Advertisement

Water concentrations and hydrogen isotope compositions of alkaline basalt-hosted clinopyroxene megacrysts and amphibole clinopyroxenites: the role of structural hydroxyl groups and molecular water

  • István Kovács
  • Attila Demény
  • György Czuppon
  • Christophe Lécuyer
  • Francois Fourel
  • Qun-Ke Xia
  • Jia Liu
  • Zsanett Pintér
  • Edit Király
  • Kálmán Török
  • Ábel Szabó
  • Etienne Deloule
  • György Falus
  • Tamás Fancsik
  • Zoltán Zajacz
  • Judit Sándorné Kovács
  • Beatrix Udvardi
Original Paper

Abstract

The aim of this study was to determine both ‘water’ contents (as OH and H2O) and δD values of several clinopyroxene samples from alkaline basalts. These parameters were first obtained from five clinopyroxene samples using both the classical ‘off-line’ vacuum extraction technique and the ‘on-line’ high-temperature pyrolysis technique. Blanks measured with the ‘on-line’ gas extraction techniques were low enough to prevent any contamination by atmospheric water vapour. The comparison of data has revealed that our ‘on-line’ procedure is more effective for the extraction of ‘water’ from clinopyroxenes and, consequently, this ‘on-line’ technique was applied to ten additional clinopyroxene samples. Sample δD values cover a similar range from −95 to −45 ‰ (VSMOW) regardless of the studied locations, whereas the total ‘water’ content varies from ~115 to ~2570 ppm. The structural hydroxyl content of clinopyroxene samples measured by micro-FTIR spectrometry varies from ~0 to 476 ppm expressed in molecular water equivalent. The total ‘water’ concentrations determined by mass spectrometry differ considerably from structural hydroxyl contents constrained by micro-FTIR, thus indicating that considerable proportion of the ‘water’ may be present in (nano)-inclusions. The structural hydroxyl concentration—apart from clinopyroxenes separated from amphibole clinopyroxenite xenoliths—correlates positively with the δD values of clinopyroxene megacrysts for each locality, indicating that structurally bond hydrogen in clinopyroxenes may have δD values higher than molecular water in inclusions. This implies that there may be a significant hydrogen isotope fractionation for structural hydroxyl during crystallization of clinopyroxene, while for molecular water there may be no or only negligible isotope fractionation.

Keywords

Mass spectrometry Fourier transformation infrared spectrometry Nominally anhydrous minerals Hydrogen isotopes Fractional crystallization 

Notes

Acknowledgments

IK was supported by the Bolyai Postdoctoral Fellowship Program and a Postdoctoral Grant of the Hungarian Scientific Research Fund (PD-101683). The authors acknowledge J. Ingrin and Cs. Szabó for discussions on an earlier version of this manuscript and the assistance of the Lithosphere Fluidum Research Lab, Judith Mihály and Csaba Németh (MTA TTK). The authors kindly acknowledge the careful editoral handling of Jochen Hoefs and the constructive suggestions of three anonymous reviewers.

Supplementary material

410_2016_1241_MOESM1_ESM.eps (1.4 mb)
SFigure 1 Mg# vs. Al atom per formula unit (a.p.f.u.) in clinopyroxenes (a); Mg# vs. Ti atom per formula unit (a.p.f.u.) in clinopyroxenes (b). Legend for the different localities is on Fig. 1a. Data are taken from STable 1 (EPS 1382 kb)
410_2016_1241_MOESM2_ESM.eps (1.8 mb)
SFigure 2 Primitive mantle (McDonough and Sun 1995) normalized trace element patterns of clinopyroxenes (a); Primitive mantle normalized rare earth elements (REE) patterns of clinopyroxenes (b). Data are taken from STable 2 (EPS 1862 kb)
410_2016_1241_MOESM3_ESM.eps (1.9 mb)
SFigure 3 Ba/Nb vs. Th/Nb ratios of clinopyroxenes (a); Sr/Zr vs. Ce/Zr ratios of clinopyroxenes (b). Data are taken from STable 2 (EPS 1970 kb)
410_2016_1241_MOESM4_ESM.eps (1.3 mb)
SFigure 4 H2O (ppm wt.%) in fluids (i.e. calculated as the difference between the ‘on-line’ mass spectrometry (bulk ‘water’) and micro-FTIR (structural hydroxyl)) vs. δD of hydrogen in clinopyroxenes. Data are taken from Table 1 (EPS 1311 kb)
410_2016_1241_MOESM5_ESM.eps (1.1 mb)
SFigure 5 δD values (‰) of structural hydroxyl in clinopyroxene vs. that of melt as a function of fractional crystallization (see text for details) (EPS 1114 kb)
410_2016_1241_MOESM6_ESM.xlsx (24 kb)
STable 1 Major element compositions of clinopyroxenes determined by EMPA for Nushan and Persány xenoliths and by LA-ICP-MS for BBHVF xenoliths (Szigliget, Kapolcs, Szentbékkálla) given in oxide wt.% (XLSX 23 kb)
410_2016_1241_MOESM7_ESM.xlsx (27 kb)
STable 2 Minor element compositions of clinopyroxenes determined by LA-ICP-MS (given in ppm wt.%) (XLSX 26 kb)
410_2016_1241_MOESM8_ESM.xlsx (39 kb)
Supplementary material 8 (XLSX 39 kb)

References

  1. Adam J, Turner M, Hauri HE, Turner S (2016) Crystal/melt partitioning of water and other volatiles during the near-solidus melting of mantle peridotite: comparisons with non-volatile incompatible elements and implications for the generation of intraplate magmatism. Am Mineral. doi: 10.2138/am-2016-5437 Google Scholar
  2. Aizawa Y, Barnhoorn A, Faul UH, FitzGerald JD, Jackson I, Kovács I (2008) Seismic properties of Anita Bay dunite: an exploratory study of the influence of water. J Petrol 49:841–855. doi: 10.1093/petrology/egn007 CrossRefGoogle Scholar
  3. Aubaud C, Hauri EH, Hirschmann MM (2004) Hydrogenpartition coefficients between nominally anhydrous minerals and basaltic melts. Geophys Res Lett. doi: 10.1029/2004GL021341 Google Scholar
  4. Aubaud C, Withers AC, Hirschmann MM, LA GuanY Leshin, Mackwell SJ, Bell DR (2007) Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals. Am Mineral 92:811–828CrossRefGoogle Scholar
  5. Balogh KA, Árva-Sós E, Pécskay Z, Ravasz-Baranyai L (1986) K/Ar dating of post-Sarmatian alkali basaltic rocks in Hungary. Acta Mineral Petrogr 28:75–93Google Scholar
  6. Barnes VE (1930) Changes in hornblende at about 800 °C. Am Mineral 15:393–417Google Scholar
  7. Bell DR, Ihinger PD (2000) The isotopic composition of hydrogen in nominally anhydrous mantle minerals. Geochim Cosmochim Acta 64:2109–2118. doi: 10.1016/S0016-7037(99)00440-8 CrossRefGoogle Scholar
  8. Bell DR, Ihinger PD, Rossman GR (1995) Quantitative analysis of trace OH in garnet and pyroxenes. Am Mineral 80:465–474CrossRefGoogle Scholar
  9. Bonadiman C, Hao YT, Coltorti M, Dallai L, Faccini B, Huang Y, Xia QK (2009) Water contents of pyroxenes in intraplate lithospheric mantle. Eur J Mineral 21:637–647. doi: 10.1127/0935-1221/2009/0021-1935 CrossRefGoogle Scholar
  10. Bromiley GD, Keppler H, McCammon C, Bromiley F, Jacobsen SD (2004) Hydrogen solubility and speciation in natural, gem-quality chromian diopside. Am Mineral 89:941–949CrossRefGoogle Scholar
  11. Chalot-Prat F, Boullier AM (1997) Metasomatism in the subcontinental mantle beneath the Eastern Carpathians (Romania): new evidence from trace element geochemistry. Contrib Mineral Petrol 129(4):284–307. doi: 10.1007/s004100050338 CrossRefGoogle Scholar
  12. Chaussidon M, Jambon A (1994) Boron content and isotopic composition of oceanic basalts: geochemical and cosmochemical implications. Earth Planet Sci Lett 121:277–291. doi: 10.1016/0012-821X(94)90073-6 CrossRefGoogle Scholar
  13. Chen DG, Peng ZC (1988) K–Ar ages and Pb, Sr isotopic characteristics of some Cenozoic volcanic rocks from Anhui and Jiangsu provinces, China. Acta Petrol Sin 31:3–12 (in Chinese with English abstract) Google Scholar
  14. Chen RX, Zheng YF, Gong B, Zhao ZF, Gao TS, Chen B, Wu YB (2007) Origin of retrograde fluid in ultrahighpressure metamorphic rocks: constraints from mineral hydrogen isotope and water content changes in eclogite–gneiss transitions in the Sulu orogen. Geochim Cosmochim Acta 71:2299–2325. doi: 10.1016/j.gca.2007.02.012 CrossRefGoogle Scholar
  15. Clog M, Aubaud C, Cartigny P, Dosso L (2013) The hydrogen isotopic composition and water content of southern Pacific MORB: a reassessment of the D/H ratio of the depleted mantle reservoir. Earth Planet Sci Lett 381:156–165. doi: 10.1016/j.epsl.2013.08.043 CrossRefGoogle Scholar
  16. Demény A (1995) H isotope fractionation due to hydrogen-zinc reactions and its implications on D/H analysis of water samples. Chem Geol 121:19–25. doi: 10.1016/0009-2541(94)00155-2 CrossRefGoogle Scholar
  17. Demény A, Siklósy Z (2008) Combination of off-line preparation and continuous flow mass spectrometry: D/H analyses of inclusion waters. Rapid Commun Mass Spectrom 22:1329–1334. doi: 10.1002/rcm.3473 CrossRefGoogle Scholar
  18. Demény A, Vennemann TW, Hegner E, Nagy G, Milton JA, Embey-Isztin A, Homonnay Z, Dobosi G (2004) Trace element and C-O–Sr–Nd isotope evidence for subduction-related carbonate-silicate melts in mantle xenoliths (Pannonian Basin, Hungary). Lithos 75:89–113. doi: 10.1016/j.lithos.2003.12.016 CrossRefGoogle Scholar
  19. Demény A, Vennemann TW, Harangi S, Homonnay Z, Fórizs I (2006) H2O–δD–FeIII relations of dehydrogenation and dehydration processes in magmatic amphiboles. Rapid Commun Mass Spectrom 20:919–925. doi: 10.1002/rcm.2380 CrossRefGoogle Scholar
  20. Demény A, Harangi S, Vennemann TW, Casillas R, Horváth P, Milton AJ, Mason PRD, Ulianov A (2012) Amphiboles as indicators of mantle source contamination: combined evaluation of stable H and O isotope compositions and trace element ratios. Lithos 152:141–156. doi: 10.1016/j.lithos.2012.07.001 CrossRefGoogle Scholar
  21. Demouchy S, Bolfan-Casanova N (2016) Distribution and transport of hydrogen in the lithospheric mantle: a review. Lithos 240:402–425. doi: 10.1016/j.lithos.2015.11.012 CrossRefGoogle Scholar
  22. Denis CMM, Demouchy S, Shaw CSJ (2013) Evidence of dehydration in peridotites from Eifel Volcanic Field and estimates of the rate of magma ascent. J Volcanol Geotherm Res 258:85–99. doi: 10.1016/j.jvolgeores.2013.04.010 CrossRefGoogle Scholar
  23. Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36(6):1607–1631Google Scholar
  24. Dobosi G, Jenner GA (1999) Petrologic implications of trace element variation in clinopyroxene megacrysts from the Nograd volcanic province, north Hungary: a study by laser ablation microprobe-inductively coupled plasma-mass spectrometry. Lithos 46:731–749. doi: 10.1016/S0024-4937(98)00093-0 CrossRefGoogle Scholar
  25. Dobosi G, Jenner GA, Embey-Isztin A (1998) Clinopyroxene/orthopyroxene trace element partition coefficients in spinel peridotite xenoliths. Contrib Mineral Petrol 110:321–328Google Scholar
  26. Dobosi G, Downes H, Embey-Isztin A, Jenner GA (2003) Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian Basin (Hungary). Neues Jb Miner Abh 178:217–237. doi: 10.1127/0077-7757/2003/0178-0217 CrossRefGoogle Scholar
  27. Dobson PF, Epstein S, Stolper EM (1989) Hydrogen isotope fractionation between coexisting vapor and silicate glasses and melts at low pressure. Geochim Cosmochim Acta 53:2723–2730. doi: 10.1016/0016-7037(89)90143-9 CrossRefGoogle Scholar
  28. Doppler G, Bakker RJ, Baumgartner M (2013) Fluid inclusion modification by H2O and D2O diffusion: the influence of inclusion depth, size, and shape in re-equilibration experiments. Contrib Mineral Petrol 165:1259–1274. doi: 10.1007/s00410-013-0857-6 CrossRefGoogle Scholar
  29. Dyar MD, Martin SV, Mackwell SJ, Carpenter S, Grant CA, McGuire AV (1996) Crystal chemistry of Fe3+, H+ and D/H in mantle derived augite from Dish Hill: implications for alteration during transport. In: Dyar MD, McCammon C, Schaefer MW (eds) Mineral spectroscopy, a tribute to R. G. Burns, vol 5. Geochem Soc Spec Publ, Houston, pp 289–304Google Scholar
  30. Embey-Isztin A, Dobosi GA (1997) Kárpát-Pannon térség neogén alkáli bazaltjainak nyomelem- és izotópgeokémiai viszonyai: következtetések a köpenybeli forráskőzetek jellegeire. Földtani Közlöny 127:321–351 (in Hungarian with English abstract) Google Scholar
  31. Embey-Isztin A, Downes H, James DE, Upton BGJ, Dobosi G, Ingram GA, Harmon RS, Scharbert HG (1993) The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. J Petrol 34:317–343. doi: 10.1093/petrology/34.2.317 CrossRefGoogle Scholar
  32. Falus G, Tommasi A, Ingrin J, Szabó C (2008) Deformation and seismic anisotropy of the lithospheric mantle in the southeastern Carpathians inferred from the study of mantle xenoliths. Earth Planet Sci Lett 272:50–64. doi: 10.1016/j.epsl.2008.04.035 CrossRefGoogle Scholar
  33. Fourel F, Martineau F, Seris M, Lécuyer C (2014) Simultaneous N, C, S stable isotope analyses using a new purge and trap elemental analyzer and an isotope ratio mass spectrometer. Rapid Commun Mass Spectrom 28:2587–2594. doi: 10.1002/rcm.7048 CrossRefGoogle Scholar
  34. Fourel F, Martineau F, Seris M, Lécuyer C (2015) Measurement of 34S/32S ratios of NBS 120c and BCR 32 phosphorites using purge and trap EA-IRMS technology. Geostand Geoanal Res 39:47–53. doi: 10.1111/j.1751-908X.2014.00297.x CrossRefGoogle Scholar
  35. Gavrilenko P (2008) Water solubility in diopside. Ph.D. thesis, Bayerisches Geoinst., Univ. Bayreuth, Bayreuth, Germany, pp 133Google Scholar
  36. Girard J, Chen J, Raterron P, Holyoke CW (2013) Hydrolytic weakening of olivine at mantle pressure: evidence of [100](010) slip system softening from single-crystal deformation experiments. Phys Earth Planet Int 216:12–20. doi: 10.1016/j.pepi.2012.10.009 CrossRefGoogle Scholar
  37. Gleeson SA, Roberts S, Fallick AE, Boyce AJ (2008) Micro-Fourier transform infrared (FT-IR) and δD value investigation of hydrothermal vein quartz: interpretation of fluid inclusion δD values in hydrothermal systems. Geochim Cosmochim Acta 72:4595–4606. doi: 10.1016/j.gca.2008.06.014 CrossRefGoogle Scholar
  38. Gong B, Zheng YF, Chen RX (2007) TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys Chem Minerals 34:687–698. doi: 10.1007/s00269-007-0184-4 CrossRefGoogle Scholar
  39. Graham CM, Sheppard SMF, Heaton THE (1980) Experimental hydrogen isotope studies, I. Systematics of hydrogen isotope fractionation in the systems epidote–H2O, zoisite–H2O and AlO-OH.–H2O. Geochim Cosmochim Acta 44:353–364. doi: 10.1016/0016-7037(80)90143-X CrossRefGoogle Scholar
  40. Graham CM, Harmon RS, Sheppard SMF (1984) Experimental hydrogen isotope studies, IV. Systematics of hydrogen isotope exchange between amphibole and water. Am Mineral 69:128–138Google Scholar
  41. Grant K, Gleeson SA, Roberts S (2003) The high-temperature behavior of defect hydrogen species in quartz: implications for hydrogen isotope studies. Am Mineral 88:262–270CrossRefGoogle Scholar
  42. Green DH (1973) Experimental melting studies on a model upper mantle composition at high pressures under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett 19:37–53CrossRefGoogle Scholar
  43. Green DH, Hibberson WO, Rosenthal A, Kovács I, Yaxley GM, Falloon TJ, Brink F (2014) Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J Petrol 55:2067–2096. doi: 10.1093/petrology/egu050 CrossRefGoogle Scholar
  44. Hauri EH, Wang JH, Dixon JE, King PL, Mandeville C, Newman S (2002) SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183:99–114. doi: 10.1016/S0009-2541(01)00375-8 CrossRefGoogle Scholar
  45. Hauri EH, Gaetani GA, Green TH (2006) Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci Lett 248:715–734. doi: 10.1016/j.epsl.2006.06.014 CrossRefGoogle Scholar
  46. Hidas K, Guzmics T, Cs Szabó, Kovács I, Bodnar RJ, Zajacz Z, Zs Nédli, Vaccari L, Perucchi A (2010) Coexisting silicate melt inclusions and H 2 O-bearing, CO 2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian–Pannonian region (central Hungary). Chem Geol 274:1–18. doi: 10.1016/j.chemgeo.2010.03.004 CrossRefGoogle Scholar
  47. Honma H, Kusakabe M, Kagami H, Iizumi S, Sakai H, Kodama Y, Kimura M (1991) Major and trace-element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa trough, a marginal back-arc basin. Geochem J 25:121–136CrossRefGoogle Scholar
  48. Horváth F (1993) Towards a mechanical model for the formation of the Pannonian Basin. Tectonophysics 226:333–357. doi: 10.1016/0040-1951(93)90126-5 CrossRefGoogle Scholar
  49. Horváth F, Bada G, Szafián P, Tari G, Ádám A, Cloetingh S (2006) Formation and deformation of the Pannonian basin: constraints from observational data. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 32. Geological Society, London, pp 191–206Google Scholar
  50. Horváth F, Musitz B, Balázs A, Végh A, Uhrin A, Nádor A, Wórum G (2015) Evolution of the Pannonian Basin and its geothermal resources. Geothermics 53:328–352. doi: 10.1016/j.geothermics.2014.07.009 CrossRefGoogle Scholar
  51. Ingrin J, Skogby H (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur J Mineral 12:543–570CrossRefGoogle Scholar
  52. Ingrin J, Hercule S, Charton T (1995) Diffusion of hydrogen in diopside results of dehydration experiments. J Geophys Res Solid Earth 100:15489–15499. doi: 10.1029/95JB00754 CrossRefGoogle Scholar
  53. Jackson I, FitzGerald JD, Faul UH, Tan BH (2002) Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J Geophys Res Solid Earth 107:2001J. doi: 10.1029/B001225 CrossRefGoogle Scholar
  54. Kaminski E (2002) The influence of water on the development of lattice preferred orientation in olivine aggregates. Geophys Res Lett. doi: 10.1029/2002GL014710 Google Scholar
  55. Karato SI (2006) Remote sensing of hydrogen in Earth’s mantle. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals, vol 62., Reviews in mineralogy and geochemistryMineralogical Society of America and Geochemical Society, Chantilly, pp 343–375Google Scholar
  56. Karato SI (2011) Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet Sci Lett 301:413–423. doi: 10.1016/j.epsl.2010.11.038 CrossRefGoogle Scholar
  57. Karato SI, Wu P (1993) Rheology of the upper mantle: a synthesis. Science 260:771–778. doi: 10.1126/science.260.5109.771 CrossRefGoogle Scholar
  58. Koch-Müller M, Matsyuk SS, Wirth R (2004) Hydroxyl in omphacites and omphacitic clinopyroxenes of upper mantle to lower crustal origin beneath the Siberian platform. Am Mineral 89:921–931CrossRefGoogle Scholar
  59. Konzett J, Libowitzky E, Hejnya C, Millera C, Zanetti A (2008) Oriented quartz + calcic amphibole inclusions in omphacite from the Saualpe and Pohorje Mountain eclogites, Eastern Alps—An assessment of possible formation mechanisms based on IR- and mineral chemical data and water storage in Eastern Alpine eclogite. Lithos 106:336–350. doi: 10.1016/j.lithos.2008.09.002 CrossRefGoogle Scholar
  60. Kovács I, Hermann J, O’Neill HSC, FitzGerald JD, Sambridge M, Horváth G (2008) Quantitative absorbance spectroscopy with unpolarized light, Part II: experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra. Am Mineral 93:65–778CrossRefGoogle Scholar
  61. Kovács I, O’Neill HSC, Hermann J, Hauri EH (2010) Site-specific infrared OH absorption coefficients for water substitution into olivine. Am Mineral 95:292–299CrossRefGoogle Scholar
  62. Kovács I, Green DH, Rosenthal A, Hermann J, O’Neill HSC, Hibberson WO, Udvardi B (2012a) An experimental study of water in nominally anhydrous minerals in the upper mantle near the water saturated solidus. J Petrol 53:2067–2093. doi: 10.1093/petrology/egs044 CrossRefGoogle Scholar
  63. Kovács I, Gy Falus, Stuart G, Hidas K, Cs Szabó, Flower MFJ, Hegedűs E, Posgay K, Zilahi-Sebess L (2012b) Seismic anisotropy and deformation patterns in upper mantle xenoliths from the central Carpathian–Pannonian region: asthenospheric flow as a driving force for Cenozoic extension and extrusion? Tectonophysics 514:168–179. doi: 10.1016/j.tecto.2011.10.022 CrossRefGoogle Scholar
  64. Li ZXA, Lee CTA, Peslier AH, Lenardic A, Mackwell SJ (2008) Water contents in mantle xenoliths from the Colorado Plateau and vicinity: Implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J Geophys Res Solid Earth. doi: 10.1029/2007JB005540 Google Scholar
  65. Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43. doi: 10.1016/j.chemgeo.2008.08.004 CrossRefGoogle Scholar
  66. Liu J, Xia QK, Deloule E, Ingrin J, Chen H, Feng M (2015) Water content and oxygen isotopic composition of alkali basalts from the Taihang Mountains, China: recycled oceanic components in the mantle source. J Petrol 56:681–702. doi: 10.1093/petrology/egv013 CrossRefGoogle Scholar
  67. McDonough WF, Sun S-S (1995) Composition of the Earth. Chem Geol 120:223–253. doi: 10.1016/0009-2541(94)00140-4 CrossRefGoogle Scholar
  68. Métrich N, Deloule E (2014) Water content, δD and δ11B tracking in the Vanuatu arc magmas (Aoba Island): insights from olivine-hosted melt inclusions. Lithos 206–207:400–408. doi: 10.1016/j.lithos.2014.08.011 CrossRefGoogle Scholar
  69. Millhollen G, Irving AJ, Wyllie PJ (1974) Melting interval of peridotite with 5.7 per cent water to 30 kilobars. J Geol 82:575–587CrossRefGoogle Scholar
  70. Morimoto N (1988) Nomenclature of pyroxenes. Am Mineral 73:123–1133Google Scholar
  71. Nazzareni S, Skogby H, Zanazzi PF (2011) Hydrogen content in clinopyroxene phenocrysts from Salina mafic lavas (Aeolian arc, Italy). Contrib Mineral Petrol 162:275–288. doi: 10.1007/s00410-010-0594-z CrossRefGoogle Scholar
  72. O’Leary JA (2007) Hydrogen isotope geochemistry of the mantle: constraints from back arc basin basalts and mantle xenoliths. Dissertation (Ph.D.), California Institute of Technology. http://resolver.caltech.edu/CaltechETD:etd-12182006-072449
  73. Panaiotu CG, Pécskay Z, Hambach U, Seghedi I, Panaiotu CE, Tetsumaru I, Orleanu M, Szakács A (2004) Short-lived Quaternary volcanism in the Persani Mountains (Romania) revealed by combined K–Ar and paleomagnetic data. Geol Carpath 55:333–339Google Scholar
  74. Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21(1):115–144. doi: 10.1111/j.1751-908X.1997.tb00538.x CrossRefGoogle Scholar
  75. Peslier AH (2010) A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J Volcanol Geotherm Res 197:239–258. doi: 10.1016/j.jvolgeores.2009.10.006 CrossRefGoogle Scholar
  76. Peslier AH, Luhr F, Jeffrey P (2002) Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth Planet Sci Lett 201:69–86. doi: 10.1016/S0012-821X(02)00663-5 CrossRefGoogle Scholar
  77. Poreda R (1985) Helium-3 and deuterium in back-arc basalts: Lau Basin and the Mariana Trough. Earth Planet Sci Lett 73:244–254. doi: 10.1016/0012-821X(85)90073-1 CrossRefGoogle Scholar
  78. Sambridge M, Gerald JF, Kovács I, O’Neill HSC, Hermann J (2008) Quantitative absorbance spectroscopy with unpolarized light: part I. Physical and mathematical development. Am Mineral 93:751–764CrossRefGoogle Scholar
  79. Sato M (1978) Oxygen fugacity of basaltic magmas and the role of gas-forming elements. Geophys Res Lett 5:447–449. doi: 10.1029/GL005i006p00447 CrossRefGoogle Scholar
  80. Sheng YM, Xia QK, Dallai L, Yang XZ, Hao YT (2007) H2O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen, eastern China. Geochim Cosmochim Acta 71:2079–2103. doi: 10.1016/j.gca.2007.01.018 CrossRefGoogle Scholar
  81. Sheppard SMF, Harris C (1985) Hydrogen and oxygen isotope geochemistry of Ascension Island lavas and granites: variation with crystal fractionation and interaction with seawater. Contrib Mineral Petrol 91:74–81. doi: 10.1007/BF00429429 CrossRefGoogle Scholar
  82. Smyth J, Bell D, Rossman G (1991) Incorporation of hydroxyl in upper-mantle clinopyroxenes. Nature 351:732–735. doi: 10.1038/351732a0 CrossRefGoogle Scholar
  83. Stalder R, Ludwig T (2007) OH incorporation in synthetic diopside. Eur J Mineral 19:373–380. doi: 10.1127/0935-1221/2007/0019-1721 CrossRefGoogle Scholar
  84. Stenina NG (2004) Water-related defects in quartz. Bull Geosci 79:251–268Google Scholar
  85. Sundvall R, Stalder R (2011) Water in upper mantle pyroxene megacrysts and xenocrysts: a survey study. Am Mineral 96:1215–1227CrossRefGoogle Scholar
  86. Suzuoki T, Epstein S (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim Cosmochim Acta 40:1229–1240. doi: 10.1016/0016-7037(76)90158-7 CrossRefGoogle Scholar
  87. Szabó Á (2013) Metaszomatikus olvadék hatása a Kelet-Erdélyi medence alatti litoszférikus köpenyre, M.Sc. thesis, Lithosphere Research Group (LRG), Eötvös University, Budapest, pp. 67. (in Hungarian with English Abstract)Google Scholar
  88. Tenner TJ, Hirschmann MM, Withers AC, Hervig RL (2009) Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting. Chem Geol 262:42–56. doi: 10.1016/j.chemgeo.2008.12.006 CrossRefGoogle Scholar
  89. Vaselli O, Downes H, Thirlwall M, Dobosi G, Coradossi N, Seghedi I, Szakacs A, Vannucci R (1995) Ultramafic xenoliths in Plio-Pleistocene alkali basalts from the Eastern Transylvanian Basin: depleted mantle enriched by vein metasomatism. J Petrol 36:23–53. doi: 10.1093/petrology/36.1.23 CrossRefGoogle Scholar
  90. Vennemann TW, O’Neil JR (1993) A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc reagent. Chem Geol 103:227–234. doi: 10.1016/0009-2541(93)90303-Z CrossRefGoogle Scholar
  91. Wang CY, Flesch LM, Silver PG, Chang LJ, Chan WW (2008) Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology 36:363–366. doi: 10.1130/G24450A.1 CrossRefGoogle Scholar
  92. Wijbrans J, Németh K, Martin U, Balogh K (2007) Ar-40/Ar-39 geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. J Volcanol Geotherm Res 164:193–204. doi: 10.1016/j.jvolgeores.2007.05.009 CrossRefGoogle Scholar
  93. Withers AC, Bureau H, Raepsaet C, Hirschmann MM (2012) Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine. Chem Geol 334:92–98. doi: 10.1016/j.chemgeo.2012.10.002 CrossRefGoogle Scholar
  94. Wyllie PJ (1978) Mantle fluid compositions buffered in peridotite–CO2–H2O by carbonates, amphibole, and phlogopite. J Geol 86:687–713CrossRefGoogle Scholar
  95. Xia QK, Dallai L, Deloule E (2004) Oxygen and hydrogen isotope heterogeneity of clinopyroxene megacrysts from Nushan Volcano, SE China. Chem Geol 209:137–151. doi: 10.1016/j.chemgeo.2004.04.028 CrossRefGoogle Scholar
  96. Xia QK, Liu J, Liu SC, Kovács I, Feng M, Dang L (2013) High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett 361:85–97. doi: 10.1016/j.epsl.2012.11.024 CrossRefGoogle Scholar
  97. Xu Z, Zheng YF, Zhao ZF, Gong B (2014) The hydrous properties of subcontinental lithospheric mantle: constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China. Geochim Cosmochim Acta 143:285–302. doi: 10.1016/j.gca.2013.12.025 CrossRefGoogle Scholar
  98. Xu Z, Gong B, Zhao Z (2016) The water content and hydrogen isotope composition of continental lithospheric mantle and mantle-derived mafic igneous rocks in eastern China. Sci China Earth Sci. doi: 10.1007/s11430-015-5247-7 Google Scholar
  99. Yang XZ, Xia QK, Deloule E, Dallai L, Fan QC, Feng M (2008) Water in minerals of the continental lithospheric mantle and overlying lower crust: a comparative study of peridotite and granulite xenoliths from the North China Craton. Chem Geol 256:33–45. doi: 10.1016/j.chemgeo.2008.07.020 CrossRefGoogle Scholar
  100. Zajacz Z, Kovács I, Szabó C, Halter W, Pettke T (2007) Evolution of mafic alkaline melts crystallized in the uppermost lithospheric mantle: a melt inclusion study of olivine-clinopyroxenite xenoliths, northern Hungary. J Petrol 48(5):853–883CrossRefGoogle Scholar
  101. Zanetti A, Vannucci R, Oberti R, Dobosi G (1995) Trace element composition and crystal chemistry of mantle amphiboles from the Carpatho–Pannonian Region. Acta Vulcanol 7:265–276Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • István Kovács
    • 1
  • Attila Demény
    • 2
  • György Czuppon
    • 2
  • Christophe Lécuyer
    • 3
  • Francois Fourel
    • 3
  • Qun-Ke Xia
    • 4
    • 5
  • Jia Liu
    • 4
  • Zsanett Pintér
    • 6
    • 7
  • Edit Király
    • 1
  • Kálmán Török
    • 1
  • Ábel Szabó
    • 1
    • 6
  • Etienne Deloule
    • 8
  • György Falus
    • 1
  • Tamás Fancsik
    • 1
  • Zoltán Zajacz
    • 9
  • Judit Sándorné Kovács
    • 10
  • Beatrix Udvardi
    • 1
  1. 1.Geological and Geophysical Institute of HungaryBudapestHungary
  2. 2.Research Centre for Astronomy and Earth Sciences, Institute for Geological and Geochemical ResearchHungarian Academy of SciencesBudapestHungary
  3. 3.Laboratoire de Géologie de Lyon, CNRS UMR 5276University of LyonLyonFrance
  4. 4.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  5. 5.School of Earth SciencesZhejiang UniversityHangzhouChina
  6. 6.Lithosphere Fluid Research LabEötvös UniversityBudapestHungary
  7. 7.Bayerisches GeoinstitutUniversity of BayreuthBayreuthGermany
  8. 8.Centre de Recherche Pétrographiques et Géochimiques, CNRS UMR-5873Univ. de LorraineVandoeuvre-lès-NancyFrance
  9. 9.Department of Earth SciencesUniversity of TorontoTorontoCanada
  10. 10.Hungarian Institute for Forensic SciencesBudapestHungary

Personalised recommendations