Highly siderophile element abundances in Eoarchean komatiite and basalt protoliths

Original Paper

Abstract

Plume-derived, Mg-rich, volcanic rocks (komatiites, high-Mg basalts, and their metamorphic equivalents) can record secular changes in the highly siderophile element (HSE) abundances of mantle sources. An apparent secular time-dependent enrichment trend in HSE abundances from Paleoarchean to Paleoproterozoic mantle-derived rocks could represent the protracted homogenization of a Late Veneer chondritic contaminant into the pre-Late Veneer komatiite source. To search for a possible time dependence of a late accretion signature in the Eoarchean mantle, we report new data from rare >3700 Myr-old mafic and ultramafic schists locked in supracrustal belts from the Inukjuak domain (Québec, Canada) and the Akilia association (West Greenland). Our analysis shows that some of these experienced HSE mobility and/or include a cumulate component (Touboul et al. in Chem Geol 383:63–75, 2014), whereas several of the oldest samples show some of the most depleted HSE abundances measured for rocks of this composition. We consider these new data for the oldest documented rocks of komatiite protolith in light of the Late Veneer hypothesis.

Keywords

Late Veneer Komatiites Highly siderophile elements Platinum group elements Mantle evolution Eoarchean 

Supplementary material

410_2016_1243_MOESM1_ESM.xlsx (53 kb)
Supplementary material 1 (XLSX 53 kb)
410_2016_1243_MOESM2_ESM.xlsx (43 kb)
Supplementary material 2 (XLSX 42 kb)
410_2016_1243_MOESM3_ESM.xlsx (124 kb)
Supplementary material 3 (XLSX 123 kb)

References

  1. Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419–422CrossRefGoogle Scholar
  2. Abramov O, Kring DA, Mojzsis SJ (2013) The impact environment of the Hadean Earth. Chem Erde Geochem 73:227–248CrossRefGoogle Scholar
  3. Anbar AD, Zahnle KJ, Arnold GL, Mojzsis SJ (2001) Extraterrestrial iridium, sediment accumulation and the habitability of the early Earth’s surface. J Geophys Res 106:3219CrossRefGoogle Scholar
  4. Arndt N (2003) Komatiites, kimberlites, and boninites. J Geophys Res 108:2293CrossRefGoogle Scholar
  5. Arndt N (2009) Earth science: trickle-down geodynamics. Nature 460:583–584CrossRefGoogle Scholar
  6. Arndt NT, Naldrett AJ, Pyke DR (1977) Komatiitic and iron-rich tholeiitic lavas of Munro Township, Northeast Ontario. J Petrol 18:319–369CrossRefGoogle Scholar
  7. Arndt N, Lesher CM, Barnes SJ (2008) Komatiite. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. Asphaug E (2010) Similar-sized collisions and the diversity of planets. Chem Erde Geochem 70:199–219CrossRefGoogle Scholar
  9. Barnes SJ, Fiorentini M (2008) Iridium, ruthenium and rhodium in komatiites: evidence for iridium alloy saturation. Chem Geol 257:44–58CrossRefGoogle Scholar
  10. Barnes S-J, Naldrett A, Gorton M (1985) The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem Geol 53:303–323CrossRefGoogle Scholar
  11. Barnes SJ, Mungall JE, Maier WD (2015) Platinum group elements in mantle melts and mantle samples. Lithos 232:395–417CrossRefGoogle Scholar
  12. Bennett VC, Brandon AD, Nutman AP (2007) Coupled 142Nd–143Nd isotopic evidence for Hadean mantle dynamics. Science 318:1907–1910CrossRefGoogle Scholar
  13. Blichert-Toft J, Puchtel IS (2010) Depleted mantle sources through time: evidence from Lu–Hf and Sm–Nd isotope systematics of Archean komatiites. Earth Planet Sci Lett 297:598–606CrossRefGoogle Scholar
  14. Bottke W (2002) Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus 156:399–433CrossRefGoogle Scholar
  15. Bottke WF, Levison HF, Nesvorný D, Dones L (2007) Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus 190:203–223CrossRefGoogle Scholar
  16. Bottke WF, Walker RJ, Day JMD, Nesvorný D, Elkins-Tanton E (2010) Stochastic late accretion to Earth, the Moon, and Mars. Science 330:1527–1530CrossRefGoogle Scholar
  17. Boyet M, Blichert-Toft J, Rosing M, Storey M, Télouk Albarède (2003) 142Nd evidence for early Earth differentiation. Earth Planet Sci Lett 214:427–442CrossRefGoogle Scholar
  18. Brandon AD, Walker RJ, Puchtel IS, Becker H, Humayun M, Revillon S (2003) 186Os–187Os systematics of Gorgona Island komatiites: implications for early growth of the inner core. Earth Planet Sci Lett 206:411–426CrossRefGoogle Scholar
  19. Canup RM (2004) Simulations of a late lunar-forming impact. Int J Sol Syst Stud 168:433–456Google Scholar
  20. Canup R (2008) Lunar-forming collisions with pre-impact rotation. Icarus 196:518–538CrossRefGoogle Scholar
  21. Canup RM, Asphaug E (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412:708–712CrossRefGoogle Scholar
  22. Carlson RW, Boyet M (2008) Composition of the Earth’s interior: the importance of early events. Philos Trans A Math Phys Eng Sci 366:4077–4103CrossRefGoogle Scholar
  23. Caro G, Bourdon B, Birck J-L, Moorbath S (2006) High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochim Cosmochim Acta 70:164–191CrossRefGoogle Scholar
  24. Cates NL, Mojzsis SJ (2006) Chemical and isotopic evidence for widespread Eoarchean metasedimentary enclaves in southern West Greenland. Geochim Cosmochim Acta 70:4229–4257CrossRefGoogle Scholar
  25. Cates NL, Mojzsis SJ (2007) Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Québec. Earth Planet Sci Lett 255:9–21CrossRefGoogle Scholar
  26. Cates NL, Mojzsis SJ (2009) Metamorphic zircon, trace elements and Neoarchean metamorphism in the ca. 3.75 Ga Nuvvuagittuq supracrustal belt, Québec (Canada). Chem Geol 261:99–114CrossRefGoogle Scholar
  27. Cates NL, Ziegler K, Schmitt AK, Mojzsis SJ (2013) Reduced, reused and recycled: detrital zircons define a maximum age for the Eoarchean (ca. 3750–3780 Ma) Nuvvuagittuq Supracrustal Belt, Québec (Canada). Earth Planet Sci Lett 362:283–293CrossRefGoogle Scholar
  28. Chou CL (1978) Fractionation of siderophile elements in the Earth’s upper mantle. In: Proceedings of the 9th Lunar and Planetary Science Conference, Houston, TX, pp 219–230Google Scholar
  29. Coltice N, Schmalzl J (2006) Mixing times in the mantle of the early Earth derived from 2-D and 3-D numerical simulations of convection. Geophys Res Lett 33:L23304CrossRefGoogle Scholar
  30. Ćuk M, Stewart ST (2012) Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338:1047–1052CrossRefGoogle Scholar
  31. Dahl TW, Stevenson DJ (2010) Turbulent mixing of metal and silicate during planet accretion: and interpretation of the Hf-W chronometer. Earth Planet Sci Lett 295:177–186CrossRefGoogle Scholar
  32. Dauphas N, Cates NL, Mojzsis SJ, Busigny V (2007) Identification of chemical sedimentary protoliths using iron isotopes in the >3750 Ma Nuvvuagittuq supracrustal belt, Canada. Earth Planet Sci Lett 254:358–376CrossRefGoogle Scholar
  33. Debaille V, O’Neill C, Brandon AD, Haenecour P, Yin Q-Z, Mattielli N, Treiman AH (2013) Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet Sci Lett 373:83–92CrossRefGoogle Scholar
  34. Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD (2012) A change in the geodynamics of continental growth 3 billion years ago. Science 335:1334–1336CrossRefGoogle Scholar
  35. Echeverría LM (1980) Tertiary or Mesozoic komatiites from Gorgona Island, Colombia: field relations and geochemistry. Contrib Mineral Petrol 73:253–266CrossRefGoogle Scholar
  36. Elkins-Tanton LT (2008) Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet Sci Lett 271:181–191CrossRefGoogle Scholar
  37. Fiorentini ML, Barnes SJ, Maier WD, Burnham OM, Heggie G (2011) Global variability in the platinum-group element contents of komatiites. J Petrol 52:83–112CrossRefGoogle Scholar
  38. Green DH (1975) Genesis of Archean peridotitic magmas and constraints on Archean geothermal gradients and tectonics. Geology 3:15–18CrossRefGoogle Scholar
  39. Grove TL, Parman SW, Dann JC (1999) Conditions of magma generation for Archean komatiites from the Barberton Mountainland, South Africa. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R. (Joe) Boyd. The Geochemical Society, Houston, pp 155–167Google Scholar
  40. Guitreau M, Blichert-Toft J, Mojzsis SJ, Roth ASG, Bourdon B, Cates NL, Bleeker W (2014) Lu–Hf isotope systematics of the Hadean-Eoarchean Acasta Gneiss Complex (Northwest Territories, Canada). Geochim Cosmochim Acta 135:251–269CrossRefGoogle Scholar
  41. Halliday AN (2008) A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Philos Trans R Soc A Math Phys Eng Sci 366:4163–4181CrossRefGoogle Scholar
  42. Hanski E, Walker RJ, Huhma H, Polyakov GV, Balykin PA, Hoa TT, Phuong NT (2004) Origin of the Permian-Triassic komatiites, northwestern Vietnam. Contrib Mineral Petrol 147:453–469CrossRefGoogle Scholar
  43. Harrison TM (2009) The Hadean crust: evidence from >4 Ga Zircons. Annu Rev Earth Planet Sci 37:479–505CrossRefGoogle Scholar
  44. Herzberg C, Condie K, Korenaga J (2010) Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett 292:79–88CrossRefGoogle Scholar
  45. Hopkins MD, Mojzsis SJ (2015) A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U–Pb geochronology of Apollo 14 melt breccia zircons. Contrib Mineral Petrol 169:30CrossRefGoogle Scholar
  46. Jacobsen SB (1988) Isotopic and chemical constraints on mantle–crust evolution. Geochim Cosmochim Acta 52:1341–1350CrossRefGoogle Scholar
  47. Jayananda M, Kano T, Peucat J-J, Channabasappa S (2008) 3.35 Ga komatiite volcanism in the western Dharwar craton, southern India: constraints from Nd isotopes and whole-rock geochemistry. Precambrian Res 162:160–179CrossRefGoogle Scholar
  48. Kelemen P, Kikawa E, Miller D (2004) Proceedings of the Ocean Drilling Program, Initial Reports, vol 209 (online)Google Scholar
  49. Kimura K, Lewis RS, Anders E (1974) Distribution of gold and rhenium between nickel–iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon. Geochim Cosmochim Acta 38:683–701CrossRefGoogle Scholar
  50. Kramers JD (1998) Reconciling siderophile element data in the Earth and Moon, W isotopes and the upper lunar age limit in a simple model of homogeneous accretion. Chem Geol 145:461–478CrossRefGoogle Scholar
  51. Krasinsky G (2002) Hidden mass in the asteroid belt. Icarus 158:98–105CrossRefGoogle Scholar
  52. Kruijer TS, Kleine T, Fischer-Gödde M, Sprung P (2015) Lunar tungsten isotopic evidence for the late veneer. Nature 520:534–537CrossRefGoogle Scholar
  53. Leinhardt ZM, Stewart ST (2012) Collisions between gravity-dominated bodies. I. Outcome regimes and scaling laws. Astrophys J 745:79CrossRefGoogle Scholar
  54. Lesher CM, Keays RR (2002) Komatiite-associated Ni–Cu–PGE deposits—Geology, mineralogy, geochemistry, and genesis. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of the platinum-group elements, Special vol 54. Canadian Institute of Mining, Metallurgy, and Petroleum, Montreal, pp 579–617Google Scholar
  55. Maier WD, Barnes SJ, Campbell IH, Fiorentini ML, Peltonen P, Barnes S-J, Smithies RH (2009) Progressive mixing of meteoritic veneer into the early Earth’s deep mantle. Nature 460:620–623CrossRefGoogle Scholar
  56. Maier WD, Peltonen P, McDonald I, Barnes SJ, Barnes S-J, Hatton C, Vijoen F (2012) The concentration of platinum-group elements and gold in southern African and Karelian kimberlite-hosted mantle xenoliths: implications for the noble metal content of the Earth’s mantle. Chem Geol 302–303:119–135CrossRefGoogle Scholar
  57. Mann U, Frost DJ, Rubie DC, Becker H, Audétat (2012) Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures: implications for the origin of highly siderophile element concentrations in the Earth’s mantle. Geochim Cosmochim Acta 84:593–613CrossRefGoogle Scholar
  58. Manning CE, Mojzsis SJ, Harrison TM (2006) Geology, age and origin of supracrustal rocks at Akilia, West Greenland. Am J Sci 306:303–366CrossRefGoogle Scholar
  59. Marchi S, Bottke WF, Elkins-Tanton LT, Bierhaus M, Wuennemann Morbidelli A, Kring DA (2014) Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511:578–582CrossRefGoogle Scholar
  60. McGregor V, Mason B (1977) Petrogenesis and geochemistry of metabasaltic and metasedimentary enclaves in the Amitsoq gneisses, West Greenland. Am Mineral 62:887–904Google Scholar
  61. McLennan S, Taylor S, McGregor V (1984) Geochemistry of Archean metasedimentary rocks from West Greenland. Geochim Cosmochim Acta 48:1–13CrossRefGoogle Scholar
  62. McSween H Jr, Ghosh A, Grimm RE, Wilson L, Young ED (2002) Thermal evolution models of asteroids. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tuscon, AZ, pp 559–571Google Scholar
  63. Morbidelli A, Lunine JI, O’Brien DP, Raymond SN, Walsh KJ (2012) Building terrestrial planets. Annu Rev Earth Planet Sci 40:251–275CrossRefGoogle Scholar
  64. Mouri H, Maier WD, Brandl G (2013) On the possible occurrence of komatiites in the Archean high-grade polymetamorphic central zone of the Limpopo Belt, South Africa. S Afr J Geol 116:55–66CrossRefGoogle Scholar
  65. Mungall JE, Brenan JM (2014) Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle–crust fractionation of the chalcophile elements. Geochim Cosmochim Acta 125:265–289CrossRefGoogle Scholar
  66. Nesvorný D, Jenniskens P, Levison HF, Bottke WF, Vokrouhlický (2010) Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys J 713:816–836CrossRefGoogle Scholar
  67. Norman MD, Nemchin AA (2014) A 4.2 billion year old impact basin on the Moon: U–Pb dating of zirconolite and apatite in lunar melt rock 67955. Earth Planet Sci Lett 388:387–398CrossRefGoogle Scholar
  68. Nutman AP, McGregor VR, Friend CRL, Bennett VC, Kinny PD (1996) The Itsaq Gneiss complex of southern West Greenland; the world’s most extensive record of early crustal evolution (3900–3600 Ma). Precambrian Res 78:1–39CrossRefGoogle Scholar
  69. O’Neil J, Maurice C, Stevenson RK, Larocque J, Cloquet C, David J, Francis D (2007) The geology of the 3.8 Ga Nuvvuagittuq (Porpoise Cove) greenstone belt, northeastern Superior Province, Canada. In: Kranendonk VMJ, Smithies RH, Bennett V (eds) Earth’s oldest rocks. Elsevier, Amsterdam, pp 219–254CrossRefGoogle Scholar
  70. O’Neil J, Carlson RW, Francis D, Stevenson RK (2008) Neodymium-142 evidence for Hadean mafic crust. Science 321:1828–1831CrossRefGoogle Scholar
  71. O’Neil J, Francis D, Carlson RW (2011) Implications of the Nuvvuagittuq greenstone belt for the formation of Earth’s early crust. J Petrol 52:985–1009CrossRefGoogle Scholar
  72. O’Neil J, Carlson RW, Paquette J-L, Francis D (2012) Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precambrian Res 220–221:23–44CrossRefGoogle Scholar
  73. O’Neill C, Debaille V, Griffin W (2013) Deep earth recycling in the Hadean and constraints on surface tectonics. Am J Sci 313:912–932CrossRefGoogle Scholar
  74. Puchtel IS, Walker RJ, Touboul M, Nisbet EG, Byerly GR (2014) Insights into early Earth from the Pt–Re–Os isotope and highly siderophile element abundance systematics of Barberton komatiites. Geochim Cosmochim Acta 125:394–413CrossRefGoogle Scholar
  75. Richter FM (1988) A major change in the thermal state of the Earth at the Archean–Proterozoic boundary: consequences for the nature and preservation of continental lithosphere. J Petrol Spec 1:39–52Google Scholar
  76. Righter K, Danielson LR, Pando KM, Williams J, Humayun M, Hervig RL, Sharp TG (2015) Highly siderophile element (HSE) abundances in the mantle of Mars are due to core formation at high pressure and temperature. Meteorit Planet Sci 50:604–631CrossRefGoogle Scholar
  77. Rizo H, Boyet M, Blichert-Toft J, O’Neil J, Rosing MT, Paquette J-L (2012) The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature 491:96–100CrossRefGoogle Scholar
  78. Rizo H, Walker RJ, Carlson RW, Touboul M, Horan MF, Puchtel IS, Boyet M, Rosing MT (2016) Early Earth differentiation investigated through 142Nd, 182W, and highly siderophile element abundances in samples from Isua, Greenland. Geochim Cosmochim Acta 175:319–336CrossRefGoogle Scholar
  79. Roth ASG, Bourdon B, Mojzsis SJ, Rudge JF, Guitreau M, Blichert-Toft J (2014) Combined 147,146Sm–143,142Nd constraints on the longevity and residence time of early terrestrial crust. Geochem Geophys Geosyst 15:2329–2345CrossRefGoogle Scholar
  80. Rubie DC, Melosh HJ, Reid JE, Liebske C, Righter K (2003) Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. Earth Planet Sci Lett 205:239–255CrossRefGoogle Scholar
  81. Rubie DC, Frost DJ, Mann U, Asahara Y, Nimmo F, Tsuno K, Kegler P, Holzeid A, Palme H (2011) Heterogeneous accretion, composition and core–mantle differentiation of the Earth. Earth Planet Sci Lett 301:31–42CrossRefGoogle Scholar
  82. Rudge JF, Kleine T, Bourdon B (2010) Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nat Geosci 3:439–443CrossRefGoogle Scholar
  83. Savard D, Barnes S-J, Meisel T (2010) Comparison between nickel–sulfur fire assay Te Co-precipitation and isotope dilution with high-pressure asher acid digestion for the determination of platinum-group elements, rhenium, and gold. Geostand Geoanalytical Res 34:281–291CrossRefGoogle Scholar
  84. Stevenson D (1981) Models of the Earth’s core. Science 214:611–618CrossRefGoogle Scholar
  85. Tera F, Papanastassiou D, Wasserburg G (1974) Isotopic evidence for a terminal lunar cataclysm. Earth Planet Sci Lett 22:1–21CrossRefGoogle Scholar
  86. Touboul M, Puchtel IS, Walker RJ (2012) 182W evidence for long-term preservation of early mantle differentiation products. Science 335:1065–1069CrossRefGoogle Scholar
  87. Touboul M, Liu J, O’Neil J, Puchtel IS, Walker RJ (2014) New insights into the Hadean mantle revealed by 182W and highly siderophile element abundances of supracrustal rocks from the Nuvvuagittuq Greenstone Belt, Quebec, Canada. Chem Geol 383:63–75CrossRefGoogle Scholar
  88. Touboul M, Puchtel IS, Walker RJ (2015) Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature 520:530–533CrossRefGoogle Scholar
  89. Valley JW, Cavosie AJ, Ushikubo T, Reinhard DA, Lawrence DF, Larson DJ, Clifton PH, Kelly TF, Wilde SA, Moser DE, Spicuzza MJ (2014) Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci 7:219–223CrossRefGoogle Scholar
  90. Viljoen M, Viljoen R (1969) The geology and geochemistry of the lower ultramafic unit of the Onverwacht Group and a proposed new class of igneous rocks. Geol Soc S Afr Spec Publ 2:55–86Google Scholar
  91. Walker RJ (2009) Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem Erde Geochem 69:101–125CrossRefGoogle Scholar
  92. Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209CrossRefGoogle Scholar
  93. Wang Z, Becker H (2013) Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499:328–331CrossRefGoogle Scholar
  94. Willbold M, Elliott T, Moorbath S (2011) The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477:195–198CrossRefGoogle Scholar
  95. Willbold M, Mojzsis SJ, Chen H-W, Elliott T (2015) Tungsten isotope composition of the Acasta Gneiss Complex. Earth Planet Sci Lett 419:168–177CrossRefGoogle Scholar
  96. Wood BJ, Halliday AN (2005) Cooling of the Earth and core formation after the giant impact. Nature 437:1345–1348CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Geological Sciences, NASA Lunar Science Institute, Center for Lunar Origin and Evolution (CLOE)University of ColoradoBoulderUSA
  2. 2.School of Earth and Ocean SciencesCardiff UniversityCardiffUK
  3. 3.Institute for Geological and Geochemical ResearchHungarian Academy of SciencesBudapestHungary
  4. 4.Department of Terrestrial MagnetismCarnegie Institution of WashingtonWashingtonUSA

Personalised recommendations