Skip to main content
Log in

Metasomatic enrichment of Proterozoic mantle south of the Kaapvaal Craton, South Africa: origin of sinusoidal REE patterns in clinopyroxene and garnet

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Xenoliths of mantle peridotite have been sampled from four kimberlite intrusions, Melton Wold, Hebron, Uintjiesberg and Markt, emplaced through the Mesoproterozoic Namaqua-Natal Belt, along the southern border of the Kaapvaal Craton. Although many of the xenoliths are heavily altered, constituent clinopyroxene, garnet and phlogopite are fresh and have been analysed by electron microprobe for major elements and by laser ablation ICP-MS for trace elements. Primitive mantle-normalised REE abundances in clinopyroxene are all strongly LREE enriched and show a range of patterns including uniformly MREE–HREE sloped (referred to here as ‘normal’), sinusoidal and humped sinusoidal patterns. HREE abundances are extremely low (Yb = 0.3–0.06 × PM). REEN patterns in coexisting garnets show a similar range of patterns. When normalised to primitive mantle values, trace element patterns in some clinopyroxenes show strong relative depletion in Rb–Ba, Ta–Nb and Ti, with some samples also being relatively depleted in Zr–Hf. These trace element characteristics are indistinguishable from those found in clinopyroxene and garnet from peridotites from the adjacent cratonic mantle. Numerical modelling of reactive porous flow of an enriched metasomatic melt through a geochemically depleted peridotite matrix can account for the full range in observed REEN patterns. The relative depletion in Rb–Ba, Ta–Nb and Ti can be accounted for by an early crystallisation of phlogopite from the percolating melt. The relative depletion in Zr–Hf in some clinopyroxenes requires either zircon to crystallise in the proximal metasomatic assemblage, or metasomatism by a carbonatitic melt. Modelling results, together with the absence of clinopyroxene with depleted or even partially enriched REEN patterns, suggest that all clinopyroxene has been modally introduced through metasomatism into an initially highly depleted harzburgitic protolith. The range in Sr and Pb isotopic composition of the clinopyroxenes indicates regional metasomatism by melts of various compositions. The strong HREEN depletion is interpreted to reflect the effect of initial melt depletion in the early Proterozoic, with melting extending into the spinel stability field requiring an oceanic realm, and again later in the Mesoproterozoic (Namaqua Orogeny). The superimposed incompatible element enrichment indicates subsequent multiple enrichment events by rising alkaline melts similar in composition to kimberlite or ultramafic alkaline lamprophyre, possibly related to Mesozoic plume upwelling beneath the region, that reintroduced clinopyroxene into the depleted Proterozoic harzburgite protolith.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bailey DK (1980) Volatile flux, geotherms, and the generation of the kimberlite-carbonatite-alkaline magma spectrum. Mineral Mag 43:695–699

    Article  Google Scholar 

  • Banas A, Stachel T, Phillips D, Shimizu N, Viljoen KS, Harris JW (2009) Ancient metasomatism recorded by ultra-depleted garnet inclusions in diamonds from DeBeers Pool, South Africa. Lithos 112S:736–746

    Article  Google Scholar 

  • Beard AD, Downes H, Vetrin V, Kempton PD, Maluski H (1996) Petrogenesis of Devonian lamprophyre and carbonatite minor intrusions, Kandalaksha Gulf (Kola Peninsula, Russia). Lithos 39:93–119

    Article  Google Scholar 

  • Beccaluva L, Bianchini G, Bonadiman C, Siena F, Vaccaro C (2004) Coexisting anorogenic and subduction-related metasomatism in mantle xenoliths from the Betic Cordillera (southern Spain). Lithos 75:67–87

    Article  Google Scholar 

  • Becker M, le Roex AP (2006) Geochemistry of South African on- and off-craton, Group I and Group II kimberlites: petrogenesis and source region evolution. J Petrol 47:673–703

    Article  Google Scholar 

  • Becker M, le Roex AP, Class C (2007) Geochemistry and petrogenesis of South African isotopically transitional kimberlites located on and off the Kaapvaal craton. S Afr J Geol 110:631–646

    Article  Google Scholar 

  • Bedini RM, Bodinier J-L, Dautria J-M, Morten L (1997) Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift. Earth Planet Sci Lett 153:67–83

    Article  Google Scholar 

  • Bell DR, Schmitz MD, Janney PE (2003) Mesozoic thermal evolution of the southern African mantle lithosphere. Lithos 71:273–287

    Article  Google Scholar 

  • Bell D, Gregoire M, Grove TL, Chaterjee N, Carlson RW, Buseck PR (2005) Silica and volatile-element metasomatism of Archaen mantle: a xenolith-scale example from the Kaapvaal craton. Contrib Mineral Petrol 150:251–267

    Article  Google Scholar 

  • Bodinier JL, Vasseur G, Vernieres J, Dupuy C, Fabries J (1990) Mechanisms of mantle metasomatism—geochemical evidence from the Lherz orogenic peridotite. J Petrol 31(3):597–628

    Article  Google Scholar 

  • Bodinier J-L, Merlet C, Bedini R, Simien F, Remaidi M, Garrido C (1996) Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox. Geochim Cosmochim Acta 60:545–550

    Article  Google Scholar 

  • Bodinier J, Menzies M, Shimizu N, Frey FA, McPherson E (2004) Silicate, hydrous and carbonate metasomatism at Lherz, France: contemporaneous derivatives of silicate melt-harzburgite reaction. J Petrol 45:299–320

    Article  Google Scholar 

  • Bodinier JL, Garrido CJ, Chanefo I, Bruguier O, Gervilla F (2008) Origin of pyroxenite-peridotite veined mantle by refertilization reactions: evidence from the Ronda peridotite (southern Spain). J Petrol 49(5):999–1025

    Article  Google Scholar 

  • Boyd FR, Mertzman SA (1987) Composition and structure of the Kaapvaal lithosphere, southern Africa. Geochem Soc Spec Publ 1:13–24

    Google Scholar 

  • Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV, Finger LW (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib Miner Petrol 128:228–246

    Article  Google Scholar 

  • Burgess SR, Harte B (2004) Tracing lithosphere evolution through the analysis of heterogeneous G9-G10 garnets in peridotite xenoliths, II: REE chemistry. J Petrol 45:609–634

    Article  Google Scholar 

  • Class C, le Roex AP (2011) South Atlantic DUPAL anomaly—dynamic and compositional evidence against a recent shallow origin. Earth Planet Sci Lett 305:92–102

    Article  Google Scholar 

  • Coltorti M, Beccaluva L, Bonadiman C, Faccini B, Ntaflos T, Siena F (2004) Amphibole genesis via metasomatic reaction with clinopyroxene in mantle xenoliths from Victoria Land, Antarctica. Lithos 75:115–139

    Article  Google Scholar 

  • Dalton JA, Presnall C (1998) The continuum of primary carbonatitic–kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO–MgO–Al2O3–SiO2–CO2 at 6 GPa. J Petrol 39:1953–1964

    Google Scholar 

  • Dawson JB, Smith JV, Hervig FRS, Hervig RL (1980) Heterogeneity in upper-mantle lherzolites and harzburgites. Philos Trans R Soc Lond 297:323–331

    Article  Google Scholar 

  • Dawson JB, Hill PG, Kinny PD (2001) Mineral chemistry of a zircon-bearing, composite, veined and metasomatised upper-mantle peridotite xenolith from kimberlite. Contrib Miner Petrol 140:720–733

    Article  Google Scholar 

  • Demény A, Vennemann TW, Hegner E, Nagy G, Milton JA, Embey-Isztin A, Homonnay Z, Dobosi G (2004) Trace element and C–O–Sr–Nd isotope evidence for subduction-related carbonate–silicate melts in mantle xenoliths (Pannonian Basin, Hungary). Lithos 75:89–113

    Article  Google Scholar 

  • Downes H, Macdonald R, Upton BGJ, Cox KG, Bodinier J-L, Mason PRD, James D, Hill PG, Carter Hearn B Jr (2004) Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming Craton. J Petrol 45:1631–1662

    Article  Google Scholar 

  • Duncan AR, Armstrong RA, Erlank AJ, Marsh JS, Watkins RT (1990) MORB-related dolerites associated with the final phases of Karoo flood basalt volcanism in southern Africa. In: Parker AJ, Rickwood PC, Tucker DH (eds) Second international Dyke conference: mafic dykes and emplacement mechanisms, vol. Balkema, Adelaide, South Australia, pp 119–129

  • Erlank AJ, Waters FG, Hawkesworth CJ, Haggerty SE, Allsopp HL, Rickard RS, Menzies M (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In: Menzies M, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 221–309

    Google Scholar 

  • Foley SF, Jackson SE, Fryer BJ, Greenough JD, Jenner GA (1996) Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS. Geochim Cosmochim Acta 60(4):629–638

    Article  Google Scholar 

  • Gibson SA, Malarkey J, Day JA (2008) Melt depletion and enrichment beneath the western Kaapvaal craton: evidence from Finsch peridotite xenoliths. J Petrol 49:1817–1852

    Article  Google Scholar 

  • Girnis AV, Bulatov VK, Brey GP, Gerdes A, Höfer HE (2013) Trace element partitioning between mantle minerals and silico-carbonate melts at 6–12 GPa and applications to mantle metasomatism and kimberlite genesis. Lithos 160–161:183–200

    Article  Google Scholar 

  • Grégoire M, Bell DR, le Roex AP (2002) Trace element geochemistry of glimmerite and MARID mantle xenoliths: their relationship to kimberlite and to phlogopite-bearing peridotite revisited. Contrib Miner Petrol 142:603–625

    Article  Google Scholar 

  • Grégoire M, Bell DR, le Roex AP (2003) Garnet lherzolites from the Kaapvaal craton (South Africa): trace element evidence for a metasomatic history. J Petrol 44:629–657

    Article  Google Scholar 

  • Griffin WL, Boyle BJ, Ryan CG, Pearson NJ, O’Reilly SY, Davies R, Kivi K, Van Achterbergh E, Natapov LM (1999a) Layered mantle lithosphere in the Lac de Gras Area, Slave Craton: composition, structure and origin. J Petrol 40(5):705–728

    Article  Google Scholar 

  • Griffin WL, Gurney JJ, Ryan CG (1992) Variations in trapping temperatures and traceelements in peridotite-suite inclusions from African diamonds - evidence for 2 inclusion suites, and implications for lithosphere stratigraphy. Contrib Mineral Petrol 110:1–15

    Article  Google Scholar 

  • Griffin WL, Shee SR, Ryan CG, Win TT, Wyatt BA (1999b) Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contrib Miner Petrol 134:232–250

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterberg E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICP-MS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64(1):133–147

    Article  Google Scholar 

  • Harris M, le Roex A, Class C (2004) Geochemistry of the Uintjiesberg kimberlite, South Africa: petrogenesis of an off-craton, group I, kimberlite. Lithos 74:149–165

    Article  Google Scholar 

  • Hart SR (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nat 309:753–757

    Article  Google Scholar 

  • Harte B, Gurney JJ (1981) The mode of formation of Cr poor megacryst suites from kimberlites. J Petrol 89:749–753

    Google Scholar 

  • Harte B, Hunter RH, Kinny PD (1993) Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism. Philos Trans R Soc Lond 342:1–21

    Article  Google Scholar 

  • Hawkesworth CJ, Erlank AJ, Kempton PD, Waters FG (1990) Mantle metasomatism: isotope and trace-element trends in xenoliths from Kimberley, South Africa. Chem Geol 85:19–34

    Article  Google Scholar 

  • Hoal KEO, Hoal BG, Erlank AJ, Shimizu N (1994) Metasomatism of the mantle lithosphere recorded by rare earth elements in garnets. Earth Planet Sci Lett 126:303–313

    Article  Google Scholar 

  • Howarth GH, Barry PH, Pernet-Fisher JF, Baziotis IP, Pokhilenko NP, Pokhilenko LN, Bodnar RJ, Taylor LA, Agashev AM (2014) Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184:209–224

    Article  Google Scholar 

  • James DE, Fouch MJ, VanDecar JC, van der Lee S, Group KS (2001) Tectospheric structure beneath southern Africa. Geophys Res Lett 28:2485–2488

    Article  Google Scholar 

  • Ionov D (1998) Trace element composition of mantle-derived carbonates and co-existing phases in peridotite xenoliths from alkali basalts. J Petrol 39:1931–1941

    Article  Google Scholar 

  • Ionov D (2004) Chemical variations in peridotite xenoliths from Vitim, Siberia: inferences for REE and Hf behaviour in the garnet-facies upper mantle. J Petrol 45:343–367

    Article  Google Scholar 

  • Ionov DA, Hofmann AW (1995) Nb–Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett 131:341–356

    Article  Google Scholar 

  • Ionov DA, Hofmann AW, Shimizu N (1994) Metasomatism-induced melting in mantle xenoliths from Mongolia. J Petrol 35(3):753–785

    Article  Google Scholar 

  • Ionov DA, Griffin WL, O’Reilly SY (1997) Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem Geol 141:153–184

    Article  Google Scholar 

  • Ionov DA, Bodinier JL, Mukasa S, Zanetti A (2002) Mechanisms and source of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J Petrol 43(12):2219–2259

    Article  Google Scholar 

  • Janney P, Shirey S, Carlson R, Pearson D, Bell D, le Roex A, Ishikawa A, Nixon P, Boyd F (2010) Age, composition and thermal characteristics of South African off-craton mantle lithosphere: evidence for a multistage history. J Petrol 51:1849–1890

    Article  Google Scholar 

  • Konzett J, Armstrong RA, Sweeney RJ, Compston W (1998) The timing of MARID metasomatism in the Kaapvaal mantle: an ion probe study of zircons from MARID xenoliths. Earth Planet Sci Lett 160:133–147

    Article  Google Scholar 

  • Kramers JD, Roddick JCM, Dawson JB (1983) Trace element and isotope studies on veined, metasomatic and “MARID” xenoliths from Bultfontein, South Africa. Earth Planet Sci Lett 65:90–106

    Article  Google Scholar 

  • LaTourrette T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135:13–30

    Article  Google Scholar 

  • Lazarov M, Brey GP, Weyer S (2012) Evolution of the South African mantle—a case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); Part 2: multiple depletion and re-enrichment processes. Lithos 154:210–223

    Article  Google Scholar 

  • le Roex AP, Lanyon R (1998) Isotope and trace element geochemistry of Cretaceous Damaraland lamprophyres and carbonatites, northwestern Namibia: evidence for plume-lithosphere interactions. J Petrol 39(6):1117–1146

    Article  Google Scholar 

  • le Roex AP, Bell DR, Davis P (2003) Petrogenesis of Group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44:2261–2286

    Article  Google Scholar 

  • le Roux PJ, le Roex AP, Schilling J-G, Shimizu N, Perkins WW, Pearce NJG (2002) Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: trace element evidence for contamination of ambient asthenospheric mantle. Earth Planet Sci Lett 203:479–498

    Article  Google Scholar 

  • Luchs T, Brey GP, Gerdes A, Hofer HE (2013) The lithospheric mantle beneath the Gibeon kimberlite field (Namibia): a mix of old and young components—evidence from Lu–Hf, and Sm–Nd isotope systematics. Precambr Res 231:263–276

    Article  Google Scholar 

  • Menzies M, Rogers N, Tindle A, Hawkesworth CJ (1987) Metasomatic and enrichment processes in lithospheric peridotites, and effect of asthenosphere-lithosphere interaction. In: Menzies M, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 313–361

    Google Scholar 

  • Merry M, le Roex A (2007) Megacryst suites from the Lekkerfontein and Uintjiesberg kimberlites, southern Africa: evidence for a non-cognate origin. S Afr J Geol 110:597–610

    Article  Google Scholar 

  • Moine BN, Grégoire M, O’Reilly SY, Delpech G, Sheppard SMF, Lorand JP, Renac C, Giret A, Cottin JY (2004) Carbonatite melt in oceanic upper mantle beneath the Kerguelen Archipelago. Lithos 75:239–252

    Article  Google Scholar 

  • Navon O, Stolper E (1987) Geochemical Consequences of melt percolation: the upper mantle as a chromatographic column. J Geol 95(3):285–307

    Article  Google Scholar 

  • Navon O, Frey FA, Takazawa E (1996) Magma transport and metasomatism in the mantle: a critical review of current geochemical models—discussion. Am Mineral 81:754–759

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Miner Petrol 139:541–554

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. J Geostand Geoanal 21(1):115–144

    Article  Google Scholar 

  • Pearson DG, Carlson RW, Shirey SB, Boyd FR, Nixon PH (1995) Stabilisation of Archaean lithospheric mantle: a Re-Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet Sci Lett 134:341–357

    Article  Google Scholar 

  • Pearson DG, Carlson RW, Boyd FR, Shirey SB, Nixon PH (1998) Lithospheric mantle growth around cratons: a Re–Os study of peridotite xenoliths from East Griqualand. In: VIIth international kimberlite conference extended abstracts, pp 658–660

  • Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics 38:279–296

    Article  Google Scholar 

  • Powell W, Zhang M, O’Reilly SY, Tiepolo M (2004) Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, western Victoria, Australia. Lithos 75:141–171

    Article  Google Scholar 

  • Robey J (1981) Kimberlites in the Central Cape Province, R.S.A. Unpublished PhD thesis, University of Cape Town, p 261

  • Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475

    Article  Google Scholar 

  • Schmidberger SS, Simonetti A, Francis D (2003) Small-scale Sr isotope investigation of clinopyroxenes from peridotite xenoliths by laser ablation MC-ICP-MS—implications for mantle metasomatism. Chem Geol 199:317–329

    Article  Google Scholar 

  • Schmidt KH, Bottazzi P, Vannucci R, Mengel K (1999) Trace element partitioning between phlogopite, clinopyroxene and leucite lamproite melt. Earth Planet Sci Lett 168:287–300

    Article  Google Scholar 

  • Shimizu N (1975) Rare earth elements in garnets and clinopyroxenes from garnet lherzolite nodules in kimberlites. Earth Planet Sci Lett 25:26–32

    Article  Google Scholar 

  • Shimizu N, Richardson S (1987) Trace element abundance patterns of garnet inclusions in peridotite-suite diamonds. Geochim Cosmochim Acta 51:755–758

    Article  Google Scholar 

  • Shu Q, Brey GP (2015) Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth Planet Sci Lett 418:27–39

    Article  Google Scholar 

  • Simon NSC, Irvine GJ, Davies GR, Pearson DG, Carlson RW (2003) The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos 71:289–322

    Article  Google Scholar 

  • Simon NSC, Carlson RW, Pearson DG, Davies GR (2007) The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J Petrol 48:589–625

    Article  Google Scholar 

  • Smith CB (1983) Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites. Nature 304:51–54

    Article  Google Scholar 

  • Smith CB, Allsopp HL, Kramers JD, Hutchinson G, Roddick JC (1985) Emplacement ages of Jurassic–Cretaceous South African kimberlites by the Rb–Sr method on phlogopite and whole-rock samples. Trans Geol Soc South Afr 88:249–266

    Google Scholar 

  • Stachel T, Viljoen KS, Brey G, Harris JW (1998) Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet Sci Lett 159:1–12

    Article  Google Scholar 

  • Stachel T, Aulbach S, Brey GP, Harris JW, Leost I, Tappert R, Viljoen KS (2004) The trace element composition of silicate inclusions in diamonds: a review. Lithos 77:1–19

    Article  Google Scholar 

  • Stolz AJ, Jochum KP, Spettle B, Hofmann AW (1996) Fluid- and melt-related enrichment in the subarc mantle: evidence from Nb/Ta variations in island-arc basalts. Geology 24(7):587–590

    Article  Google Scholar 

  • Sun S-s, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, vol Special Publication no.42. Geological Society, pp 313–345

  • Sweeney RJ (1994) Carbonatite melt compositions in the Earth’s mantle. Earth Planet Sci Lett 128:259–270

    Article  Google Scholar 

  • Sweeney RJ, Thompson AB, Ulmer P (1993) Phase relations of a natural MARID composition and implications for MARID genesis, lithospheric melting and mantle metasomatism. Contrib Miner Petrol 115:225–241

    Article  Google Scholar 

  • Vasseur G, Vernieres J, Bodinier J-L (1991) Modelling of trace element transfer between mantle melt and heterogranular peridotite matrix. J Petrol Spec Issue 2:41–54

    Article  Google Scholar 

  • Vernieres J, Godard M, Bodinier JL (1997) A plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth’s upper mantle. J Geophys Res 102:24,771–724,784

    Google Scholar 

  • Wang W, Sueno S, Takahashi E, Yurimoto H, Gasparik T (2000) Enrichment processes at the base of the Archaen lithospheric mantle: observations from trace element characteristics of pyropic garnet inclusions in diamonds. Contrib Miner Petrol 139:720–733

    Article  Google Scholar 

  • Waters FG, Erlank AJ (1988) Assessment of the vertical extent and distribution of mantle metasomatism below Kimberley, South Africa. J Petrol (Special Lithosphere Issue): 185–204

  • Winterburn P, Harte B, Gurney J (1990) Peridotite xenoliths from the Jagersfontein kimberlite pipe.1. Primary and primary-metasomatic mineralogy Geochim et Cosmochim Acta 54(2):329–341

    Article  Google Scholar 

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by research funding received from the South African National Research Foundation (AlR; Grant 96078) and U.S. National Science Foundation Grants EAR02-07311 and ANT10-43540 (CC). Any opinion, finding and conclusion expressed in this work are those of the authors, and the NRF does not accept any liability in this regard. Jean-Louis Boudinier kindly made available his programme to model reactive porous flow. We acknowledge the hospitality and cooperation of the various farmers who allowed us to visit and sample kimberlite localities on their land. Constructive reviews improved the final version of this manuscript and are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton le Roex.

Additional information

Communicated by Timothy L. Grove.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

le Roex, A., Class, C. Metasomatic enrichment of Proterozoic mantle south of the Kaapvaal Craton, South Africa: origin of sinusoidal REE patterns in clinopyroxene and garnet. Contrib Mineral Petrol 171, 14 (2016). https://doi.org/10.1007/s00410-015-1222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1222-8

Keywords

Navigation