Mt. Etna plumbing system revealed by combined textural, compositional, and thermobarometric studies in clinopyroxenes

  • P. P. Giacomoni
  • M. Coltorti
  • J. G. Bryce
  • M. F. Fahnestock
  • M. Guitreau
Original Paper

Abstract

Coupled textural and in situ geochemical studies of clinopyroxene (cpx) phenocrysts, from both historical and recent eruptions of Mt. Etna volcano, provide a means to investigate the processes occurring in the deepest portion of the feeding system (>10 km depth). Five distinct textures were recognized: (1) normal oscillatory zoning, (2) normal zoning with Fe-rich rim, (3) sieve-textured core, (4) reverse oscillatory zoning, and (5) dusty rim. Electron microprobe analyses indicate an almost constant diopside–augite composition, with a slight enrichment in the enstatite for more recent erupted cpx. Core-to-rim compositional profiles, performed along the cpx, reveal distinct compositional characteristics. Normal oscillatory zoning is often characterized by a sharp increase in FeO (Δ ~ 2 wt%) accompanied by a drop in Al2O3 on the outermost 30 μm. Reverse oscillatory zoning, by contrast, exhibits a drop in FeO, Al2O3 (Δ ~ 2 wt%), and a remarkable crystal rim increase in MgO (up to 5 wt%). Similar compositional changes are evident in dusty-textured rims, which are characterized by dissolution edges and overgrowth containing glass pockets and channels. No significant compositional variations have been observed across crystals with sieve-textured cores. Trace element concentrations show enrichments in Sr, La, Zr, and REE, together with a decreasing La/Yb ratio (from ~7 to ~4) in rims of normally zoned crystals. Cpx with reverse zoning and dusty rims has low Sr, La, Zr, and REE contents toward crystal rims. Thermometers and barometers, based on equilibrium cpx-melt pairs, suggest that cpx cores start nucleating at 720 MPa, with the majority of them forming between 600 and 400 MPa but continuing to crystallize until very shallow depths (<100 MPa). Normal oscillatory-zoned phenocrysts surrounded by rims form at pressures shallower than 400 MPa, while reverse zoning and dusty rims occur between 400 and 500 MPa. Coupled petrologic and thermobarometric studies on both clinopyroxenes and plagioclases, associated with detailed textural and in situ geochemical analyses, are promising tools to reconstruct the entire magma ascent path beneath open-system volcanoes. At Mt. Etna, two distinct processes could account for the observed textures: Fe-rich rims in normal oscillatory-zoned crystals can be related to decompression-induced crystallization, while reverse zoning and dusty rims can be produced by mixing with a more basic magma at 400–500 MPa (i.e., ~10 km). Textural features are not restricted to a particular evolutionary phase of the volcano, which suggest that the deep feeding system has not changed significantly since the first alkaline volcanic phase.

Keywords

Mt. Etna Cpx phenocryst Textures In situ trace elements Geothermobarometers Feeding system 

Notes

Acknowledgments

Authors would like to express thankful to Raul Carampin (CNR-IGG, Unit of Padua) for his support in obtaining quality EMP analysis. Gordon Moore as editor and two anonymous reviewers are greatly acknowledged for guidance and critical suggestions that really improved the original version of the paper. This study was made possible through financial support from MIUR-PRIN Project 2012 (Volatiles transfer at convergent plate margins: linking C–O–H fluids/melts heterogeneities to tectonic anomalies in subduction zones).

Supplementary material

410_2016_1247_MOESM1_ESM.xlsx (1.2 mb)
Supplementary material 1 (XLSX 1187 kb)

References

  1. Armienti P, Pareschi MT, Innocenti F, Pompilio M (1994) Effects of magma storage and ascent on the kinetics of crystal growth. The case of 1991–93 Mt. Etna eruption. Contrib Mineral Petrol 115:402–414CrossRefGoogle Scholar
  2. Armienti P, Tonarini S, D’Orazio M, Innocenti F (2004) Genesis and evolution of Mount Etna alkaline lavas: petrological and Sr–Nd–B isotope constraints. Periodico di Mineralogia 73:29–52Google Scholar
  3. Armienti P, Tonarini S, Innocenti F, D’Orazio M (2007) Mount Etna pyroxene as tracer of petrogenetic processes and dynamics of the feeding system. Geol Soc Am Spec Pap 144:265–276Google Scholar
  4. Armienti P, Perinelli C, Putirka K (2013) A new model to estimate deep-level magma ascent rates, with applications to Mt. Etna (Sicily, Italy). J Petrol. doi: 10.1093/petrology/egs085 Google Scholar
  5. Blundy J, Cashman K (2001) Magma ascent and crystallization at Mount St. Helens, 1980–1986. Contrib Mineral Petrol 140:631–650CrossRefGoogle Scholar
  6. Blundy J, Cashman K (2008) Petrologic reconstruction of magmatic system variables and processes. Rev Mineral Geochem 69:179–239CrossRefGoogle Scholar
  7. Bonaccorso A, Bonforte A, Currenti G, Del Negro C, Di Stefano A, Greco F (2011) Magma storage, eruptive activity and flank instability: inferences from ground deformation and gravity changes during the 1993–2000 recharging of Mt. Etna volcano. J Volcanol Geotherm Res 200:245–254CrossRefGoogle Scholar
  8. Branca S, Del Carlo P (2004) Eruptions of Mt Etna during the past 3,200 years: a revised compilation integrating the historical and stratigraphic records. In: Bonaccorso A, Calvari S, Coltelli M, Del Negro C, Falsaperla S (eds) Mount Etna: Volcano Laboratory. AGU (Geophys. monograph series), vol 143, pp 1–27Google Scholar
  9. Branca S, Coltelli M, De Beni E, Wijbrans J (2008) Geological evolution of Mount Etna volcano (Italy) from earliest products until the first central volcanism (between 500 and 100 ka ago) inferred from geochronological and stratigraphic data. Int J Earth Sci 97:135–152CrossRefGoogle Scholar
  10. Cashman KV (1988) Crystallization of Mount St. Helens 1980–1986 dacite: a quantitative textural approach. Bull Volcanol 50:194–209CrossRefGoogle Scholar
  11. Corsaro RA, Pompilio M (2004) Buoyancy-controlled eruption of magmas at Mount Etna. Terra Nova 16:16–22CrossRefGoogle Scholar
  12. Crabtree SM, Lange RA (2011) Complex phenocryst textures and zoning patterns in andesites and dacites: evidence of degassing-induced rapid crystallization? J Petrol 52:3–38CrossRefGoogle Scholar
  13. Crisp J, Cashman KV, Bonin JA, Hougen SB, Pieri DC (1994) Crystallization history of the Mauna Loa lava flow. J Geophys Res 99:7177–7198CrossRefGoogle Scholar
  14. Davidson JP, Dj M, Charlier BLA, Harlou R, Hora JM (2007) Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Annu Rev Earth Planet Sci 35:273–311CrossRefGoogle Scholar
  15. De Beni E, Behncke B, Branca S, Nicolosi I, Carluccio R, Caracciolo D’Ajello F, Chiappini M (2005) The continuing story of Etna’s New Southeast Crater (2012–2014): evolution and volume calculations based on field surveys and aerophotogrammetry. J Volcanol Geotherm Res 303:175–186CrossRefGoogle Scholar
  16. Duncan AM, Preston RMF (1980) Chemical variation of clinopyroxene phenocrysts from the trachybasaltic lavas of Mount Etna, Sicily. Mineral Mag 42:765–770CrossRefGoogle Scholar
  17. Erikson SC (1985) Oscillatory zoning in clinopyroxenes from the Guide Copper Mine, Phalaborwa, South Africa. Am Mineral 70:74–79Google Scholar
  18. Ferlito C (2011) Bimodal geochemical evolution at Sheveluch stratovolcano, Kamchatka, Russia: consequence of a complex subduction at the junction of the Kuril Kamchatka and Aleutian island arcs. Earth Sci Rev 106:49–69CrossRefGoogle Scholar
  19. Ferlito C, Lanzafame G (2010) The role of supercritical fluids in the potassium enrichment of magmas at Mount Etna volcano (Italy). Lithos 119:642–650CrossRefGoogle Scholar
  20. Ferlito C, Coltorti M, Cristofolini R, Giacomoni PP (2009) The contemporaneous emission of low-K and high-K trachybasalts and the role of the NE Rift during the 2002 eruptive event. Bull Volcanol 71(575):587Google Scholar
  21. Finetti IR (2005) Depth contour map of the Moho discontinuity in the central Mediterranean region from new crop seismic data. In: Finetti IR (ed) CROP PROJECT. Deep Seismic Exploration of the Central Mediterranean and Italy, pp 597–606Google Scholar
  22. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212CrossRefGoogle Scholar
  23. Ghiorso MS, Hirshmann MM, Reiners PW, Kress VC III (2002) The pMELTS: a revision of MELTS for improves calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosyst. doi: 10.1029/2001GC000217 Google Scholar
  24. Giacomoni PP, Ferlito C, Alesci G, Coltorti M, Monaco C, Viccaro M, Cristofolini R (2012) A common feeding system of the NE and S rifts as revealed by the bilateral 2002/2003 eruptive event at Mt. Etna (Sicily, Italy). Bull Volcanol 74:2415–2433CrossRefGoogle Scholar
  25. Giacomoni PP, Ferlito C, Coltorti M, Bonadiman C, Lanzafame G (2014) Plagioclase as archive of magma ascent dynamics on “open conduit” volcanoes: the 2001–2006 eruptive period at Mount Etna. Earth Sci Rev 138:371–393CrossRefGoogle Scholar
  26. Gibb FG (1973) The zoned clinopyroxenes of the Shiant Isles Sill, Scotland. J Petrol 14:201–230CrossRefGoogle Scholar
  27. Gillot PY, Keiffer G, Romano R (1994) The evolution of Mount Etna in the light of potassium-argon dating. Acta Vulcanol 5:81–87Google Scholar
  28. Ginibre C, Wörner G (2007) Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos 98:118–140CrossRefGoogle Scholar
  29. Ginibre C, Kronz A, Wörner G (2002) High-resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning. Contrib Mineral Petrol 142:436–448CrossRefGoogle Scholar
  30. Hirn A, Nicolich R, Gallart J, Laigle M, and ETNASEIS Scientific Group (1997) Roots of Etna volcano in faults of great earthquakes. Earth Planet Sci Lett 148:171–191CrossRefGoogle Scholar
  31. Humphreys MCS, Blundy JD, Sparks RSJ (2006) Magma evolution and open-system processes at Shiveluch volcano: insights from phenocrysts zoning. J Petrol 47:2303–2334CrossRefGoogle Scholar
  32. Iezzi G, Mollo S, Torresi G, Ventura G, Cavallo A, Scarlato P (2011) Experimental solidification of an andesitic melt by cooling. Geol, Chem. doi: 10.1016/j.chemgeo.2011.01.024 Google Scholar
  33. Jeffery AJ, Gertisser R, Troll VR, Jolis EM, Dahren B, Harris C, Tindle AG, Preece K, O’Driscoll B, Humaida H, Chadwick JP (2013) Magma plumbing system of the 2007–2008 dome-forming eruption of Kelut volcano, East Java, Indonesia. Contrib Mineral Petrol 166:275–308CrossRefGoogle Scholar
  34. Jochum KP, Stoll B, Herwing K, Willbold M, Hofmann AW, Amini M, Aarburg S, Abouchami W, Hellebrand E, Beate Mocek B, Raczek I, Stracke A, AlardO BC, Becker S, Ducking M, Bratz H, Klemd R, De Bruin D, Canil D, Dalpe C, Danyushevsky L, Eisenhauer A, Gao Y, Snow JE, Groschopf N, Gunther D, Latkoczy C, Guillong M, Hauri E, Hofer H, Lahaye Y, Horz K, Jacob DE, Kasemann SA, Kent AJR, Ludwig T, Zack T, Mason PDR, Meixner A, Rosner M, Misawa K, Nash BP, Pfander J, Premo WR, Sun WD, Tiepolo M, Vannucci R, Vennemann T, Wayne D, Woodhead JD (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7:1–44CrossRefGoogle Scholar
  35. Kahl M, Chakraborty S, Costa F, Pompilio M (2011) Dynamic plumbing system beneath volcanoes by kinetic modeling, and the connection to monitoring data: an example from Mt. Etna. Earth Planet Sci Lett 308:11–22CrossRefGoogle Scholar
  36. Kahl M, Chakraborty S, Costa F, Pompilio M, Liuzzo M, Viccaro M (2013) Compositionally zoned crystals and real-time degassing data reveal changes in magma transfer dynamics during the 2006 summit eruptive episodes of Mt. Etna. Bull Volcanol 75:692. doi: 10.1007/s00445-013-0692-7 CrossRefGoogle Scholar
  37. Kamenetsky V, Clocchiatti R (1996) Primitive magmatism of Mt. Etna: insights from mineralogy and melt inclusions. Earth Planet Sci Lett 142:553–572CrossRefGoogle Scholar
  38. Kuritani T (1999) Phenocryst crystallization during ascent of alkali basalt magma at Rishiri volcano, northern Japan. J Volcanol Geotherm Res 88:77–97CrossRefGoogle Scholar
  39. Lachance GR, Traill JR (1966) Practical solution to the matrix problem in X-ray analysis. Can Spectrosc 11:43–48Google Scholar
  40. Landi P, Métrich N, Bertagini A, Rosi M (2004) Dynamics of magma mixing and degassing recorded in plagioclase at Stromboli (Aeolian Archipelago, Italy). Contrib Mineral Petrol 147:213–227CrossRefGoogle Scholar
  41. Lanzafame G, Mollo S, Iezzi G, Ferlito C, Ventura G (2013) Unravelling the solidification path of a pahoehoe “cicirara” lava from Mount Etna volcano. Bull Volcanol 75:703–719CrossRefGoogle Scholar
  42. Larsen LM (1976) Clinopyroxenes and coexisting mafic minerals from the alkaline Ilimaussaq intrusion, South Greenland. J Petrol 17:258–290CrossRefGoogle Scholar
  43. Le Maitre R (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  44. Lundgren P, Berardino P, Coltelli M, Fornaro G, Lanari R, Puglisi G, Sansosti E, Tesauro M (2003) Coupled magma chamber inflation and sector collapse slip observed with synthetic aperture radar interferometry on Mt. Etna volcano. J Geophys Res 108:2247–2267Google Scholar
  45. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  46. Metrich N, Rutherford MJ (1998) Low pressure crystallization paths of H2O-saturated basaltic–hawaiitic melts from Mt Etna: implications for open-system degassing of basaltic volcanoes. Geochim Cosmochim Acta 62:1195–1205CrossRefGoogle Scholar
  47. Métrich N, Allard P, Spilliert N, Andronico D, Burton M (2004) 2001 flank eruption of the alkali- and volatile-rich primitive basalt responsible for Mount Etna’s evolution in the last three decades. Earth Planet Sci Lett 228:1–17CrossRefGoogle Scholar
  48. Mollo S, Lanzafame G, Masotta M, Iezzi G, Ferlito C, Scarlato P (2011) Cooling history of a dike as revealed by mineral chemistry: a case study from Mt. Etna volcano. Chem Geol 288:39–52CrossRefGoogle Scholar
  49. Mollo S, Blundy JD, Iezzi G, Scarlato P, Langone A (2013) The partitioning of trace elements between clinopyroxene and trachybasaltic melt during rapid cooling and crystal growth. Contrib Mineral Petrol 166:1633–1654CrossRefGoogle Scholar
  50. Mollo S, Giacomoni PP, Coltorti M, Ferlito C, Iezzi G, Scarlato P (2015a) Reconstruction of magmatic variables governing recent Etnean eruptions: constraints from mineral chemistry and P–T–fO2–H2O modelling. Lithos 212–215:311–320CrossRefGoogle Scholar
  51. Mollo S, Giacomoni PP, Andronico D, Scarlato P (2015b) Clinopyroxene and titanomagnetite cation redistributions at Mt. Etna volcano (Sicily, Italy): footprints of the final solidification history of lava fountains and lava flows. Chem Geol 406:45–54CrossRefGoogle Scholar
  52. Monaco C, Tapponier P, Tortorici L, Gillot PY (1997) Late Quaternary slips rates on the Acireale-Piedimonte normal faults and tectonic origin of Mt. Etna (Sicily). Earth Planet Sci Lett 147:125–139CrossRefGoogle Scholar
  53. Morimoto N (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550CrossRefGoogle Scholar
  54. Murru M, Montuori C, Wyss M, Privitera E (1999) The locations of magma chambers at Mt. Etna, Italy, mapped by b-values. Geophys Res Lett 26:2553–2556CrossRefGoogle Scholar
  55. Patanè D, Privitera E (2001) Seismicity related to 1989 and 1991–93 Mt. Etna (Italy) eruptions: kinematic constraints by fault plane solution analysis. J Volcanol Geotherm Res 109:77–98CrossRefGoogle Scholar
  56. Patanè D, Barberi G, Cocina O, De Gori P, Chiarabba C (2006) Time-resolved seismic tomography detects magma intrusions at Mount Etna. Science 313:821–825CrossRefGoogle Scholar
  57. Patanè D, Aiuppa A, Aloisi M, Behncke B, Cannata A, Coltelli M, Di Grazia G, Gambino S, Gurrieri S, Mattia M, Salerno G (2013) Insights into magma and fluid transfer at Mount Etna by a multi-parametric approach: a model of the events leading to the 2011 eruptive cycle. J Geophys Res 118:3519–3539CrossRefGoogle Scholar
  58. Peccerillo A, Lustrino M (2005) Compositional variation of Plio-Quaternary magmatism in the circum-Tyrrhenian area: deep versus shallow mantle processes. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes, and paradigms: Geol Soc Amer Spec Paper, vol 338, pp 421–434Google Scholar
  59. Phemister TC (1937) A review of the problems of the Sudbury Irruptive. J Geol 45:1–47CrossRefGoogle Scholar
  60. Putirka KD (2008) Thermometers and barometers for volcanic system. In: Putirka KD, Tepley F (eds) Minerals, inclusions, and volcanic processes: Rev Min Geochem, vol 69, pp 61–120Google Scholar
  61. Putirka K, Johnson M, Kinzler R, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene–liquid equilibria, 0–30 kbar. Contrib Mineral Petrol 123:92–108CrossRefGoogle Scholar
  62. Putirka K, Ryerson FJ, Mikaelian H (2003) New igneous thermobarometers for mafic and evolved lava compositions, based on clinopyroxene + liquid equilibria. Am Mineral 88:1542–1554CrossRefGoogle Scholar
  63. Schiano P, Clocchiatti R, Ottolini L, Busà T (2001) Transition of Mount Etna lavas from a mantle-plume to an island-arc magmatic source. Nature 412:900–904CrossRefGoogle Scholar
  64. Sharp ADL, Davis PM, Gray F (1980) A low velocity zone beneath Mount Etna and magma storage. Nature 287:587–591CrossRefGoogle Scholar
  65. Tanguy JC, Condomines M, Kieffer G (1997) Evolution of Mount Etna magma: constraint on the present feeding system and eruptive mechanism. J Volcanol Geotherm Res 75:221–250CrossRefGoogle Scholar
  66. Tsuchiyama A (1985) Dissolution kinetics of plagioclase in the melt of the system diopside–albite–anorthite, and the origin of dusty plagioclase in andesites. Contrib Mineral Petrol 89:1–16CrossRefGoogle Scholar
  67. Vetere F, Iezzi G, Behrens H, Holtz F, Ventura G, Misiti V, Cavallo A, Mollo S, Marcel D (2015) Glass forming ability and crystallization behaviour of sub-alkaline silicate melts. Earth Sci Rev 150:25–44CrossRefGoogle Scholar
  68. Viccaro M, Ferlito C, Cortesogno L, Cristofolini R, Gaggero L (2005) Magma mixing during the 2001 event at Mount Etna (Italy). Effects on the eruptive dynamics. J Volcanol Geotherm Res 149:139–159CrossRefGoogle Scholar
  69. Viccaro M, Giacomoni PP, Ferlito C, Cristofolini R (2010) Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos 116:77–91CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • P. P. Giacomoni
    • 1
  • M. Coltorti
    • 1
  • J. G. Bryce
    • 2
  • M. F. Fahnestock
    • 2
  • M. Guitreau
    • 3
  1. 1.Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly
  2. 2.Department of Earth SciencesUniversity of New HampshireDurhamUSA
  3. 3.Laboratoire Magma et VolcansUniversité Blaise PascalClermont-FerrandFrance

Personalised recommendations