Enriched continental flood basalts from depleted mantle melts: modeling the lithospheric contamination of Karoo lavas from Antarctica

  • Jussi S. Heinonen
  • Arto V. Luttinen
  • Wendy A. Bohrson
Original Paper


Continental flood basalts (CFBs) represent large-scale melting events in the Earth’s upper mantle and show considerable geochemical heterogeneity that is typically linked to substantial contribution from underlying continental lithosphere. Large-scale partial melting of the cold subcontinental lithospheric mantle and the large amounts of crustal contamination suggested by traditional binary mixing or assimilation-fractional crystallization models are difficult to reconcile with the thermal and compositional characteristics of continental lithosphere, however. The well-exposed CFBs of Vestfjella, western Dronning Maud Land, Antarctica, belong to the Jurassic Karoo large igneous province and provide a prime locality to quantify mass contributions of lithospheric and sublithospheric sources for two reasons: (1) recently discovered CFB dikes show isotopic characteristics akin to mid-ocean ridge basalts, and thus help to constrain asthenospheric parental melt compositions and (2) the well-exposed basaltic lavas have been divided into four different geochemical magma types that exhibit considerable trace element and radiogenic isotope heterogeneity (e.g., initial ε Nd from −16 to +2 at 180 Ma). We simulate the geochemical evolution of Vestfjella CFBs using (1) energy-constrained assimilation-fractional crystallization equations that account for heating and partial melting of crustal wall rock and (2) assimilation-fractional crystallization equations for lithospheric mantle contamination by using highly alkaline continental volcanic rocks (i.e., partial melts of mantle lithosphere) as contaminants. Calculations indicate that the different magma types can be produced by just minor (1–15 wt%) contamination of asthenospheric parental magmas by melts from variable lithospheric reservoirs. Our models imply that the role of continental lithosphere as a CFB source component or contaminant may have been overestimated in many cases. Thus, CFBs may represent major juvenile crustal growth events rather than just recycling of old lithospheric materials.


Continental flood basalts Modeling Petrology Geochemistry Contamination Thermodynamics 



We greatly appreciate the comments of an anonymous reviewer and Fred Jourdan, and the editorial handling of the manuscript by Timothy Grove. We are especially grateful to the anonymous reviewer for pointing out the work of Harmer (1999) on alkaline rocks in southern Africa and for suggesting better ways for quantitative evaluation of the models. In addition, comments by J. Brendan Murphy, Andrew Kerr, Bill Leeman, and an anonymous reviewer on an earlier draft of the manuscript are appreciated and helped us to provide a more detailed treatment on the subject. Aku Heinonen and David Whipp are also thanked for out-of-the-box comments and suggestions that improved the manuscript. Frank Spera is acknowledged for general support of the collaboration that resulted in writing this manuscript. Some of the diagrams have been produced with the help of the GCDkit software (Janoušek et al. 2006). Our research is funded by the Academy of Finland (Grant No. 252652).


  1. Adam J, Green TH (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contrib Mineral Petrol 152:1–17. doi: 10.1007/s00410-006-0085-4 CrossRefGoogle Scholar
  2. Anderson DL (1994) The sublithospheric mantle as the source of continental flood basalts: the case against the continental lithosphere and plume head reservoirs. Earth Planet Sci Lett 123:269–280. doi: 10.1016/0012-821x(94)90273-9 CrossRefGoogle Scholar
  3. Antonini P, Piccirillo EM, Petrini R, Civetta L, D’Antonio M, Orsi G (1999) Enriched mantle—Dupal signature in the genesis of the Jurassic Ferrar Tholeiites from Prince Albert Mountains (Victoria Land, Antarctica). Contrib Mineral Petrol 136:1–19. doi: 10.1007/s004100050520 CrossRefGoogle Scholar
  4. Arndt NT, Christensen U (1992) The role of lithospheric mantle in continental flood volcanism: thermal and geochemical constraints. J Geophys Res Solid Earth 97:10967–10981. doi: 10.1029/92JB00564 CrossRefGoogle Scholar
  5. Arndt NT, Czamanske GK, Wooden JL, Fedorenko VA (1993) Mantle and crustal contributions to continental flood volcanism. Tectonophysics 223:39–52. doi: 10.1016/0040-1951(93)90156-e CrossRefGoogle Scholar
  6. Bea F (1996) Controls on the trace element composition of crustal melts. Trans R Soc Edinb Earth Sci 87:33–41. doi: 10.1017/S0263593300006453 CrossRefGoogle Scholar
  7. Bergman SC (1987) Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Geol Soc London Spec Publ, vol 30, pp 103–190. doi: 10.1144/GSL.SP.1987.030.01.08
  8. Black BA, Lamarque J, Shields CA, Elkins-Tanton LT, Kiehl JT (2014) Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42:67–70. doi: 10.1130/G34875.1 CrossRefGoogle Scholar
  9. Bohrson WA, Spera FJ (2001) Energy-constrained open-system magmatic processes II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J Petrol 42:1019–1041. doi: 10.1093/petrology/42.5.1019 CrossRefGoogle Scholar
  10. Bohrson WA, Spera FJ (2003) Energy-constrained open-system magmatic processes IV: geochemical, thermal and mass consequences of energy-constrained recharge, assimilation and fractional crystallization (EC-RAFC). Geochem Geophys Geosyst. doi: 10.1029/2002GC000316 Google Scholar
  11. Boudreau AE (1999) PELE—a version of the MELTS software program for the PC platform. Comput Geosci 25:201–203. doi: 10.1016/s0098-3004(98)00117-4 CrossRefGoogle Scholar
  12. Carlson RW, Lugmair GW, MacDougall JD (1981) Columbia River volcanism; the question of mantle heterogeneity or crustal contamination. Geochim Cosmochim Acta 45:2483–2499. doi: 10.1016/0016-7037(81)90100-9 CrossRefGoogle Scholar
  13. Chakhmouradian AR (2006) High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem Geol 235:138–160. doi: 10.1016/j.chemgeo.2006.06.008 CrossRefGoogle Scholar
  14. Chapman DS (1986) Thermal gradients in the continental crust. In: Dawson JB, Carlswell DA, Hall J, Wedepohl KH (eds) The nature of the lower continental crust. Geol Soc London Spec Publ, vol 24, pp 63–70. doi: 10.1144/GSL.SP.1986.024.01.07
  15. Corner B (1994) Geological evolution of western Dronning Maud Land within a Gondwana framework: Geophysics subprogramme. Final project report to SACAR. Department of Geophysics, Witwaterstrand University, South AfricaGoogle Scholar
  16. Cox KG (1972) The Karroo volcanic cycle. J Geol Soc 128:311–336. doi: 10.1144/gsjgs.128.4.0311 CrossRefGoogle Scholar
  17. Cox KG (1980) A model for flood basalt vulcanism. J Petrol 21:629–650. doi: 10.1093/petrology/21.4.629 CrossRefGoogle Scholar
  18. Cox KG (1988) The Karoo province. In: MacDougall JD (ed) Continental flood basalts. Kluwer, Dordrecht, pp 239–271. doi: 10.1007/978-94-015-7805-9_7 CrossRefGoogle Scholar
  19. DePaolo DJ (1981a) Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291:193–196. doi: 10.1038/291193a0 CrossRefGoogle Scholar
  20. DePaolo DJ (1981b) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202. doi: 10.1016/0012-821x(81)90153-9 CrossRefGoogle Scholar
  21. Duncan AR, Erlank AJ, Marsh JS (1984) Regional geochemistry of the Karoo igneous province. In: Erlank AJ (ed) Petrogenesis of the volcanic rocks of the Karoo Province, Geol Soc S Africa Spec Pub, vol 13, Johannesburg, South Africa, pp 355–388Google Scholar
  22. Ellam RM (2006) New constraints on the petrogenesis of the Nuanetsi picrite basalts from Pb and Hf isotope data. Earth Planet Sci Lett 245:153–161. doi: 10.1016/j.epsl.2006.03.004 CrossRefGoogle Scholar
  23. Ellam RM, Cox KG (1989) A Proterozoic lithospheric source for Karoo magmatism: evidence from the Nuanetsi picrites. Earth Planet Sci Lett 92:207–218. doi: 10.1016/0012-821X(89)90047-2 CrossRefGoogle Scholar
  24. Ellam RM, Cox KG (1991) An interpretation of Karoo picrite basalts in terms of interaction between asthenospheric magmas and the mantle lithosphere. Earth Planet Sci Lett 105:330–342. doi: 10.1016/0012-821X(91)90141-4 CrossRefGoogle Scholar
  25. Ewart A, Milner SC, Armstrong RA, Duncan AR (1998) Etendeka volcanism of the Goboboseb Mountains and Messum igneous complex, Namibia. Part I: geochemical evidence of Early Cretaceous Tristan plume melts and the role of crustal contamination in the Paraná-Etendeka CFB. J Petrol 39:191–225CrossRefGoogle Scholar
  26. Ewart A, Marsh JS, Milner SC, Duncan AR, Kamber BS, Armstrong RA (2004) Petrology and geochemistry of early cretaceous bimodal continental flood volcanism of the NW Etendeka, Namibia. Part 1: introduction, Mafic Lavas and re-evaluation of mantle source components. J Petrol 45:59–105. doi: 10.1093/petrology/egg083 CrossRefGoogle Scholar
  27. Farnetani CG, Richards MA, Ghiorso MS (1996) Petrological models of magma evolution and deep crustal structure beneath hotspots and flood basalt provinces. Earth Planet Sci Lett 143:81–94. doi: 10.1016/0012-821X(96)00138-0 CrossRefGoogle Scholar
  28. Fowler SJ, Bohrson WA, Spera FJ (2004) Magmatic evolution of the Skye Igneous Centre, Western Scotland: modelling of assimilation, recharge and fractional crystallization. J Petrol 45:2481–2505. doi: 10.1093/petrology/egh074 CrossRefGoogle Scholar
  29. Furnes H, Neumann E, Sundvoll B (1982) Petrology and geochemistry of Jurassic basalt dykes from Vestfjella, Dronning Maud Land, Antarctica. Lithos 15:295–304. doi: 10.1016/0024-4937(82)90020-2 CrossRefGoogle Scholar
  30. Furnes H, Vad E, Austrheim H, Mitchell JG, Garmann LB (1987) Geochemistry of basalt lavas from Vestfjella and adjacent areas, Dronning Maud Land, Antarctica. Lithos 20:337–356. doi: 10.1016/0024-4937(87)90015-6 CrossRefGoogle Scholar
  31. Gallagher K, Hawkesworth C (1992) Dehydration melting and the generation of continental flood basalts. Nature 358:57–59. doi: 10.1038/358057a0 CrossRefGoogle Scholar
  32. Ganino C, Arndt NT (2009) Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37:323–326. doi: 10.1130/G25325A.1 CrossRefGoogle Scholar
  33. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212. doi: 10.1007/bf00307281 CrossRefGoogle Scholar
  34. Gibson SA, Thompson RN, Dickin AP, Leonardos OH (1995) High-Ti and low-Ti mafic potassic magmas: key to plume-lithosphere interactions and continental flood-basalt genesis. Earth Planet Sci Lett 136:149–165. doi: 10.1016/0012-821X(95)00179-G CrossRefGoogle Scholar
  35. Goldstein SL, O’Nions RK, Hamilton PJ (1984) A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet Sci Lett 70:221–236. doi: 10.1016/0012-821X(84)90007-4 CrossRefGoogle Scholar
  36. Grantham GH, Manhica ADST, Armstrong RA, Kruger FJ, Loubser M (2011) New SHRIMP, Rb/Sr and Sm/Nd isotope and whole rock chemical data from central Mozambique and western Dronning Maud Land, Antarctica: implications for the nature of the eastern margin of the Kalahari Craton and the amalgamation of Gondwana. J Afr Earth Sci 59:74–100. doi: 10.1016/j.jafrearsci.2010.08.005 CrossRefGoogle Scholar
  37. Groenewald PB, Moyes AB, Grantham GH, Krynauw JR (1995) East Antarctic crustal evolution: geological constraints and modelling in western Dronning Maud Land. Precambrian Res 75:231–250. doi: 10.1016/0301-9268(95)80008-6 CrossRefGoogle Scholar
  38. Grosch EG, Bisnath A, Frimmel HE, Board WS (2007) Geochemistry and tectonic setting of mafic rocks in western Dronning Maud Land, East Antarctica: implications for the geodynamic evolution of the Proterozoic Maud Belt. J Geol Soc 164:465–475. doi: 10.1144/0016-76492005-152 CrossRefGoogle Scholar
  39. Harmer RE (1999) The petrogenetic association of carbonatite and alkaline magmatism: constraints from the Spitskop Complex, South Africa. J Petrol 40:525–548. doi: 10.1093/petroj/40.4.525 CrossRefGoogle Scholar
  40. Harmer RE, Lee CA, Eglington BM (1998) A deep mantle source for carbonatite magmatism: evidence from the nephelinites and carbonatites of the Buhera District, SE Zimbabwe. Earth Planet Sci Lett 158:131–142. doi: 10.1016/s0012-821x(98)00053-3 CrossRefGoogle Scholar
  41. Harris C, Marsh JS, Duncan AR, Erlank AJ (1990) The petrogenesis of the Kirwan Basalts of Dronning Maud Land, Antarctica. J Petrol 31:341–369. doi: 10.1093/petrology/31.2.341 CrossRefGoogle Scholar
  42. Harry DL, Leeman WP (1995) Partial melting of melt metasomatized subcontinental mantle and the magma source potential of the lower lithosphere. J Geophys Res B 100:10255–10269. doi: 10.1029/94JB03065 CrossRefGoogle Scholar
  43. Hawkesworth CJ, Marsh JS, Duncan AR, Erlank AJ, Norry MJ (1984) The role of continental lithosphere in the generation of the Karoo volcanic rocks: evidence from combined Nd- and Sr-isotope studies. In: Erlank AJ (ed) Petrogenesis of the volcanic rocks of the Karoo Province, Geol Soc S Africa Spec Pub, vol 13, Johannesburg, South Africa, pp 341–354Google Scholar
  44. Heinonen JS, Luttinen AV (2008) Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: geochemical tracing of ferropicrite sources. Lithos 105:347–364. doi: 10.1016/j.lithos.2008.05.010 CrossRefGoogle Scholar
  45. Heinonen JS, Luttinen AV (2010) Mineral chemical evidence for extremely magnesian subalkaline melts from the Antarctic extension of the Karoo large igneous province. Miner Petrol 99:201–217. doi: 10.1007/s00710-010-0115-9 CrossRefGoogle Scholar
  46. Heinonen JS, Carlson RW, Luttinen AV (2010) Isotopic (Sr, Nd, Pb, and Os) composition of highly magnesian dikes of Vestfjella, western Dronning Maud Land, Antarctica: a key to the origins of the Jurassic Karoo large igneous province? Chem Geol 277:227–244. doi: 10.1016/j.chemgeo.2010.08.004 CrossRefGoogle Scholar
  47. Heinonen JS, Carlson RW, Riley TR, Luttinen AV, Horan MF (2014) Subduction-modified oceanic crust mixed with a depleted mantle reservoir in the sources of the Karoo continental flood basalt province. Earth Planet Sci Lett 394:229–241. doi: 10.1016/j.epsl.2014.03.012 CrossRefGoogle Scholar
  48. Heinonen JS, Jennings ES, Riley TR (2015) Crystallisation temperatures of the most Mg-rich magmas of the Karoo LIP on the basis of Al-in-olivine thermometry. Chem Geol 411:26–35. doi: 10.1016/j.chemgeo.2015.06.015 CrossRefGoogle Scholar
  49. Hergt JM, Peate DW, Hawkesworth CJ (1991) The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth Planet Sci Lett 105:134–148. doi: 10.1016/0012-821x(91)90126-3 CrossRefGoogle Scholar
  50. Hersum TG, Marsh BD, Simon AC (2007) Contact Partial Melting of Granitic Country Rock, Melt Segregation, and Re-injection as Dikes into Ferrar Dolerite Sills, McMurdo Dry Valleys, Antarctica. J Petrol 48:2125–2148. doi: 10.1093/petrology/egm054 CrossRefGoogle Scholar
  51. Jacobs J, Thomas RJ, Weber K (1993) Accretion and indentation tectonics at the southern edge of the Kaapvaal craton during the Kibaran (Grenville) orogeny. Geology 21:203–206. doi: 10.1130/0091-7613(1993)021<0203:AAITAT>2.3.CO;2 CrossRefGoogle Scholar
  52. Jacobs J, Fanning CM, Henjes-Kunst F, Olesch M, Paech H (1998) Continuation of the Mozambique Belt into East Antarctica: grenville-age metamorphism and polyphase Pan-African high-grade events in central Dronning Maud Land. J Geol 106:385–406. doi: 10.1086/516031 CrossRefGoogle Scholar
  53. Jacobs J, Fanning CM, Bauer W (2003) Timing of Grenville-age vs. Pan-African medium- to high grade metamorphism in western Dronning Maud Land (East Antarctica) and significance for correlations in Rodinia and Gondwana. Precambrian Res 125:1–20. doi: 10.1016/S0301-9268(03)00048-2 CrossRefGoogle Scholar
  54. Jacobs J, Pisarevsky S, Thomas RJ, Becker T (2008) The Kalahari Craton during the assembly and dispersal of Rodinia. Precambrian Res 160:142–158. doi: 10.1016/j.precamres.2007.04.022 CrossRefGoogle Scholar
  55. Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259. doi: 10.1093/petrology/egl013 CrossRefGoogle Scholar
  56. Jiang N, Carlson RW, Guo J (2011) Source of Mesozoic intermediate-felsic igneous rocks in the North China craton: granulite xenolith evidence. Lithos 125:335–346. doi: 10.1016/j.lithos.2011.02.017 CrossRefGoogle Scholar
  57. Johnson TE, Gibson RL, Brown M, Buick IS, Cartwright I (2003) Partial melting of metapelitic rocks beneath the bushveld complex, South Africa. J Petrol 44:789–813. doi: 10.1093/petrology/44.5.789 CrossRefGoogle Scholar
  58. Jourdan F, Féraud G, Bertrand H, Kampunzu AB, Tshoso G, Watkeys MK, Le Gall B (2005) Karoo large igneous province: brevity, origin, and relation to mass extinction questioned by new 40Ar/39Ar age data. Geology 33:745–748. doi: 10.1130/G21632.1 CrossRefGoogle Scholar
  59. Jourdan F, Bertrand H, Schaerer U, Blichert-Toft J, Féraud G, Kampunzu AB (2007a) Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana-Zimbabwe: lithosphere vs mantle plume contribution. J Petrol 48:1043–1077. doi: 10.1093/petrology/egm010 CrossRefGoogle Scholar
  60. Jourdan F, Féraud G, Bertrand H, Watkeys MK (2007b) From flood basalts to the inception of oceanization: example from the 40Ar/39Ar high-resolution picture of the Karoo large igneous province. Geochem Geophys Geosyst. doi: 10.1029/2006GC001392 Google Scholar
  61. Kieffer B, Arndt N, Lapierre H, Bastien F, Bosch D, Pecher A, Yirgu G, Ayalew D, Weis D, Jerram DA, Keller F, Meugniot C (2004) Flood and Shield Basalts from Ethiopia: magmas from the African Superswell. J Petrol 45:793–834. doi: 10.1093/petrology/egg112 CrossRefGoogle Scholar
  62. Kreissig K, Naegler TF, Kramers JD, van Reenen DD, Smit CA (2000) An isotopic and geochemical study of the northern Kaapvaal Craton and the Southern Marginal Zone of the Limpopo Belt: are they juxtaposed terranes? Lithos 50:1–25. doi: 10.1016/S0024-4937(99)00037-7 CrossRefGoogle Scholar
  63. Lana C, Reimold WU, Gibson RL, Koeberl C, Siegesmund S (2004) Nature of the archean midcrust in the core of the Vredefort dome, Central Kaapvaal Craton, South Africa. Geochim Cosmochim Acta 68:623–642. doi: 10.1016/S0016-7037(03)00447-2 CrossRefGoogle Scholar
  64. Larsen LM, Pedersen AK (2009) Petrology of the Paleocene Picrites and Flood Basalts on Disko and Nuussuaq, West Greenland. J Petrol 50:1667–1711. doi: 10.1093/petrology/egp048 CrossRefGoogle Scholar
  65. le Roex AP, Dick HJB, Erlank AJ, Reid AM, Frey FA, Hart SR (1983) Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet triple junction and 11 degrees East. J Petrol 24:267–318. doi: 10.1093/petrology/24.3.267 CrossRefGoogle Scholar
  66. le Roex AP, Dick HJB, Watkins RT (1992) Petrogenesis of anomalous K-enriched MORB from the Southwest Indian Ridge: 11°53′E to 14°38′E. Contrib Mineral Petrol 110:253–268. doi: 10.1007/BF00310742 CrossRefGoogle Scholar
  67. Lightfoot PC, Hawkesworth CJ, Hergt JM, Naldrett AJ, Gorbachev NS, Fedorenko VA, Doherty W (1993) Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia. Contrib Mineral Petrol 114:171–188. doi: 10.1007/BF00307754 CrossRefGoogle Scholar
  68. Lindström S (1995) Early Late Permian palynostratigraphy and palaeo-biogeography of Vestfjella, Dronning Maud Land, Antarctica. Rev Palaeobot Palynol 86:157–173. doi: 10.1016/0034-6667(94)00104-R CrossRefGoogle Scholar
  69. Luttinen AV, Furnes H (2000) Flood basalts of Vestfjella: jurassic magmatism across an Archaean-Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica. J Petrol 41:1271–1305. doi: 10.1093/petrology/41.8.1271 CrossRefGoogle Scholar
  70. Luttinen AV, Siivola JU (1997) Geochemical characteristics of Mesozoic lavas and dikes from Vestfjella, Dronning Maud Land: recognition of three distinct chemical types. In: Ricci CA (ed) The Antarctic region: geological evolution and processes. Terra Antarctica Publications, Siena, pp 495–503Google Scholar
  71. Luttinen AV, Rämö OT, Huhma H (1998) Neodymium and strontium isotopic and trace element composition of a Mesozoic CFB suite from Dronning Maud Land, Antarctica: implications for lithosphere and asthenosphere contributions to Karoo magmatism. Geochim Cosmochim Acta 62:2701–2714. doi: 10.1016/S0016-7037(98)00184-7 CrossRefGoogle Scholar
  72. Luttinen AV, Zhang X, Foland KA (2002) 159 Ma Kjakebeinet lamproites (Dronning Maud Land, Antarctica) and their implications for Gondwana breakup processes. Geol Mag 139:525–539. doi: 10.1017/S001675680200674X CrossRefGoogle Scholar
  73. Luttinen AV, Leat PT, Furnes H (2010) Björnnutane and Sembberget basalt lavas and the geochemical provinciality of Karoo magmatism in western Dronning Maud Land, Antarctica. J Volcanol Geotherm Res 198:1–18. doi: 10.1016/j.jvolgeores.2010.07.011 CrossRefGoogle Scholar
  74. Luttinen AV, Heinonen JS, Kurhila M, Jourdan F, Mänttäri I, Vuori S, Huhma H (2015) Depleted mantle-sourced CFB magmatism in the Jurassic Africa-Antarctica rift: petrology and 40Ar/39Ar and U/Pb chronology of the Vestfjella dyke swarm, Dronning Maud Land, Antarctica. J Petrol 56:919–952. doi: 10.1093/petrology/egv022 CrossRefGoogle Scholar
  75. Mahoney JJ, le Roex AP, Peng Z, Fisher RL, Natland JH (1992) Southwestern limits of Indian Ocean ridge mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalt: isotope systematics of the central Southwest Indian Ridge (17°–50°E). J Geophys Res 97:19771–19790. doi: 10.1029/92JB01424 CrossRefGoogle Scholar
  76. Marschall HR, Hawkesworth CJ, Storey CD, Dhuime B, Leat PT, Meyer H-, Tamm-Buckle S (2010) The Annandagstoppane Granite, East Antarctica: evidence for Archaean Intracrustal recycling in the Kaapvaal-Grunehogna Craton from zircon O and Hf isotopes. J Petrol 51:2277–2301. doi: 10.1093/petrology/egq057 CrossRefGoogle Scholar
  77. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253. doi: 10.1016/0009-2541(94)00140-4 CrossRefGoogle Scholar
  78. Menzies MA (1992) The lower lithosphere as a major source for continental flood basalts: a re-appraisal. In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the causes of continental break-up. Geol Soc London Spec Publ, vol 68, pp 31–39. doi: 10.1144/gsl.sp.1992.068.01.03
  79. Molzahn M, Reisberg L, Wörner G (1996) Os, Sr, Nd, Pb, O isotope and trace element data from the Ferrar flood basalts, Antarctica: evidence for an enriched subcontinental lithospheric source. Earth Planet Sci Lett 144:529–545. doi: 10.1016/S0012-821X(96)00178-1 CrossRefGoogle Scholar
  80. Moyes AB, Krynauw JR, Barton JM Jr (1995) The age of the Ritscherflya Supergroup and Borgmassivet Intrusions, Dronning Maud Land, Antarctica. Antarct Sci 7:87–97. doi: 10.1017/S0954102095000125 CrossRefGoogle Scholar
  81. Nash WP, Crecraft HR (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322. doi: 10.1016/0016-7037(85)90231-5 CrossRefGoogle Scholar
  82. Neumann E, Svensen H, Galerne CY, Planke S (2011) Multistage evolution of Dolerites in the Karoo Large Igneous Province, Central South Africa. J Petrol 52:959–984. doi: 10.1093/petrology/egr011 CrossRefGoogle Scholar
  83. O’Hara MJ, Mathews RE (1981) Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber. J Geol Soc 138:237–277. doi: 10.1144/gsjgs.138.3.0237 CrossRefGoogle Scholar
  84. Perritt S (2001) The Ahlmannryggen group, western Dronning Maud Land, Antarctica. PhD thesis, University of Natal, Durban, South AfricaGoogle Scholar
  85. Riley TR, Millar IL (2014) Geochemistry of the 1100 Ma intrusive rocks from the Ahlmannryggen region, Dronning Maud Land, Antarctica. Antarct Sci 26:389–399. doi: 10.1017/S0954102013000916 CrossRefGoogle Scholar
  86. Riley TR, Leat PT, Curtis ML, Millar IL, Duncan RA, Fazel A (2005) Early-middle Jurassic dolerite dykes from western Dronning Maud Land (Antarctica): identifying mantle sources in the Karoo Large Igneous Province. J Petrol 46:1489–1524. doi: 10.1093/petrology/egi023 CrossRefGoogle Scholar
  87. Riley TR, Curtis ML, Leat PT, Watkeys MK, Duncan RA, Millar IL, Owens WH (2006) Overlap of Karoo and Ferrar magma types in KwaZulu-Natal, South Africa. J Petrol 47:541–566. doi: 10.1093/petrology/egi085 CrossRefGoogle Scholar
  88. Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL (ed) The crust. Treatise on geochemistry, vol 3. Elsevier-Pergamon, Oxford, pp 1–64. doi: 10.1016/b0-08-043751-6/03016-4 CrossRefGoogle Scholar
  89. Spera FJ, Bohrson WA (2001) Energy-constrained open-system magmatic processes I: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J Petrol 42:999–1018. doi: 10.1093/petrology/42.5.999 CrossRefGoogle Scholar
  90. Spera FJ, Bohrson WA (2002) Energy-constrained open-system magmatic processes 3. Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RAFC). Geochem Geophys Geosyst. doi: 10.1029/2002GC000315
  91. Spera FJ, Bohrson WA (2004) Open-system magma chamber evolution: an energy-constrained geochemical model incorporating the effects of concurrent eruption, recharge, variable assimilation and fractional crystallization (EC-E′RAχFC). J Petrol 45:2459–2480. doi: 10.1093/petrology/egh072 CrossRefGoogle Scholar
  92. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc London Spec Publ, vol 42, pp 313–345. doi: 10.1144/GSL.SP.1989.042.01.19
  93. Sweeney RJ, Falloon TJ, Green DH, Tatsumi Y (1991) The mantle origins of Karoo picrites. Earth Planet Sci Lett 107:256–271. doi: 10.1016/0012-821x(91)90075-s CrossRefGoogle Scholar
  94. Sweeney RJ, Duncan AR, Erlank AJ (1994) Geochemistry and petrogenesis of central Lebombo basalts of the Karoo igneous province. J Petrol 35:95–125. doi: 10.1093/petrology/35.1.95 CrossRefGoogle Scholar
  95. Talarico F, Borsi L, Lombardo B (1995) Relict granulites in the Ross Orogen of northern Victoria Land (Antarctica), II. Geochemistry and palaeo-tectonic implications. Precambrian Res 75:157–174. doi: 10.1016/0301-9268(95)80004-2 CrossRefGoogle Scholar
  96. Thompson RN, Gibson SA (2000) Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature 407:502–506. doi: 10.1038/35035058 CrossRefGoogle Scholar
  97. Vuori SK, Luttinen AV (2003) The Jurassic gabbroic intrusion of Utpostane and Muren: insights into Karoo-related plutonism in Dronning Maud Land, Antarctica. Antarct Sci 15:283–301. doi: 10.1017/S0954102003001287 CrossRefGoogle Scholar
  98. Wareham CD, Pankhurst RJ, Thomas RJ, Storey BC, Grantham GH, Jacobs J, Eglington BM (1998) Pb, Nd, and Sr isotope mapping of grenville-age crustal provinces in Rodinia. J Geol 106:647–660. doi: 10.1086/516051 CrossRefGoogle Scholar
  99. Will TM, Frimmel HE, Zeh A, Le Roux P, Schmädicke E (2010) Geochemical and isotopic constraints on the tectonic and crustal evolution of the Shackleton Range, East Antarctica, and correlation with other Gondwana crustal segments. Precambrian Res 180:85–112. doi: 10.1016/j.precamres.2010.03.005 CrossRefGoogle Scholar
  100. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72. doi: 10.1016/j.epsl.2004.12.005 CrossRefGoogle Scholar
  101. Xu J, Suzuki K, Xu Y, Mei H, Li J (2007) Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: insights into the source of a large igneous province. Geochim Cosmochim Acta 71:2104–2119. doi: 10.1016/j.gca.2007.01.027 CrossRefGoogle Scholar
  102. Ying J, Zhang H, Tang Y (2010) Lower crustal xenoliths from Junan, Shandong province and their bearing on the nature of the lower crust beneath the North China Craton. Lithos 119:363–376. doi: 10.1016/j.lithos.2010.07.015 CrossRefGoogle Scholar
  103. Yu J, Xu X, O’Reilly SY, Griffin WL, Zhang M (2003) Granulite xenoliths from Cenozoic Basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks. Lithos 67:77–102. doi: 10.1016/S0024-4937(02)00253-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jussi S. Heinonen
    • 1
    • 2
  • Arto V. Luttinen
    • 2
  • Wendy A. Bohrson
    • 3
  1. 1.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
  2. 2.Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Geological SciencesCentral Washington UniversityEllensburgUSA

Personalised recommendations