Partial melting of garnet lherzolite with water and carbon dioxide at 3 GPa using a new melt extraction technique: implications for intraplate magmatism

  • Amrei BaasnerEmail author
  • Etienne Médard
  • Didier Laporte
  • Géraldine Hoffer
Original Paper


The origin and source rocks of alkali-rich and SiO2-undersatured magmas in the Earth’s upper mantle are still under debate. The garnet signature in rare earth element patterns of such magmas suggests a garnet-bearing source rock, which could be garnet lherzolite or garnet pyroxenite. Partial melting experiments were performed at 2.8 GPa and 1345–1445 °C in a piston-cylinder using mixtures of natural lherzolite with either 0.4 wt% H2O and 0.4 wt% CO2 or 0.7 wt% H2O and 0.7 wt% CO2. Different designs of AuPd capsules were used for melt extraction. The most successful design included a pentagonally shaped disc placed in the top part of the capsule for sufficient melt extraction. The degrees of partial melting range from 0.2 to 0.04 and decrease with decreasing temperature and volatile content. All samples contain olivine and orthopyroxene. The amounts of garnet and clinopyroxene decrease with increasing degree of partial melting until both minerals disappear from the residue. Depending on the capsule design, the melts quenched to a mixture of quench crystals and residual glass or to glass, allowing measurement of the volatile concentrations by Raman spectroscopy. The compositions of the partial melts range from basalts through picrobasalts to foidites. Compared to literature data for melting of dry lherzolites, the presence of H2O and CO2 reduces the SiO2 concentration and increases the MgO concentration of partial melts, but it has no observable effect on the enrichment of Na2O in the partial melts. The partial melts have compositions similar to natural melilitites from intraplate settings, which shows that SiO2-undersaturated intraplate magmas can be generated by melting of garnet lherzolite in the Earth’s upper mantle in the presence of H2O and CO2.


Mantle Garnet lherzolite Partial melting Intraplate setting Carbon dioxide Water 



This research was financed by the French Government Laboratory of Excellence initiative no. ANR-10-LABX-0006, the Région Auvergne, the European Regional Development Fund, the Syster program of CNRS-INSU, and the Agence Nationale de la Recherche (ELECTROLITH Project, Contract No. ANR-2010-BLAN-621). This is Laboratory of Excellence ClerVolc contribution number 196. We thank Dr. Burkhard Schmidt and the Department for Experimental and Applied Mineralogy at Georg-August-University Göttingen for granting us access to their Raman spectrometer. The original design of the cold-sealed, thick-walled capsules (without the inner disc to extract partial melt) was provided to us by Dr. R. P. Rapp. We thank Claire Fonquernie at LMV for the NHCS analyses. We thank Greg Van den Bleeken, Pierre Condamine, Manon Hardiagon, Maxime Mercier and Nathalie Bolfan-Casanova for their support in the laboratory. In addition, we thank the two anonymous reviewers for their constructive comments.

Supplementary material

410_2016_1233_MOESM1_ESM.doc (415 kb)
Supplementary material 1 (DOC 415 kb)
410_2016_1233_MOESM2_ESM.xlsx (35 kb)
Supplementary material 2 (XLSX 35 kb)
410_2016_1233_MOESM3_ESM.docx (19 kb)
Supplementary material 3 (DOCX 18 kb)


  1. Alibert C, Michard A, Albarède F (1983) The transition from alkali basalts to kimberlites: isotope and trace element evidence from melilitites. Contrib Miner Petrol 82(2–3):176–186CrossRefGoogle Scholar
  2. Anderson DL (2000) The thermal state of the upper mantle; No role for mantle plumes. Geophys Res Lett 27(22):3623–3626CrossRefGoogle Scholar
  3. Balta JB, Asimow PD, Mosenfelder JL (2011) Hydrous, low-carbon melting of garnet peridotite. J Petrol 52(11):2079–2105CrossRefGoogle Scholar
  4. Barr JA, Grove TL (2010) AuPdFe ternary solution model and applications to understanding the fO2 of hydrous, high-pressure experiments. Contrib Miner Petrol 160(5):631–643CrossRefGoogle Scholar
  5. Behrens H, Roux J, Neuville D, Siemann M (2006) Quantification of dissolved H2O in silicate glasses using confocal microRaman spectroscopy. Chem Geol 229(1–3):96–112CrossRefGoogle Scholar
  6. Blundy J, Trevor JF, Wood BJ, Dalton JA (1995) Sodium partitioning between clinopyroxene and silicate melts. J Geophysic Res 100(B8):15501–15515CrossRefGoogle Scholar
  7. Bose K, Ganguly J (1995) Quartz-coesite transition revisited; reversed experimental determination at 500–1200 degrees C and retrieved thermochemical properties. Am Mineral 80(3–4):231–238CrossRefGoogle Scholar
  8. Brey G (1978) Origin of olivine melilitites—chemical and experimental constraints. J Volcanol Geoth Res 3(1–2):61–88CrossRefGoogle Scholar
  9. Brey G, Green DH (1977) Systematic study of liquidus phase relations in olivine melilitite +H2O +CO2 at high pressures and petrogenesis of an olivine melilitite magma. Contrib Miner Petrol 61(2):141–162CrossRefGoogle Scholar
  10. Clague DA, Frey FA (1982) Petrology and trace element geochemistry of the Honolulu volcanics, Oahu: implications for the oceanic mantle below Hawaii. J Petrol 23(3):447–504CrossRefGoogle Scholar
  11. Condamine P, Médard E (2014) Experimental melting of phlogopite-bearing mantle at 1 GPa: implications for potassic magmatism. Earth Planet Sci Lett 397:80–92CrossRefGoogle Scholar
  12. Dasgupta R, Hirschmann MM, Smith ND (2007a) Partial melting experiments of peridotite+ CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48(11):2093–2124CrossRefGoogle Scholar
  13. Dasgupta R, Hirschmann MM, Smith ND (2007b) Water follows carbon: CO2 incites deep silicate melting and dehydration beneath mid-ocean ridges. Geology 35(2):135CrossRefGoogle Scholar
  14. Davis F, Hirschmann M (2013) The effects of K2O on the compositions of near-solidus melts of garnet peridotite at 3 GPa and the origin of basalts from enriched mantle. Contrib Miner Petrol 166(4):1029–1046CrossRefGoogle Scholar
  15. Davis FA, Hirschmann MM, Humayun M (2011) The composition of the incipient partial melt of garnet peridotite at 3GPa and the origin of OIB. Earth Planet Sci Lett 308(3–4):380–390CrossRefGoogle Scholar
  16. Donnelly-Nolan JM, Champion DE, Grove TL, Baker MB, Taggart JE, Bruggman PE (1991) The giant crater lava field: geology and geochemistry of a compositionally zoned, high-alumina basalt to basaltic andesite eruption at Medicine Lake Volcano, California. J Geophys Res 96(B13):21843CrossRefGoogle Scholar
  17. Frost DJ, McCammon CA (2008) The redox state of earth’s mantle. Annu Rev Earth Planet Sci 36(1):389–420CrossRefGoogle Scholar
  18. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Miner Petrol 131(4):323–346CrossRefGoogle Scholar
  19. Ghiorso M (1985) Chemical mass transfer in magmatic processes. Contrib Miner Petrol 90(2–3):107–120CrossRefGoogle Scholar
  20. Ghiorso M, Sack R (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Miner Petrol 119(2–3):197–212CrossRefGoogle Scholar
  21. Green DH (1972) Magmatic activity as the major process in the chemical evolution of the earth’s crust and mantle. Tectonophysics 13(1–4):47–71CrossRefGoogle Scholar
  22. Green DH (2015) Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth’s upper mantle. Phys Chem Miner 42:95–122CrossRefGoogle Scholar
  23. Green DH, Falloon TJ (2005) Primary magmas at mid-ocean ridges, “hotspots”, and other intraplate settings: constraints on mantle potential temperature. Geol Soc Am Spec Pap 388:217–247Google Scholar
  24. Green DH, Falloon TJ (2015) Mantle-derived magmas: intraplate, hot-spots and mid-ocean ridges. Science Bulletin 60(22):1873–1900CrossRefGoogle Scholar
  25. Green DH, O’Hara MJ (1971) Composition of basaltic magmas as indicators of conditions of origin: application to oceanic volcanism [and discussion]. Philos Trans R Soc Lond A Math Phys EngSci 268(1192):707–725CrossRefGoogle Scholar
  26. Green DH, Falloon TJ, Taylor WR (1987) Mantle-derived magmas-roles of variable source peridotite and variable C-H-O fluid compositions. In: Mysen BO (ed) Magmatic process: physicochemical principles, vol 1. The Geochemical Society, Washington, pp 139–154Google Scholar
  27. Grove TL, Chatterjee N, Parman SW, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249(1–2):74–89CrossRefGoogle Scholar
  28. Grove T, Holbig E, Barr J, Till C, Krawczynski M (2013) Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite. Contrib Miner Petrol 166(3):887–910CrossRefGoogle Scholar
  29. Gupta AK, Green DH, Taylor WR (1987) The liquidus surface of the system forsterite-nepheline-silica at 28 kb. Am J Sci 287(6):560–565CrossRefGoogle Scholar
  30. Hall LJ, Brodie J, Wood BJ, Carroll MR (2004) Iron and water losses from hydrous basalts contained in Au80Pd20 capsules at high pressure and temperature. Mineral Mag 68(1):75–81CrossRefGoogle Scholar
  31. Hirose K (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res Lett 24(22):2837–2840CrossRefGoogle Scholar
  32. Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114(4):477–489CrossRefGoogle Scholar
  33. Hirschmann MM (2000) Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem Geophys Geosyst 1(10):1042CrossRefGoogle Scholar
  34. Hirschmann MM (2006) Water, melting, and the deep earth H2O cycle. Annu Rev Earth Planet Sci 34(1):629–653CrossRefGoogle Scholar
  35. Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Miner Petrol 124(2):185–208CrossRefGoogle Scholar
  36. Hirschmann MM, Baker MB, Stolper EM (1998) The effect of alkalis on the silica content of mantle-derived melts. Geochim Cosmochim Acta 62(5):883–902CrossRefGoogle Scholar
  37. Hirschmann MM, Kogiso T, Baker MB, Stolper EM (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31(6):481–484CrossRefGoogle Scholar
  38. Hoffer G (2008) Fusion partielle d’un manteau métasomatisé par un liquide adakitique: Approches géochimique et expérimentale de la genèse et de l’évolution des magmas de l’arrière-arc Equatorien. Ph.D. Thesis, Université Blaise-Pascal, Clermont-Ferrand, in French Google Scholar
  39. Kägi R, Müntener O, Ulmer P, Ottolini L (2005) Piston-cylinder experiments on H2O undersaturated Fe-bearing systems: an experimental setup approaching fO2 conditions of natural calc-alkaline magmas. Am Mineral 90(4):708–717CrossRefGoogle Scholar
  40. Katz RF, Spiegelman M, Langmuir CH (2003) A new parameterization of hydrous mantle melting. Geochem Geophys Geosyst 4(9):1073CrossRefGoogle Scholar
  41. Keller J, Brey G, Lorenz V, Sachs P (1990) Volcanism and petrology of the Upper Rhinegraben (Urach-Hegau-Kaiserstuhl). IAVCEI Int Volc Congress Mainz Field Guide: 1–60Google Scholar
  42. Keller J, Zaitsev A, Wiedenmann D (2006) Primary magmas at Oldoinyo Lengai: the role of olivine melilitites. Lithos 91(1–4):150–172CrossRefGoogle Scholar
  43. Kujumzelis TG (1938) Über die Schwingungen und die Struktur der XO3-Ionen. Zeitschrift für Physik 109(9–10):586–597CrossRefGoogle Scholar
  44. Kurszlaukis S, Franz L, Brey GP (1999) The Blue Hills intrusive complex in southern Namibia—relationships between carbonatites and monticellite picrites. Chem Geol 160(1–2):1–18CrossRefGoogle Scholar
  45. Kushiro I (1996) Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. In: Basu A, Hart S (eds) Earth processes: Reading the isotopic code, vol 95. Geophysical Monograph, American Geophysical Union, pp 109–122 Google Scholar
  46. Lambart S, Laporte D, Schiano P (2013) Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: review of the experimental constraints. Lithos 160–161:14–36CrossRefGoogle Scholar
  47. Laporte D, Lambart S, Schiano P, Ottolini L (2014) Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites. Earth Planet Sci Lett 404:319–331CrossRefGoogle Scholar
  48. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750CrossRefGoogle Scholar
  49. Lesher CE, Walker D (1988) Cumulate maturation and melt migration in a temperature gradient. J Geophys Res Solid Earth 93(B9):10295–10311CrossRefGoogle Scholar
  50. Longhi J (2002) Some phase equilibrium systematics of lherzolite melting: I. Geochem Geophys Geosyst 3(3):1–33CrossRefGoogle Scholar
  51. Mattsson HB, Nandedkar RH, Ulmer P (2013) Petrogenesis of the melilititic and nephelinitic rock suites in the Lake Natron-Engaruka monogenetic volcanic field, northern Tanzania. Lithos 179:175–192CrossRefGoogle Scholar
  52. McMillan PF (1994) Water solubility and speciation models. In: Carroll MR, Holloway JR (eds) Volatiles in Magmas, vol 30. Mineralogical Society of America, Washington, D.C., p 517Google Scholar
  53. Médard E, Grove TL (2008) The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contrib Miner Petrol 155(4):417–432CrossRefGoogle Scholar
  54. Mergoil J, Boivin P, Bles J-L, Cantagrel J-M, Turland M (1993) Le Velay. Son volcanisme et les formations associées. Notice de la carte à 1/100000. Géologie de la France 3:3–96 Google Scholar
  55. Mertes H, Schmincke HU (1985) Mafic potassic lavas of the Quaternary West Eifel volcanic field. Contrib Miner Petrol 89(4):330–345CrossRefGoogle Scholar
  56. Morizet Y, Brooker RA, Iacono-Marziano G, Kjarsgaard BA (2013) Quantification of dissolved CO2 in silicate glasses using micro-Raman spectroscopy. Am Mineral 98(10):1788–1802CrossRefGoogle Scholar
  57. Mysen BO, Virgo D, Scarfe CM (1980) Relations between the anionic structure and viscosity of silicate melts—a Raman spectroscopic study. Am Mineral 65(7–8):690–710Google Scholar
  58. Ottolini L, Laporte D, Raffone N, Devidal J-L, Le Fèvre B (2009) New experimental determination of Li and B partition coefficients during upper mantle partial melting. Contrib Miner Petrol 157(3):313–325CrossRefGoogle Scholar
  59. Putirka KD (2005) Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes. Geochem Geophys Geosyst 6(5):Q05L08CrossRefGoogle Scholar
  60. Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419(6906):451–455CrossRefGoogle Scholar
  61. Shelby JE (1994) Protonic species in vitreous silica. J Non-Cryst Solids 179:138–147CrossRefGoogle Scholar
  62. Sorbadere F (2013) Apport des inclusions magmatiques et de la fusion expérimentale d’une source mixte péridotite—pyroxénite à l’étude des mécanismes de genèse des magmas d’arc sous-saturés en silice. Ph.D. Thesis, Université Blaise-Pascal, Clermont-Ferrand, in French Google Scholar
  63. Sorbadere F, Médard E, Laporte D, Schiano P (2013) Experimental melting of hydrous peridotite–pyroxenite mixed sources: constraints on the genesis of silica-undersaturated magmas beneath volcanic arcs. Earth Planet Sci Lett 384:42–56CrossRefGoogle Scholar
  64. Taylor WR, Green DH (1987) The petrogenetic role of methane: effect on liquidus phase relations and the solubility mechanism of reduced C-H volatiles. In: Mysen BO (ed) Magmatic processes: physicochemical principles, vol 1. The Geochemical Society, Washington, pp 121–138Google Scholar
  65. Taylor WR, Green DH (1988) Measurement of reduced peridotite-C-O-H solidus and implications for redox melting of the mantle. Nature 332(6162):349–352CrossRefGoogle Scholar
  66. Taylor WR, Green DH (1989) The role of reduced C-O-H fluids in mantle partial melting. In: Ross J (ed) Kimberlites and related rocks, vol 14. Blackwell, Melbourne, pp 592–602Google Scholar
  67. Tenner TJ, Hirschmann MM, Humayun M (2012) The effect of H2O on partial melting of garnet peridotite at 3.5 GPa. Geochem Geophys Geosyst 13(3):Q03016CrossRefGoogle Scholar
  68. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Miner Petrol 149(1):22–39CrossRefGoogle Scholar
  69. Trumbull RB, Bühn B, Romer RL, Volker F (2003) The petrology of basanite–tephrite intrusions in the Erongo complex and implications for a plume origin of cretaceous alkaline complexes in Namibia. J Petrol 44(1):93–112CrossRefGoogle Scholar
  70. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60CrossRefGoogle Scholar
  71. Watson EB (1987) Diffusion and solubility of Pt in C. Am Mineral 72:487–490Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Amrei Baasner
    • 1
    Email author
  • Etienne Médard
    • 1
  • Didier Laporte
    • 1
  • Géraldine Hoffer
    • 1
    • 2
  1. 1.Laboratoire Magmas et VolcansUniversité Blaise Pascal – CNRS – IRD, OPGCAubiereFrance
  2. 2.QuitoEcuador

Personalised recommendations