Serpentinization, element transfer, and the progressive development of zoning in veins: evidence from a partially serpentinized harzburgite

  • Esther M. Schwarzenbach
  • Mark J. Caddick
  • James S. Beard
  • Robert J. Bodnar
Original Paper

Abstract

Serpentinization is an important geochemical process that affects the chemistry and petrophysical properties of the oceanic lithosphere and supports life through abiogenic formation of hydrogen. Here, we document through detailed mineralogical evidence and equilibrium thermodynamic models the importance of water (H2O) and silica (SiO2) activities on mineral assemblages produced during progressive serpentinization of a harzburgite. We describe a harzburgite from the Santa Elena Ophiolite in Costa Rica that is ~30 % serpentinized. Serpentine + brucite ± magnetite veins occur in olivine, Al-rich serpentine + talc veins occur in orthopyroxene, and Al-rich serpentine ± talc ± brucite veins occur at the boundary of orthopyroxene and olivine. Bulk vein chemistry and element distribution maps demonstrate distinct chemical zonations within veins and chemical gradients between orthopyroxene- and olivine-dominated areas. Specifically, the sample records (1) varying brucite composition depending on whether or not it is associated with magnetite, (2) formation of magnetite from Fe-rich brucite (±Fe-rich serpentine) during olivine hydration, where magnetite coexists with brucite Mg#96 and serpentine Mg#99, (3) chemical gradients in Si, Al, Cr, and Ca within and between orthopyroxene- and olivine-hosted veins, and 4) local (different) equilibrium assemblages within different zones of veins. The studied sample preserves rarely observed textures documenting continuous replacement of olivine, rather than individual vein generations and overprinting that is typically observed in more intensely serpentinized peridotites. Furthermore, the presence of a discrete sequence of vein textures and mineralogy allows direct comparison between mineral textures and equilibrium thermodynamic models and permits new insights into mineral reactions during serpentinization.

Keywords

Costa Rica Olivine hydration Peridotite Serpentinization Perple_X 

Notes

Acknowledgments

We would like to thank Luca Fedele, Bob Tracy, and Charles Farley with help during analytical work at Virginia Tech, Jan Evers at the Freie Universität Berlin, for SEM analyses, and Don Rimstidt for helpful discussions. We also thank O. Müntener, R. Frost, W. Bach, and two anonymous reviewers for helpful comments that greatly improved the manuscript. The sample was generously provided by Jonathan Snow, University of Houston. E.S. and M.C. gratefully acknowledge support from Virginia Tech Department of Geosciences.

Supplementary material

410_2015_1219_MOESM1_ESM.xls (710 kb)
Supplementary material 1 (XLS 710 kb)
410_2015_1219_MOESM2_ESM.pdf (4.4 mb)
Supplementary material 2 (PDF 4527 kb)
410_2015_1219_MOESM3_ESM.pdf (18.8 mb)
Supplementary material 3 (PDF 19222 kb)
410_2015_1219_MOESM4_ESM.pdf (183 kb)
Supplementary material 4 (PDF 183 kb)

References

  1. Allen DE, Seyfried JWE (2003) Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400°C, 500 bars. Geochim Cosmochim Acta 67(8):1531–1542CrossRefGoogle Scholar
  2. Alt JC, Schwarzenbach EM, Früh-Green GL, Shanks WC III, Bernasconi SM, Garrido CJ, Crispini L, Gaggero L, Padrón-Navarta JA, Marchesi C (2013) The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos 178:40–54. doi: 10.1016/j.lithos.2012.12.006 CrossRefGoogle Scholar
  3. Andreani M, Muñoz M, Marcaillou C, Delacour A (2013) μXANES study of iron redox state in serpentine during oceanic serpentinization. Lithos 178:70–83. doi: 10.1016/j.lithos.2013.04.008 CrossRefGoogle Scholar
  4. Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M (2004) Seawater-peridotite interactions: first insights form ODP Leg 209, MAR 15°N. Geochem Geophys Geosyst 5(9):22. doi: 10.1029/2004GC000744 CrossRefGoogle Scholar
  5. Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE (2006) Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys Res Lett. doi: 10.1029/2006GL025681 Google Scholar
  6. Barnes I, O’Neil JR (1978) Present day serpentinization in New Caledonia, Oman and Yugoslavia. Geochim Cosmochim Acta 42:144–145CrossRefGoogle Scholar
  7. Baumgartner PO, Denyer P (2006) Evidence for middle Cretaceous accretion at Santa Elena Peninsula (Santa Rosa Accretionary Complex). Costa Rica. Geologica Acta 4(1–2):179–191Google Scholar
  8. Beard JS, Hopkinson L (2000) A fossil, serpentinization-related hydrothermal vent, Ocean Drilling Program Leg 173, Site 1068 (Iberia Abyssal Plain): some aspects of mineral and fluid chemistry. J Geophys Res 105:16527–16539CrossRefGoogle Scholar
  9. Beard JS, Frost BR, Fryer P, McCaig AM, Searle RC, Ildefonse B, Zinin P, Sharma SK (2009) Onset and progression of serpentinization and magnetite formation in olivine-rich troctolite from IODP Hole U1309D. J Petrol 50(3):387–403CrossRefGoogle Scholar
  10. Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541CrossRefGoogle Scholar
  11. Denyer P, Gazel E (2009) The Costa Rican Jurassic to Miocene oceanic complexes: origin, tectonics and relations. J South Am Earth Sci 28(4):429–442. doi: 10.1016/j.jsames.2009.04.010 CrossRefGoogle Scholar
  12. Dungan MA (1979) Bastite pseudomorphs after orthopyroxene, clinopyroxene and tremolite. Can Mineral 17:729–740Google Scholar
  13. Dyment J, ArkaniHamed J, Ghods A (1997) Contribution of serpentinized ultramafics to marine magnetic anomalies at slow and intermediate spreading centres: insights from the shape of the anomalies. Geophys J Int 129(3):691–701. doi: 10.1111/j.1365-246X.1997.tb04504.x CrossRefGoogle Scholar
  14. Escartin J, Hirth G, Evans B (1997) Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges. Earth Planet Sci Lett 151(3–4):181–189. doi: 10.1016/s0012-821x(97)81847-x CrossRefGoogle Scholar
  15. Escartin J, Hirth G, Evans B (2001) Strength of slightly serpentinized peridotites: implications for the tectonics of oceanic lithosphere. Geology 29(11):1023–1026. doi: 10.1130/0091-7613(2001)029<1023:sosspi>2.0.co;2 CrossRefGoogle Scholar
  16. Evans BW (2008) Control of the products of serpentinization by the Fe(2)Mg(1) exchange potential of olivine and orthopyroxene. J Petrol 49(10):1873–1887CrossRefGoogle Scholar
  17. Evans B (2010) Lizardite versus antigorite serpentinite: magnetite, hydrogen, and life. Geology 38(10):879–882CrossRefGoogle Scholar
  18. Evans KA, Powell R, Frost BR (2013) Using equilibrium thermodynamics in the study of metasomatic alteration, illustrated by an application to serpentinites. Lithos 168–169:67–84. doi: 10.1016/j.lithos.2013.01.016 CrossRefGoogle Scholar
  19. Frost BR (1985) On the stability of sulfides, oxides, and native metals in serpentinite. J Petrol 26(1):31–63CrossRefGoogle Scholar
  20. Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48(7):1351–1368. doi: 10.1093/petrology/egm021 CrossRefGoogle Scholar
  21. Frost BR, Beard JS, McCaig A, Condliffe E (2008) The formation of micro-rodingites from IODP hole U1309D: key to understanding the process of serpentinization. J Petrol 49(9):1579–1588. doi: 10.1093/petrology/egn038 CrossRefGoogle Scholar
  22. Frost B, Evans KA, Swapp SM, Beard JS, Mothersole FE (2013) The process of serpentinization in dunite from New Caledonia. Lithos 178:24–39. doi: 10.1016/j.lithos.2013.02.002 CrossRefGoogle Scholar
  23. Früh-Green GL, Connolly JA, Plas A, Kelley DS, Grobéty B (2004) Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity. In: the subseafloor biospere at Mid-Ocean Ridges, 2004. American Geophysical Union, Washington, DCGoogle Scholar
  24. Gazel E, Denyer P, Baumgartner PO (2006) Magmatic and geotectonic significance of Santa Elena Peninsula, Costa Rica. Geol Acta 4(1–2):193–202Google Scholar
  25. Groppo C, Rinaudo C, Cairo S, Gastaldi D, Compagnoni R (2006) Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. Eur J Mineral 18(3):319–329CrossRefGoogle Scholar
  26. Hacker BR (2008) H2O subduction beyond arcs. Geochem Geophys Geosyst. doi: 10.1029/2007GC001707 Google Scholar
  27. Hattori KH, Guillot S (2007) Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochem Geophys Geosyst. doi: 10.1029/2007gc001594 Google Scholar
  28. Hauff F, Hoernle K, Van den Bogaard P, Alvarado GE, Garbe-Schönberg D (2000) Age and geochemistry of basaltic complexes in western Costa Rica: Contributions to the geotectonic evolution of Central America. Geochem Geophys Geosyst 1:n/aGoogle Scholar
  29. Katayama I, Kurosaki I, Hirauchi K (2010) Low silica activity for hydrogen generation during serpentinization: an example of natural serpentinites in the Mineoka ophiolite complex, central Japan. Earth Planet Sci Lett 298:199–204CrossRefGoogle Scholar
  30. Kelley SD, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley DM, Olson EJ, Schrenk MO, Roell KK, Lebon GT, Rivizzigno P, Party A-S (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 412:145–149CrossRefGoogle Scholar
  31. Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig KA, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley DM, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307:1428–1434CrossRefGoogle Scholar
  32. Klein F, Bach W, Jöns N, McCollom T, Moskowitz B, Berquo T (2009) Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. Geochim Cosmochim Acta 73:6868–6893CrossRefGoogle Scholar
  33. Klein F, Bach W, McCollom TM (2013) Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos 178:55–69. doi: 10.1016/j.lithos.2013.03.008 CrossRefGoogle Scholar
  34. Klein F, Bach W, Humphris S, Kahl WA, Jöns N, Moskowitz B, Berquo TS (2014) Magnetite in seafloor serpentinite—some like it hot. Geology. doi: 10.1130/G35068.1 Google Scholar
  35. Kloprogge JT, Frost RL, Rintoul L (1999) Single crystal Raman microscopic study of the asbestos mineral chrysotile. Phys Chem Chem Phys 1(10):2559–2564CrossRefGoogle Scholar
  36. Lafay R, Montes-Hernandez G, Janots E, Chiriac R, Findling N, Toche F (2012) Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions. J Cryst Growth 347(1):62–72. doi: 10.1016/j.jcrysgro.2012.02.040 CrossRefGoogle Scholar
  37. Lutz HD, Möller H, Schmidt M (1994) Lattice vibration spectra. Part LXXXII. Brucite-type hydroxides M(OH)2 (M = Ca, Mn Co, Fe, Cd)—IR and Raman spectra, neutron diffraction of Fe(OH)2. J Mol Struct 328:121–132CrossRefGoogle Scholar
  38. Macdonald AH, Fyfe WS (1985) Rate of serpentinization in seafloor environments. Tectonophysics 116(1–2):123–135CrossRefGoogle Scholar
  39. Madrigal P, Gazel E, Denyer P, Smith I, Jicha B, Flores K, Coleman D, Snow J (2015) A melt-focusing zone in the lithospheric mantle preserved in the Santa Elena Ophiolite, Costa Rica. Lithos. doi: 10.1016/j.lithos.2015.04.015 Google Scholar
  40. Marcaillou C, Munoz M, Vidal O, Parra T, Harfouche M (2011) Mineralogical evidence for H2 degassing during serpentinization at 300 °C/300 bar. Earth Planet Sci Lett 303:281–290CrossRefGoogle Scholar
  41. Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc B Biol Sci 362(1486):1887–1925. doi: 10.1098/rstb.2006.1881 CrossRefGoogle Scholar
  42. Martin W, Baross J, Kelley D, Russell M (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814Google Scholar
  43. McCollom TM (1999) Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J Geophys Res 104(E12):30729–30742CrossRefGoogle Scholar
  44. McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta 73:856–875. doi: 10.106/j.gca.2008.10.032 CrossRefGoogle Scholar
  45. Mével C (2003) Serpentinization of abyssal peridotites at mid-ocean ridges. C R Geosci 335(10–11):825–852CrossRefGoogle Scholar
  46. Miller DJ, Christensen NJ (1997) Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic Ridge, south of the Kane transform fault. Proc Ocean Drill Program Sci Results 153:437–454Google Scholar
  47. Miyoshi A, Kogiso T, Ishikawa N, Mibe K (2014) Role of silica for the progress of serpentinization reactions: constraints from successive changes in mineralogical textures of serpentinites from Iwanaidake ultramafic body, Japan. Am Miner 99:1035–1044CrossRefGoogle Scholar
  48. Moody JB (1976) Serpentinization—review. Lithos 9(2):125–138CrossRefGoogle Scholar
  49. Neal C, Stanger G (1983) Hydrogen generation from mantle source rocks in Oman. Earth Planet Sci Lett 66:315–320CrossRefGoogle Scholar
  50. Ogasawara Y, Okamoto A, Hirano N, Tsuchiya N (2013) Coupled reactions and silica diffusion during serpentinization. Geochim Cosmochim Acta 119:212–230CrossRefGoogle Scholar
  51. Oufi O, Cannat M, Horen H (2002) Magnetic properties of variably serpentinized abyssal peridotites. J Geophys Res 107(B5):2095CrossRefGoogle Scholar
  52. Palandri JL, Reed MH (2004) Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochim Cosmochim Acta 68(5):1115–1133CrossRefGoogle Scholar
  53. Peretti A, Dubessy J, Mullis J, Frost BR, Trommsdorff V (1992) Highly reducing conditions during alpine metamorphism of the Malenco peridotite (Sondrio, northern Italy) indicated by mineral paragenesis and H2 in fluid inclusions. Contrib Mineral Petrol 112(2–3):329–340. doi: 10.1007/bf00310464 CrossRefGoogle Scholar
  54. Rinaudo C, Gastaldi D (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. The Canadian Mineralogist 41:883–890CrossRefGoogle Scholar
  55. Russell MJ, Hall AJ, Martin W (2010) Serpentinization as a source of energy at the origin of life. Geobiology 8(5):355–371CrossRefGoogle Scholar
  56. Scambelluri M, Müntener O, Hermann J, Piccardo GB, Trommsdorff V (1995) Subduction of water into the mantle: history of an Alpine peridotite. Geology 23(5):459–462CrossRefGoogle Scholar
  57. Scambelluri M, Müntener O, Ottolini L, Pettke TT, Vannucci R (2004) The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth Planet Sci Lett 222(1):217–234. doi: 10.1016/j.epsl.2004.02.012 CrossRefGoogle Scholar
  58. Schwarzenbach EM, Gazel E (2013) Serpentinization history of the Santa Elena complex peridotites, Costa Rica. Min Mag 77(5):2170Google Scholar
  59. Schwarzenbach EM, Gazel E, Caddick MJ (2014) Hydrothermal processes in partially serpentinized peridotites from Costa Rica: evidence from native copper and complex sulfide assemblages. Contrib Mineral Petrol 168:1079. doi: 10.1007/s00410-014-1079-2 CrossRefGoogle Scholar
  60. Snow JE, Dick HJB (1995) Pervasive magnesium loss by marine weathering of peridotite. Geochim Cosmochim Acta 59(20):4219–4235. doi: 10.1016/0016-7037(95)00239-v CrossRefGoogle Scholar
  61. Toft PB, Arkani-Hamed J, Haggerty S (1990) The effects of serpentinization on density and magnetic susceptibility: a petrophysical model. Phys Earth Planet Inter 65:137–157CrossRefGoogle Scholar
  62. Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268(5212):858–861CrossRefGoogle Scholar
  63. Wenner DB, Taylor HP (1971) Temperatures of serpentinization of ultramafic rocks based on 18O/16O fractionation between coexisting serpentine and magnetite. Contrib Mineral Petrol 32:165–185CrossRefGoogle Scholar
  64. Wicks FJ, Whittaker EJW (1977) Serpentine textures and serpentinization. Can Mineral 15:459–488Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Esther M. Schwarzenbach
    • 1
    • 2
  • Mark J. Caddick
    • 1
  • James S. Beard
    • 3
  • Robert J. Bodnar
    • 1
  1. 1.Department of GeosciencesVirginia TechBlacksburgUSA
  2. 2.Institut für Geologische WissenschaftenFreie Universität BerlinBerlinGermany
  3. 3.Virginia Museum of Natural HistoryMartinsvilleUSA

Personalised recommendations