi: 10.2747/0020-6814.44.11.973 CrossRefGoogle Scholar
  82. Stachel T, Harris JW, Tappert R, Brey GP (2003) Peridotitic diamonds from the Slave and the Kaapvaal cratons—similarities and differences based on a preliminary data set. Lithos 71:489–503. doi: 10.1016/S0024-4937(03)00127-0 CrossRefGoogle Scholar
  83. Stone RS (2016) The behavior of orthopyroxene in carbonatitic melts. University of AlbertaGoogle Scholar
  84. Stone RS, Luth RW (2016) Orthopyroxene assimilation in potential primary kimberlite meltsGoogle Scholar
  85. Su B-X, Zhang H-F, Deloule E et al (2012) Extremely high Li and low δ7Li signatures in the lithospheric mantle. Chem Geol 292–293:149–157. doi: 10.1016/j.chemgeo.2011.11.023 CrossRefGoogle Scholar
  86. Tappe S, Graham Pearson D, Kjarsgaard BA et al (2013) Mantle transition zone input to kimberlite magmatism near a subduction zone: origin of anomalous Nd–Hf isotope systematics at Lac de Gras, Canada. Earth Planet Sci Lett 371–372:235–251. doi: 10.1016/j.epsl.2013.03.039 CrossRefGoogle Scholar
  87. Tappert R, Stachel T, Harris JW et al (2005) Mineral inclusions in diamonds from the Panda kimberlite, Slave Province, Canada. Eur J Mineral 17:423–440. doi: 10.1127/0935-1221/2005/0017-0423 CrossRefGoogle Scholar
  88. Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part I : mineralogy, petrography, and whole rock chemistry. In: Taylor LA, Neal CR (eds) The University of Chicago. Group 97:551–567Google Scholar
  89. van Achterbergh E, Griffin WL, Ryan CG et al (2002) Subduction signature for quenched carbonatites from the deep lithosphere. Geology 30:743. doi: 10.1130/0091-7613(2002)030<0743:SSFQCF>2.0.CO;2 CrossRefGoogle Scholar
  90. van Achterbergh E, Griffin WL, Ryan CG et al (2004) Melt inclusions from the deep Slave lithosphere: implications for the origin and evolution of mantle-derived carbonatite and kimberlite. Lithos 76:461–474. doi: 10.1016/j.lithos.2004.04.007 CrossRefGoogle Scholar
  91. Weiss Y, McNeill J, Pearson DG et al (2015) Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 524:339–342. doi: 10.1038/nature14857 CrossRefGoogle Scholar
  92. Wyllie PJ, Huang WL (1975) Peridotite, kimberlite, and carbonatite explained in the system CaO–MgO–SiO2–CO2. Geology 3(11):621–624CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Y. Bussweiler
    • 1
    Email author
  • R. S. Stone
    • 1
  • D. G. Pearson
    • 1
  • R. W. Luth
    • 1
  • T. Stachel
    • 1
  • B. A. Kjarsgaard
    • 2
  • A. Menzies
    • 3
  1. 1.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Geological Survey of CanadaOttawaCanada
  3. 3.Department of Geological SciencesUniversidad Católica del NorteAntofagastaChile

Personalised recommendations