Primary cumulus platinum minerals in the Monts de Cristal Complex, Gabon: magmatic microenvironments inferred from high-definition X-ray fluorescence microscopy

  • Stephen J. BarnesEmail author
  • Louise A. Fisher
  • Bélinda Godel
  • Mark A. Pearce
  • Wolfgang D. Maier
  • David Paterson
  • Daryl L. Howard
  • Christopher G. Ryan
  • Jamie S. Laird
Original Paper


An unusual occurrence of Pt-enriched pyroxenites in the Monts de Cristal igneous complex is characterized by unusually high ratios of Pt to other platinum-group elements (PGEs) and very low Cu and sulfide contents. Synchrotron X-ray fluorescence microscopy was used to identify over a hundred discrete grains of platinum minerals and relate their occurrence to textural associations in the host heteradcumulate orthopyroxenites. Element associations, backed up by FIB-SEM and PIXE probe observations, indicate that most of the Pt is associated with either As- or trace Cu–Ni-rich sulfides, or both. Some of the Pt–As grains can be identified as sperrylite, and most are likely to be Pt–Fe alloy. The relative abundances and volumes of Pt minerals to sulfide minerals are very large compared with typical magmatic sulfides. Almost all of the grains observed lie at or within a few tens of μm of cumulus orthopyroxene grain boundaries, and there is no significant difference between the populations of grains located inside or outside plagioclase oikocrysts. These oikocrysts are inferred to have crystallized either at the cumulus stage or very shortly thereafter, on the basis of their relationship to Ti enrichment in the margins of pyroxene grains not enclosed in oikocrysts. This relationship precludes a significant role of trapped intercumulus liquid in Pt deposition or mobilization and also allows a confident inference that Pt-rich and Pt–As-enriched phases precipitated directly from the magma at the cumulus stage. These observations lead to the conclusion that fractionation of Pt from other PGEs in this magmatic system is a consequence of a solubility limit for solid Pt metal and/or Pt arsenide.


Platinum Cumulates Layered intrusions PGEs 



This research was carried out on the X-ray fluorescence microscopy beam line at the Australian Synchrotron, Clayton, Victoria, Australia. We acknowledge financial support for this facility from the Science and Industry Edowment Fund (SIEF). We thank Martin de Jonge for his programming of complex scan control scripts and Kathryn Spiers for beamline assistance during the experiment. James Mungall provided helpful reviews of a preliminary draft. This work was supported by the Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE) ( We acknowledge the support of the National Resource Sciences Precinct through the Advanced Resource Characterisation Facility for access to the FIB-SEM. We thank David Holwell, Raul Fonseca and Associate Editor Christian Ballhaus for helpful and constructive reviews that greatly improved the final paper.

Supplementary material

410_2016_1232_MOESM1_ESM.pdf (279 kb)
Figure S1 Sets of corresponding three-element maps and Pt hot spot images for selected detailed scan areas from four different sections, showing relationships between Pt and As hot spots, and the presence of sulfide phases as indicated by Cu, Ni, and Se hot spots. Scale bar is 50 µm thick in all cases. (PDF 278 kb)


  1. Andersen JCO, Rasmussen H, Nielsen TFD, Ronsbo JG (1998) The Triple Group and the Platinova gold and palladium reefs in the Skaergaard Intrusion—Stratigraphic and Petrographic Relations. Econ Geol 93:488–509CrossRefGoogle Scholar
  2. Andrews DRA, Brenan JM (2002) The solubility of ruthenium in sulfide liquid; implications for platinum group mineral stability and sulfide melt-silicate melt partitioning. Chem Geol 192:163–181CrossRefGoogle Scholar
  3. Ballhaus C, Stumpfl EF (1986) Sulfide and platinum mineralization in the Merensky Reef: evidence from hydrous silicates and fluid inclusions. Contrib Mineral Petrol 94:193–204CrossRefGoogle Scholar
  4. Barnes SJ, Fiorentini ML (2008) Iridium, ruthenium and rhodium in komatiites: evidence for iridium alloy saturation. Chem Geol 257:44–58. doi: 10.1016/j.chemgeo.2008.08.015 CrossRefGoogle Scholar
  5. Barnes SJ, Liu W (2012) Pt and Pd mobility in hydrothermal fluids: evidence from komatiites and from thermodynamic modelling. Ore Geol Rev 44:49–58. doi: 10.1016/j.oregeorev.2011.08.004 CrossRefGoogle Scholar
  6. Barnes S-J, Lightfoot PC (2005) Formation of magmatic nickel sulfide deposits and processes affecting their copper and platinum group element contents. Econ Geol 100th Anniv Vol:179–214Google Scholar
  7. Becker H, Horan MF, Walker RJ, Gao S, Lorand J-P, Rudnick RL (2006) Highly siderophile element composition of the Earth’s primitive mantle: constraints from new data on peridotite massifs and xenoliths. Geochim Cosmochim Acta 70:4528–4550CrossRefGoogle Scholar
  8. Bird DK, Brooks CK, Gannicott RA, Turner PA (1991) A gold-bearing horizon in the Skaergaard Intrusion, East Greenland. Econ Geol 86:1083–1092CrossRefGoogle Scholar
  9. Borisov A, Palme H (1997) Experimental determination of the solubility of platinum in silicate melts. Geochim Cosmochim Acta 61:4349–4357CrossRefGoogle Scholar
  10. Borisov A, Palme H (2000) Solubilities of noble metals in Fe-containing silicate melts as derived from experiments in Fe-free systems. Am Mineral 85:1665–1673CrossRefGoogle Scholar
  11. Boudreau AE, Meurer WP (1999) Chromatographic separation of the platinum-group elements, gold, base metals and sulfur during degassing of a compacting and solidifying igneous crystal pile. Contrib Mineral Petrol 134:174–185CrossRefGoogle Scholar
  12. Boudreau AE, Mathez EA, McCallum IS (1986) Halogen geochemistry of the Stillwater and Bushveld Complexes: evidence for transport of platinum group elements by Cl-rich fluids. J Petrol 27:967–986CrossRefGoogle Scholar
  13. Campbell IH (1968) The origin of hetradcumulate and adcumulate textures in the Jimberlana Norite. Geol Mag 105:378–383CrossRefGoogle Scholar
  14. Campbell IH, Naldrett AJ, Barnes SJ (1983) A model for the origin of the platinum-rich sulfide horizons in the Bushveld and Stillwater Complexes. J Petrol 24:133–165CrossRefGoogle Scholar
  15. Canali AC (2014) Solubility of the Assemblage Pt–PtAs in Basalt with Implications for Pt–as complexing and as speciation. Univerity of Toronto, TorontoGoogle Scholar
  16. Canali AC, Brenan JM (2015) Solubility of the assemblage Pt–PtAs(melt) in basalt with implications for Pt–As complexing and As speciation. In: Geol Ass Canada - Mineral Ass Canada Annual Meeting 2015, Abstracts, p A34039Google Scholar
  17. Edou-Minko A, Grandin G, Campiglio C (2002) Petrologie et geomorphologie dans la region de Kango, Gabon: un grand dyke ultramafique-mafique archeen. J Afr Earth Sci 32:899–918CrossRefGoogle Scholar
  18. Finnigan CS, Brenan JM, Mungall JE, McDonough WF (2008) Experiments and models bearing on the role of chromite as a collector of platinum group minerals by local reduction. J Petrol 49(9):1647–1665CrossRefGoogle Scholar
  19. Fiorentini ML, Beresford SW, Grguric B, Barnes SJ, Stone WE (2007) Atypical stratiform sulfide-poor platinum-group element mineralisation in the Agnew-Wiluna belt komatiites, Wiluna, Western Australia. Aust J Earth Sci 54:801–824CrossRefGoogle Scholar
  20. Fiorentini ML, Barnes SJ, Lesher CM, Heggie GJ, Keays RR, Burnham OM (2010) Platinum-group element geochemistry of mineralized and non-mineralized komatiites and basalts. Econ Geol 105:795–823CrossRefGoogle Scholar
  21. Fiorentini ML, Barnes SJ, Maier WD, Burnham OM, Heggie GJ (2011) Global variability in the platinum-group element contents of komatiites. J Petrol 52:83–112CrossRefGoogle Scholar
  22. Fonseca ROC, Campbell IH, O’Neill HSC, Allen CM (2009) Solubility of Pt in sulphide mattes: implications for the genesis of PGE-rich horizons in layered intrusions. Geochim Cosmochim Acta. doi: 10.1016/j.gca.2009.06.038 Google Scholar
  23. Fonseca ROC, Laurenz V, Mallmann G, Luguet A, Hoehne N, Jochum KP (2012) New constraints on the genesis and long-term stability of Os-rich alloys in the Earth’s mantle. Geochim Cosmochim Acta 87:227CrossRefGoogle Scholar
  24. Godel B (2013) High-Resolution X-ray computed tomography and its application to ore deposits: from data acquisition to quantitative three-dimensional measurements with case studies from Ni–Cu–PGE Deposits. Econ Geol 108:2005–2019. doi: 10.2113/econgeo.108.8.2005 CrossRefGoogle Scholar
  25. Godel BM, Barnes SJ, Barnes S-J, Maier WD (2010) Platinum ore in 3D: insights from high-resolution X-ray computed tomography. Geology 38:1127–1130CrossRefGoogle Scholar
  26. Godel BM, Gonzalez-Alvarez I, Barnes SJ, Barnes S-J, Parker P, Day J (2012) Sulfides and sulfarsenides from the Rosie nickel prospect, Duketon greenstone belt, Western Australia. Econ Geol 107:275–294CrossRefGoogle Scholar
  27. Godel BM, Barnes SJ, Gurer D, Austin P, Fiorentini ML (2013) Chromite in komatiites: 3D morphologies with implications for crystallization mechanisms. Contrib Mineral Petrol 165:173–189. doi: 10.1007/s00410-012-0804-y CrossRefGoogle Scholar
  28. Godel B, Rudashevsky NS, Nielsen TFD, Barnes SJ, Rudashevsky VN (2014) New constraints on the origin of the Skaergaard Intrusion Cu–Pd–Au mineralization: insights from high-resolution X-ray computed tomography. Lithos 190–191:27–36. doi: 10.1016/j.lithos.2013.11.019 CrossRefGoogle Scholar
  29. Hanley JJ (2007) The role of arsenic-rich melts and mineral phases in the development of high-grade Pt–Pd mineralization within komatiite-associated magmatic Ni–Cu sulfide horizons at Dundonald Beach South, Abitibi Subprovince, Ontario, Canada. Econ Geol 102(2):305–317CrossRefGoogle Scholar
  30. Helmy HM, Ballhaus C, Fonseca ROC, Nagel TJ (2013) Fractionation of platinum, palladium, nickel, and copper in sulfide-arsenide systems at magmatic temperature. Contrib Mineral Petrol 166(6):1725–1737. doi: 10.1007/s00410-013-0951-9 CrossRefGoogle Scholar
  31. Holwell DA, Keays RR (2014) The formation of low-volume, high-tenor magmatic PGE-Au sulfide mineralization in closed systems; evidence from precious and base metal geochemistry of the Platinova Reef, Skaergaard Intrusion, East Greenland. Econ Geol 109(2):387–406. doi: 10.2113/econgeo.109.2.387 CrossRefGoogle Scholar
  32. Karup-Moller S, Makovicky E, Barnes SJ (2008) The metal-rich portions of the phase system Cu–Fe–Pd–S at 1000 degrees C, 900 degrees C and 725 degrees C; implications for mineralization in the Skaergaard Intrusion. Mineral Mag 72(4):941–951. doi: 10.1180/minmag.2008.072.4.941 CrossRefGoogle Scholar
  33. Keays RR, Lightfoot PC (2010) Crustal sulfur is required to form magmatic Ni–Cu sulfide deposits; evidence from chalcophile element signatures of Siberian and Deccan Trap basalts. Mineral Depos 45(3):241CrossRefGoogle Scholar
  34. Keays RR, Lightfoot PC, Hamlyn PR (2012) Sulfide saturation history of the stillwater complex, Montana: chemostratigraphic variation in platinum group elements. Mineral Depos 47(1–2):151–173CrossRefGoogle Scholar
  35. Kirkham R, Dunn P, Kuczewski A, Siddons D, Dodanwela R, Moorhead G, Ryan C, De Geronimo G, Beuttenmuller R, Pinelli D, Pfeffer M, Davey P, Jensen M, Paterson D, de Jonge M, Kusel M, McKinlay J (2010) The Maia spectroscopy detector system: engineering for integrated pulse capture, low-latency scanning and real-time processing. Proc Aust Inst Phys 1234:240–243Google Scholar
  36. Kogiso T, Suzuki K, Suzuki T, Shinotsuka K, Uesugi A, Takeuchi A, Suzuki Y (2008) Detecting micrometer-scale platinum-group minerals in mantle peridotite with microbeam synchrotron radiation X-ray fluorescence analysis. Goeochem Geophys Geosyst 9:Q03018. doi: 10.1029/2007GC001888 Google Scholar
  37. Laird JS, Szymanski R, Ryan CG, Gonzalez-Alvarez I (2013) A labview based FPGA data acquisition with integrated stage and beam transport control. Nucl Instrum Methods Phys Res B 306:71–75. doi: 10.1016/j.nimb.2012.12.045 CrossRefGoogle Scholar
  38. Locmelis M, Barnes SJ, Pearson NJ, Fiorentini ML (2009) Anomalous sulfur-poor platinum-group element mineralization in komatiitic cumulates, Mount Clifford, Western Australia. Econ Geol 104:841–855CrossRefGoogle Scholar
  39. Lorand J-P, Luguet A, Alard O (2008) Platinum-group elements; a new set of key tracers for the Earth’s interior. Elements 4(4):247–252. doi: 10.2113/gselements.4.4.247 CrossRefGoogle Scholar
  40. Maier WD, Barnes SJ, Campbell IH, Fiorentini ML, Peltonen P, Barnes S-J, Smithies RH (2009) Progressive mixing of meteoritic veneer into the early Earth’s deep mantle. Nature 460:620–623. doi: 10.1038/nature08205 CrossRefGoogle Scholar
  41. Maier WD, Rasmussen B, Fletcher I, Godel B, Barnes SJ, Fisher L, Yang SH, Huhma H, Lahaye Y (2015) Petrogenesis of the ~2.77 Ga Monts de Cristal Complex, Gabon: evidence for direct precipitation of Pt-arsenides from basaltic magma. J Petrol. doi: 10.1093/petrology/egv035 Google Scholar
  42. Mathison CI (1987) Pyroxene oikocrysts in troctolitic cumulates; evidence for supercooled crystallisation and postcumulus modification. Contrib Mineral Petrol 97(2):228CrossRefGoogle Scholar
  43. McBirney AR, Noyes RM (1979) Crystallization and layering in the Skaergaard intrusion. J Petrol 20:487–554CrossRefGoogle Scholar
  44. Mungall JE, Brenan JM (2014) Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochim Cosmochim Acta 125:265–289. doi: 10.1016/j.gca.2013.10.002 CrossRefGoogle Scholar
  45. Mungall JE, Naldrett AJ (2008) Ore deposits of the platinum-group elements. Elements 4(4):253–258. doi: 10.2113/gselements.4.4.253 CrossRefGoogle Scholar
  46. Naldrett AJ, Lehmann J, Auge T (1989) Spinel non-stoichiometry and reactions between chromite and closely associated sulphides, with examples from ophiolite complexes. Inst Min Metall, LondonGoogle Scholar
  47. Nielsen TFD, Anderson JCO, Holness MB, Keiding JK, Rudashevsky NS, Rudashevsky VN, Salmonsen LP, Tegner C, Veksler IV (2015) The Skaergaard PGE and gold deposit: the result of in situ fractionation, sulphide saturation, and magma chamber-scale precious metal redistribution by immiscible Fe-rich melt. J Petrol 56:643–1676. doi: 10.1093/petrology/egv049 CrossRefGoogle Scholar
  48. Park J-W, Campbell IH (2013) Platinum alloy and sulfur saturation in an arc-related basalt to rhyolite suite; evidence from the Pual Ridge lavas, the eastern Manus Basin. Geochim Cosmochim Acta 101:76CrossRefGoogle Scholar
  49. Paterson D, de Jonge MD, Howard DL, Lewis W, McKinlay J, Starritt A, Kusel M, Ryan CG, Kirkham R, Moorhead G, Siddons DP (2011) The X-ray fluorescence microscopy beamline at the australian synchrotron. Proc Aust Inst Phys 1365:219–222Google Scholar
  50. Pina R, Gervilla F, Barnes SJ, Ortega L, Lunar R (2015) Liquid immiscibility between arsenide and sulfide melts; evidence from a LA-ICP-MS study in magmatic deposits at Serrania de Ronda (Spain). Mineral Depos 50(3):265–279. doi: 10.1007/s00126-014-0534-3 CrossRefGoogle Scholar
  51. Prichard HM, Fisher PC, McDonald I, Knight RD, Black AP, Sharp DR, Williams JP (2013) The distribution of PGE and the role of arsenic as a collector of PGE in the Spotted Quoll nickel ore deposit in the Forrestania Greenstone Belt, Western Australia. Econ Geol 108:1903–1922CrossRefGoogle Scholar
  52. Ryan CG, Kirkham R, Hough RM, Moorhead G, Siddons DP, de Jonge MD, Paterson DJ, De Geronimo G, Howard DL, Cleverley JS (2010) Elemental X-ray imaging using the Maia detector array: the benefits and challenges of large solid-angle. Nucl Instrum Methods Phys Res A 619:37–43CrossRefGoogle Scholar
  53. Ryan CG, Siddons DP, Kirkham R, Li ZY, de Jonge MD, Paterson DJ, Cleverley JS, Kuczewski A, Dunn PA, Jensen M, De Geronimo G, Howard DL, Godel B, Dyl KA, Fisher LA, Hough RM, Barnes SJ, Bland PA, Moorhead GF, James SA, Spiers KM, Falkenberg G, Boesenberg U, Wellenreuther G (2014a) The Maia detector array and X-ray fluorescence imaging system: locating rare precious metal phases in complex samples Proc SPIE 8851. X-Ray Nanoimaging Instrum Methods 8851:88510Q. doi: 10.1117/12.2027195 Google Scholar
  54. Ryan CG, Siddons DP, Kirkham R, Li ZY, de Jonge MD, Paterson DJ, Kuczewski A, Howard DL, Dunn PA, Falkenberg GU, Boesenberg U, De Geronimo G, Fisher LA, Halfpenny A, Lintern MJ, Lombi E, Dyl KA, Jensen M, Moorhead GF, Cleverley JS, Hough RM, Godel B, Barnes SJ, James SA, Spiers KM, Alfeld M, Wellenreuther G, Vukmanovic Z, Borg S (2014b) Maia X-ray fluorescence imaging: Capturing detail in complex natural samples. J Phys Conf Ser 499:012002CrossRefGoogle Scholar
  55. Tomkins AG (2010) Wetting facilitates late-stage segregation of precious metal-enriched sulfosalt melt in magmatic sulfide systems. Geology 38(10):951–954CrossRefGoogle Scholar
  56. Wager LR, Brown GM (1968) Layered igneous rocks. Oliver and Boyd, Edinburgh, p 588Google Scholar
  57. Wager LR, Brown GM, Wadsworth WJ (1960) Types of igneous cumulates. J Petrol 1:73–85CrossRefGoogle Scholar
  58. Wohlgemuth-Ueberwasser CC, Fonseca ROC, Ballhaus C, Berndt J (2013) Sulfide oxidation as a process for the formation of copper-rich magmatic sulfides. Mineral Depos 48(1):115–127. doi: 10.1007/s00126-012-0420-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Stephen J. Barnes
    • 1
    Email author
  • Louise A. Fisher
    • 1
  • Bélinda Godel
    • 1
  • Mark A. Pearce
    • 1
  • Wolfgang D. Maier
    • 2
  • David Paterson
    • 3
  • Daryl L. Howard
    • 3
  • Christopher G. Ryan
    • 4
  • Jamie S. Laird
    • 4
  1. 1.CSIRO Mineral ResourcesPerthAustralia
  2. 2.School of Earth and Ocean SciencesCardiff UniversityCardiffUK
  3. 3.Australian SynchrotronMelbourneAustralia
  4. 4.CSIRO Mineral ResourcesMelbourneAustralia

Personalised recommendations