Skip to main content

Advertisement

Log in

Ultra-reducing conditions in average mantle peridotites and in podiform chromitites: a thermodynamic model for moissanite (SiC) formation

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Natural moissanite (SiC) is reported from mantle-derived samples ranging from lithospheric mantle keel diamonds to serpentinites to podiform chromitites in ophiolites related to suprasubduction zone settings (Luobusa, Dongqiao, Semail, and Ray-Iz). To simulate ultra-reducing conditions and the formation of moissanite, we compiled thermodynamic data for alloys (Fe–Si–C and Fe–Cr), carbides (Fe3C, Fe7C3, SiC), and Fe-silicides; these data were augmented by commonly used thermodynamic data for silicates and oxides. Computed phase diagram sections then constrain the PTfO2 conditions of SiC stability in the upper mantle. Our results demonstrate that: Moissanite only occurs at oxygen fugacities 6.5–7.5 log units below the iron–wustite buffer; moissanite and chromite cannot stably coexist; increasing pressure does not lead to the stability of this mineral pair; and silicates that coexist with moissanite have X Mg > 0.99. At upper mantle conditions, chromite reduces to Fe–Cr alloy at fO2 values 3.7–5.3 log units above the moissanite-olivine-(ortho)pyroxene-carbon (graphite or diamond) buffer (MOOC). The occurrence of SiC in chromitites and the absence of domains with almost Fe-free silicates suggest that ultra-reducing conditions allowing for SiC are confined to grain scale microenvironments. In contrast to previous ultra-high-pressure and/or temperature hypotheses for SiC origin, we postulate a low to moderate temperature mechanism, which operates via ultra-reducing fluids. In this model, graphite-/diamond-saturated moderately reducing fluids evolve in chemical isolation from the bulk rock to ultra-reducing methane-dominated fluids by sequestering H2O into hydrous phases (serpentine, brucite, phase A). Carbon isotope compositions of moissanite are consistent with an origin of such fluids from sediments originally rich in organic compounds. Findings of SiC within rocks mostly comprised by hydrous phases (serpentine + brucite) support this model. Both the hydrous phases and the limited diffusive equilibration of SiC with most minerals in the rocks indicate temperatures below 700–800 °C. Moissanite from mantle environments is hence a mineral that does not inform on pressure but on a low to moderate temperature environment involving ultra-reduced fluids. Any mineral in equilibrium with SiC could only contain traces of Fe2+ or Cr3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acet M, Zähres H, Wassermann EF (1994) High-temperature moment-volume instability and anti-Invar of g-Fe. Phys Rev B Condens Matter Mater Phys 49:6012–6017

    Article  Google Scholar 

  • Aleksandrov IV, Goncharov AF, Stishov SM, Yakovenko EV (1989) Equation of state and Raman scattering in cubic BN and SiC at high pressures. J Mater Sci 50:127–131

    Google Scholar 

  • Auge T (1987) Chromite deposits in the northern Oman ophiolite: mineralogical constraints. Miner Deposita 22:1–10

    Article  Google Scholar 

  • Bai WJ, Robinson PT, Fang QS, Yang JS, Yan BG, Zhang ZM, Hu XF, Zhou MF, Malpas J (2000) The PGE and base-metal alloys in the podiform chromitites of the Luobusa ophiolite, southern Tibet. Can Mineral 38:585–598

    Article  Google Scholar 

  • Ballhaus C (1998) Origin of podiform chromite deposits by magma mingling. Earth Planet Sci Lett 156:185–193

    Article  Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High-pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Miner Petrol 107:27–40

    Article  Google Scholar 

  • Bottinga Y (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in system calcite-carbon dioxide-methane-hydrogen-water vapor. Geochimica Et Cosmochimica Acta 33:49–64

    Article  Google Scholar 

  • Brosh E, Makov G, Shneck RZ (2009) Thermodynamic analysis of high-pressure phase equilibria in Fe-Si alloys, implications for the inner-core. Phys Earth Planet Inter 172:289–298

    Article  Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron–titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Article  Google Scholar 

  • Cameron WE (1985) Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contrib Miner Petrol 89:239–255

    Article  Google Scholar 

  • Campbell AJ, Danielson L, Righter K, Seagle CT, Wang Y, Prakapenka VB (2009) High pressure effects on the iron–iron oxide and nickel-nickel oxide oxygen fugacity buffers. Earth Planet Sci Lett 286:556–564

    Article  Google Scholar 

  • Chen M, Shu J, Mao HK, Xie X, Hemley RJ (2003) Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proc Natl Acad Sci 100:14651–14654

    Article  Google Scholar 

  • Connolly JAD (1995) Phase diagram methods for graphitic rocks and application to the system C–O–H–FeO–TiO2–SiO2. Contrib Miner Petrol 119:94–116

    Article  Google Scholar 

  • Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst. doi:10.1029/2009GC002540

    Google Scholar 

  • Connolly JAD, Cesare B (1993) C–O–H–S fluid composition and oxygen fugacity in graphitic metapelites. J Metamorph Geol 11:379–388

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13

    Article  Google Scholar 

  • Degtyareva VF, Dubrovinsky L, Kurnosov A (2009) Structural stability of the sigma phase FeCr under pressure up to 77 GPa. J Phys Condens Matter 21:1–4

    Google Scholar 

  • Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev 58:247–278

    Article  Google Scholar 

  • Di Pierro S, Gnos E, Grobety BH, Armbruster T, Bernasconi SM, Ulmer P (2003) Rock-forming moissanite (natural alpha-silicon carbide). Am Mineral 88:1817–1821

    Article  Google Scholar 

  • Dinsdale AT (1991) SGTE data for pure elements. CALPHAD 15:317–425

    Article  Google Scholar 

  • Djurovic D, Hallstedt B, von Appen J, Dronskowski R (2011) Thermodynamic assessment of the Fe-Mn-C system. CALPHAD 35:479–491

    Article  Google Scholar 

  • Dobson D, Vočadlo L, Wood IG (2002) A new high-pressure phase of FeSi. Am Mineral 87:784

    Article  Google Scholar 

  • Dubrovinskaia NA, Dubrovinsky LS, Saxena SK, Sundman B (1997) Thermal expansion of chromium (Cr) to melting temperature. CALPHAD 21:497–508

    Article  Google Scholar 

  • Fabrichnaya O (1998) The assessment of thermodynamic parameters for solid phases in the Fe–Mg–O and Fe–Mg–Si–O systems. CALPHAD 22:85–125

    Article  Google Scholar 

  • Faure G, Mensing TM (2005) Isotopes, principals and applications, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420

    Article  Google Scholar 

  • Fumagalli P, Poli S (2005) Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol 46:555–578

    Article  Google Scholar 

  • Gorshkov AI, Bao YN, Bershov LV, Ryabchikov ID, Sivtsov AV, Lapina MI (1997) Inclusions of native metals and other minerals in diamond from Kimberlite pipe 50, Liaoning, China. Geokhimiya 8:794–804

    Google Scholar 

  • Gustafson P (1985) A thermodynamic evaluation of the Fe–C system. Scand J Metall 14:259–267

    Google Scholar 

  • Hertzman S, Sundman B (1982) A thermodynamic analysis of the Fe–Cr system. CALPHAD 6:67–80

    Article  Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Article  Google Scholar 

  • Irvine TN (1965) Chromian spinel as a petrogenetic indicator; Part 1, theory. Can J Earth Sci 2:648–672

    Article  Google Scholar 

  • Johan Z, Dunlop H, Lebel L, Robert JL, Volfinger M (1983) Origin of chromite deposits in ophiolitic complexes: evidence for a volatile and Na-rich reducing fluid phase. Fortschr Mineral 61:105–107

    Google Scholar 

  • Johnson MC, Walker D (1993) Brucite Mg(OH)2 dehydration and the molar volume of H2O to 15 GPa. Am Mineral 78:271–284

    Google Scholar 

  • Kaminsky FV, Wirth R, Anikin LP, Morales L, Schreiber A (2016) Carbonado-like diamond from the Avacha active volcano in Kamchatka, Russia. Lithos. doi:10.1016/j.lithos.2016.02.021

    Google Scholar 

  • Khedim H, Podor R, Panteix PJ, Rapin C, Vilasi M (2010) Solubility of chromium oxide in binary soda-silicate melts. J Non Cryst Solids 356:2734–2741

    Article  Google Scholar 

  • Klein-BenDavid O, Logvinova AM, Schrauder M, Spetius ZV, Weiss Y, Hauri EH, Kaminsky FV, Sobolev NV, Navon O (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds-a new type of diamond-forming fluid. Lithos 112:648–659

    Article  Google Scholar 

  • Klemme S, Ivanic TJ, Connolly JAD, Harte B (2009) Thermodynamic modelling of Cr-bearing garnets with implications for diamond inclusions and peridotite xenoliths. Lithos 112:986–991

    Article  Google Scholar 

  • Kopylova M, Navon O, Dubrovinsky L, Khachatryan G (2010) Carbonatitic mineralogy of natural diamond-forming fluids. Earth Planet Sci Lett 291:126–137

    Article  Google Scholar 

  • Lacaze J, Sundman B (1991) An assessment of the Fe–Si–C system. Metall Trans A 22A:2211–2223

    Article  Google Scholar 

  • Leung IS (1990) Silicon carbide cluster entrapped in a diamond from Fuxian, China. Am Mineral 75:1110–1119

    Google Scholar 

  • Li Z, Bradt RC (1987) Thermal expansion of the hexagonal (4H) polytype of SiC. J Am Ceram Soc 70:445–448

    Article  Google Scholar 

  • Li J, Mao HK, Fei Y, Gregoryanz E, Eremets M, Zha CS (2002) Compression of Fe3C to 30 GPa at room temperature. Phys Chem Miner 29:166–169

    Article  Google Scholar 

  • Liou JG, Tsujimori T, Yang J, Zhang RY, Ernst WG (2014) Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: a review. J Asian Earth Sci 96:386–420

    Article  Google Scholar 

  • Lord OT, Walter MJ, Dasgupta R, Walker D, Clark SM (2009) Melting in Fe–C system to 70 GPa. Earth Planet Sci Lett 284:157–167

    Article  Google Scholar 

  • Malaspina N, Scambelluri M, Poli S, Van Roermund HLM, Langenhorst F (2010) The oxidation state of mantle wedge majoritic garnet websterites metasomatised by C-bearing subduction fluids. Earth Planet Sci Lett 298:417–426

    Article  Google Scholar 

  • Mathez EA, Fogel RA, Hutcheon ID, Marshintsev VK (1995) Carbon isotopic composition and origin of SiC from kimberlites of Yakutia, Russia. Geochim Cosmochim Acta 59:781–791

    Article  Google Scholar 

  • Matveev S, Ballhaus C (2002) Role of water in the origin of podiform chromitite deposits. Earth Planet Sci Lett 203:235–243

    Article  Google Scholar 

  • McSkimin HJ, Andreatch P (1972) Elastic moduli of diamonds as a function of pressure and temperature. J Appl Phys 43:2944–2945

    Article  Google Scholar 

  • Miettinen J (1998) Reassessed thermodynamic solution phase data for ternary Fe-Si-C system. CALPHAD: Comput Coupling Ph Diagr Thermochem 22:231–256

    Article  Google Scholar 

  • Moody JB (1976) An experimental study on the serpentinization of iron-bearing olivines. Can Mineral 14:462–478

    Google Scholar 

  • Mookherjee M, Nakajima Y, Steinle-Neumann G, Glazyrin K, Wu XA, Dubrovinsky L, McCammon C, Chumakov A (2011) High-pressure behavior of iron carbide (Fe7C3) at inner core conditions. J Geophys Res Solid Earth 116:B04201

    Article  Google Scholar 

  • Moore RO, Gurney JJ (1989) Mineral inclusions in diamond from the Monastery kimberlite, South Africa. Kimberl Relat Rocks 2:1029–1041

    Google Scholar 

  • Moore RO, Otter ML, Rickard RS, Harris JW, Gurney JJ (1986) The occurrence of moissanite and ferro-periclase as inclusions in diamond. In: 4th international kimberlite conference, vol 16. Geological Society of Australia, Perth, pp 409–411

  • Müller M, Erhart P, Albe K (2007) Analytic bond-order potential for bcc and fcc iron—comparison with established embedded-atom method potentials. J Phys Condens Matter. doi:10.1088/0953-8984/19/32/326220

    Google Scholar 

  • Mungall JE, Naldrett AJ (2008) Ore deposits of the platinum-group elements. Elements 4:253–258

    Article  Google Scholar 

  • Nakajima Y, Takahashi E, Suzuki T, Funakoshi K (2009) “Carbon in the core” revisited. Phys Earth Planet Inter 174:202–211

    Article  Google Scholar 

  • Nakajima Y, Takahashi E, Sata N, Nishihara Y, Hirose K, Funakoshi K, Ohishi Y (2011) Thermoelastic property and high-pressure stability of Fe7C3: implication for iron-carbide in the Earth’s core. Am Mineral 96:1158–1165

    Article  Google Scholar 

  • Oka Y, Steinke P, Chatterjee ND (1984) Thermodynamic mixing properties of Mg(Al, Cr)2O4 spinel crystalline solution at high temperatures and pressures. Contrib Miner Petrol 87:196–204

    Article  Google Scholar 

  • Onink M, Brakman CM, Tichelaar FD, Mittemeijer EJ, Vanderzwaag S, Root JH, Konyer NB (1993) The lattice-parameters of austenite and ferrite in Fe-C alloys as functions of carbon concentration and temperature. Scr Metall Mater 29:1011–1016

    Article  Google Scholar 

  • Palme H, O’Neill HSC (2003) Cosmochemical estimates of mantle composition. Treatise of geochemistry, vol 2. Elsevier, Amsterdam, pp 1–38

    Google Scholar 

  • Peng GY, Lewis J, Lipin B, McGee J, Bao PS, Wang XB (1995) Inclusions of phlogopite and phlogopite hydrates in chromite from the Hongguleleng ophiolite in Xinjiang, northwest China. Am Mineral 80:1307–1316

    Article  Google Scholar 

  • Pineau F, Shilobreeva S, Hekinian R, Bideau D, Javoy M (2004) Deep-sea explosive activity on the Mid-Atlantic Ridge near 34°50′ N: a stable isotope (C, H, O) study. Chem Geol 211:159–175

    Article  Google Scholar 

  • Ponomareva AV, Ruban AV, Vekilova OY, Simak SI, Abrikosov IA (2011) Effect pf pressure on phase stability in Fe–Cr alloys. Phys Rev B Condens Matter Mater Phys 84:094422

    Article  Google Scholar 

  • Poustovetov AA, Roeder PL (2001) The distribution of Cr between basaltic melt and chromian spinel as an oxygen geobarometer. Can Mineral 39:309–317

    Article  Google Scholar 

  • Ramdohr P (1967) A widespread mineral association connected with serpentinization. Neues Jahrb Mineral 107:241–265

    Google Scholar 

  • Robinson PT, Bai WJ, Malpas J, Yang JS, Zhou MF, Fang QS, Hu XF, Cameron S, Staudigl H (2004) Ultra-high pressure minerals in the Luobusa ophiolite, Tibet, and their tectonic implications. Geol Soc Lond Spec Publ 226:247–271

    Article  Google Scholar 

  • Robinson PT, Trumbull RB, Schmitt A, Yang JS, Li JW, Zhou MF, Erzinger J, Dare S, Xiong F (2015) The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Res 27:486–506

    Article  Google Scholar 

  • Rohrbach A, Schmidt MW (2011) Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature 472:209–212

    Article  Google Scholar 

  • Rohrbach A, Ghosh S, Schmidt MW, Wijbrans CH, Klemme S (2014) The stability of Fe–Ni carbides in the Earth’s mantle: evidence for a low Fe–Ni–C melt fraction in the deep mantle. Earth Planet Sci Lett 388:211–221

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst. doi:10.1029/2003GC000597

    Google Scholar 

  • Schmidt MW, Gao C, Golubkova A, Rohrbach A, Connolly JAD (2014) Natural moissanite (SiC)—a low temperature mineral formed from highly fractionated ultra-reducing COH-fluids. Prog Earth Planet Sci 1:27

    Article  Google Scholar 

  • Shang SL, Saengdeejing A, Mei ZG, Kim DE, Zhang H, Ganeshan S, Wang Y, Liu ZK (2010) First-principles calculations of pure elements: equations of state and elastic stiffness constants. Comput Mater Sci 48:813–826

    Article  Google Scholar 

  • Shiryaev AA, Griffin WL, Stoyanov E (2011) Moissanite (SiC) from kimberlites: polytypes, trace elements, inclusions and speculations on origin. Lithos 122:152–164

    Article  Google Scholar 

  • Shterenberg LE, Slesarev VN, Korsunskaya IA, Kamenetskaya DS (1975) The experimental study of the interaction between the melt carbides and diamond in the iron–carbon system at high pressures. High Temp High Press 7:517–522

    Google Scholar 

  • Slack GA, Bartram SF (1975) Thermal expansion of some diamond like crystals. J Appl Phys 46:89–98

    Article  Google Scholar 

  • Sleep NH, Meibom A, Fridriksson T, Coleman RG, Bird DK (2004) H-2-rich fluids from serpentinization: geochemical and biotic implications. Proc Natl Acad Sci USA 101:12818–12823

    Article  Google Scholar 

  • Stixrude L, Lithgow-Bertelloni C (2011) Thermodynamics of mantle minerals—II. Phase equilibria. Geophys J Int 184:1180–1213

    Article  Google Scholar 

  • Trumbull RB, Yang JS, Robinson PT, Di Pierro S, Vennemann T, Wiedenbeck M (2009) The carbon isotope composition of natural SiC (moissanite) from the Earth’s mantle: new discoveries from ophiolites. Lithos 113:612–620

    Article  Google Scholar 

  • Tsuzuki A, Sago S, Hirano SI, Naka S (1984) High-temperature and pressure preparation and properties of iron carbides Fe7C3 and Fe3C. J Mater Sci 19:2513–2518

    Article  Google Scholar 

  • Ulmer GC, Grandstaff DE, Woermann E, Gobbels M, Schonitz M, Woodland AB (1998) The redox stability of moissanite (SiC) compared with metal-metal oxide buffers at 1773 K and at pressures up to 90 kbar. Neues Jahrb Mineral 172:279–307

    Google Scholar 

  • Wood IG, Vočadlo L, Knight KS, Dobson DP, Marshall WG, Price GD, Brodholt J (2004) Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction. J Appl Crystallogr 37:82–90

    Article  Google Scholar 

  • Xiong W, Hedström P, Selleby M, Odqvist J, Thuvander M, Chen Q (2011) An improved thermodynamic modeling of the Fe–Cr system down to zero kelvin coupled with key experiments. CALPHAD 35:355–366

    Article  Google Scholar 

  • Xu ST, Wu WP, Xiao WS, Yang JS, Chen J, Ji SY, Liu YC (2008) Moissanite in serpentinite from the Dabie Mountains in China. Mineral Mag 72:899–908

    Article  Google Scholar 

  • Yamamoto S, Komiya T, Hirose K, Maruyama S (2009) Coesite and clinopyroxene exsolution lamellae in chromites: in-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos 109:314–322

    Article  Google Scholar 

  • Yang JS, Dobrzhinetskaya L, Bai WJ, Fang QS, Rolbinson PT, Zhang J, Green HW (2007) Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology 35:875–878

    Article  Google Scholar 

  • Zedgenizov DA, Ragozin AL, Shatsky VS, Araujo D, Griffin WL, Kagi H (2009) Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112:638–647

    Article  Google Scholar 

  • Zhou M-F, Robinson PT, Malpas J, Li Z (1996) Podiform chromitites in the Luobusa ophiolite (Southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol 37:3–21

    Article  Google Scholar 

Download references

Acknowledgments

This study was financed through Grants 200020-140541/1 and 200020-153112/1 by the Swiss National Science Foundation. We thank L. Dobrzhinitskaya, M.F. Zhou, and an anonymous reviewer for critical remarks that helped very much sharpening the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max W. Schmidt.

Additional information

Communicated by Chris Ballhaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubkova, A., Schmidt, M.W. & Connolly, J.A.D. Ultra-reducing conditions in average mantle peridotites and in podiform chromitites: a thermodynamic model for moissanite (SiC) formation. Contrib Mineral Petrol 171, 41 (2016). https://doi.org/10.1007/s00410-016-1253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1253-9

Keywords

Navigation