Advertisement

Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare-up in the Pannonian Basin, eastern central Europe

  • Réka LukácsEmail author
  • Szabolcs Harangi
  • Olivier Bachmann
  • Marcel Guillong
  • Martin Danišík
  • Yannick Buret
  • Albrecht von Quadt
  • István Dunkl
  • László Fodor
  • Jakub Sliwinski
  • Ildikó Soós
  • János Szepesi
Original Paper

Abstract

A silicic ignimbrite flare-up episode occurred in the Pannonian Basin during the Miocene, coeval with the syn-extensional period in the region. It produced important correlation horizons in the regional stratigraphy; however, they lacked precise and accurate geochronology. Here, we used U–Pb (LA-ICP-MS and ID-TIMS) and (U–Th)/He dating of zircons to determine the eruption ages of the youngest stage of this volcanic activity and constrain the longevity of the magma storage in crustal reservoirs. Reliability of the U–Pb data is supported by (U–Th)/He zircon dating and magnetostratigraphic constraints. We distinguish four eruptive phases from 15.9 ± 0.3 to 14.1 ± 0.3 Ma, each of which possibly includes multiple eruptive events. Among these, at least two large volume eruptions (>10 km3) occurred at 14.8 ± 0.3 Ma (Demjén ignimbrite) and 14.1 ± 0.3 Ma (Harsány ignimbrite). The in situ U–Pb zircon dating shows wide age ranges (up to 700 kyr) in most of the crystal-poor pyroclastic units, containing few to no xenocrysts, which implies efficient recycling of antecrysts. We propose that long-lived silicic magma reservoirs, mostly kept as high-crystallinity mushes, have existed in the Pannonian Basin during the 16–14 Ma period. Small but significant differences in zircon, bulk rock and glass shard composition among units suggest the presence of spatially separated reservoirs, sometimes existing contemporaneously. Our results also better constrain the time frame of the main tectonic events that occurred in the Northern Pannonian Basin: We refined the upper temporal boundary (15 Ma) of the youngest counterclockwise block rotation and the beginning of a new deformation phase, which structurally characterized the onset of the youngest volcanic and sedimentary phase.

Keywords

Zircon geochronology Zircon trace element composition Ignimbrite flare-up Silicic magma reservoir Pannonian Basin Zircon crystallization age Eruption age Magma storage LA-ICP-MS (U–Th)/He Bükkalja Volcanic Field 

Notes

Acknowledgments

The study was supported by the Hungarian National Research, Development and Innovation (NKFI) Fund OKTA K81530 and OTKA PD112584. Réka Lukács was supported by the Bolyai János Research Fellowship and the Campus Hungary Fellowship (B2/4R/12728). Constructive comments by two anonymous reviewers and by Othmar Müntener as the Editor helped to improve the original version of the manuscript.

Supplementary material

410_2015_1206_MOESM1_ESM.pdf (8 mb)
Supplementary material 1 (PDF 8231 kb)
410_2015_1206_MOESM2_ESM.xls (1.1 mb)
Supplementary material 2 (XLS 1098 kb)
410_2015_1206_MOESM3_ESM.xls (767 kb)
Supplementary material 3 (XLS 767 kb)
410_2015_1206_MOESM4_ESM.xls (35 kb)
Supplementary material 4 (XLS 35 kb)
410_2015_1206_MOESM5_ESM.pdf (2.3 mb)
Supplementary material 5 (PDF 2374 kb)

References

  1. Annen C, Blundy JD, Leuthold J, Sparks RSJ (2015) Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230:206–221CrossRefGoogle Scholar
  2. Aydar E, Schmitt AK, Çubukçu HE, Akin L, Ersoy O, Sen E, Duncan RA, Atici G (2012) Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. J Volcanol Geoth Res 213–214:83–97CrossRefGoogle Scholar
  3. Bachmann O, Bergantz GW (2003) Rejuvenation of the Fish Canyon magma body: a window into the evolution of large-volume silicic magma systems. Geology 31(9):789–792CrossRefGoogle Scholar
  4. Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45(8):1565–1582CrossRefGoogle Scholar
  5. Bachmann O, Bergantz G (2008) The magma reservoirs that feed supereruptions. Elements 4(1):17–21CrossRefGoogle Scholar
  6. Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper-crustal batholith. J Petrol 43(8):1469–1503CrossRefGoogle Scholar
  7. Bachmann O, Charlier BLA, Lowenstern JB (2007a) Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc). Geology 35(1):73–76CrossRefGoogle Scholar
  8. Bachmann O, Oberli F, Dungan MA, Meier M, Mundil R, Fischer H (2007b) 40Ar/39Ar and U-Pb dating of the Fish Canyon magmatic system, San Juan Volcanic field, Colorado: evidence for an extended crystallization history. Chemical Geology 236(1–2):134–166CrossRefGoogle Scholar
  9. Bachmann O, Schoene B, Schnyder C, Spikings R (2010) The 40Ar/39Ar and U/Pb dating of young rhyolites in the Kos-Nisyros volcanic complex, Eastern Aegean Arc, Greece: age discordance due to excess 40Ar in biotite. Geochem Geophys Geosyst 11(8):Q0AA08CrossRefGoogle Scholar
  10. Bacon CR, Lowenstern JB (2005) Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon. Earth Planet Sci Lett 233(3–4):277–293CrossRefGoogle Scholar
  11. Barboni M, Schoene B (2014) Short eruption window revealed by absolute crystal growth rates in a granitic magma. Nat Geosci 7:524–528. doi: 10.1038/ngeo2185 CrossRefGoogle Scholar
  12. Bégué F, Deering CD, Gravley DM, Kennedy BM, Chambefort I, Gualda GAR, Bachmann O (2014) Extraction, storage and eruption of multiple isolated magma batches in the paired Mamaku and Ohakuri eruption, Taupo Volcanic Zone, New Zealand. J Petrol 55(8):1653–1684CrossRefGoogle Scholar
  13. Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205(1–2):115–140CrossRefGoogle Scholar
  14. Brown SJA, Fletcher IR (1999) SHRIMP U–Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: evidence for > 250 k.y. magma residence times. Geology 27(11):1035–1038CrossRefGoogle Scholar
  15. Chamberlain KJ, Wilson CJN, Wooden JL, Charlier BLA, Ireland TR (2014) New perspectives on the bishop tuff from zircon textures, ages and trace elements. J Petrol 55(2):395–426CrossRefGoogle Scholar
  16. Charlier BLA, Wilson CJN (2010) Chronology and evolution of caldera-forming and post-caldera magma systems at Okataina Volcano, New Zealand from Zircon U–Th Model-age Spectra. J Petrol 51(5):1121–1141CrossRefGoogle Scholar
  17. Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, Van Calsteren PW, Davidson JP (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) Revealed by U–Th and U–Pb systematics in zircons. J Petrol 46(1):3–32CrossRefGoogle Scholar
  18. Claiborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Miner Mag 70(5):517–543CrossRefGoogle Scholar
  19. Claiborne LL, Miller CF, Flanagan DM, Clynne MA, Wooden JL (2010) Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. Geology 38(11):1011–1014CrossRefGoogle Scholar
  20. Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res Solid Earth 89(S02):B525–B534CrossRefGoogle Scholar
  21. Coney PJ (1978) Mesozoic–Cenozoic Cordilleran plate tectonics. In: Smith RB, Eaton GP (eds) Cenozoic tectonics and regional geophysics of the western Cordillera, vol 152. Geological Society of America Memoirs, Boulder, Colorado, pp 33–50Google Scholar
  22. Cooper KM, Kent AJR (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature 506:480–483CrossRefGoogle Scholar
  23. Cooper GF, Wilson CJN, Millet M-A, Baker JA, Smith EGC (2012) Systematic tapping of independent magma chambers during the 1 Ma Kidnappers supereruption. Earth Planet Sci Lett 313–314:23–33CrossRefGoogle Scholar
  24. Cooper G, Wilson CN, Charlier BA, Wooden J, Ireland T (2014) Temporal evolution and compositional signatures of two supervolcanic systems recorded in zircons from Mangakino volcanic centre, New Zealand. Contrib Mineral Petrol 167(6):1–23Google Scholar
  25. Costa F (2008) Residence times of silicic magmas associated with calderas. In: Gottsmann J, M Joan (eds) Developments in volcanology, vol 10. Elsevier, Amsterdam, pp 1–55Google Scholar
  26. Czuppon G, Lukács R, Harangi S, Mason PRD, Ntaflos T (2012) Mixing of crystal mushes and melts in the genesis of the Bogács Ignimbrite suite, northern Hungary: an integrated geochemical investigation of mineral phases and glasses. Lithos 148:71–85CrossRefGoogle Scholar
  27. Danišík M, Shane P, Schmitt AK, Hogg A, Santos GM, Storm S, Evans NJ, Keith Fifield L, Lindsay JM (2012) Re-anchoring the late Pleistocene tephrochronology of New Zealand based on concordant radiocarbon ages and combined 238U/230Th disequilibrium and (U–Th)/He zircon ages. Earth Planet Sci Lett 349–350:240–250CrossRefGoogle Scholar
  28. Danišík M, Fodor L, Dunkl I, Gerdes A, Csizmeg J, Hámor-Vidó M, Evans NJ (2015) A multi-system geochronology in the Ad-3 borehole, Pannonian Basin (Hungary) with implications for dating volcanic rocks by low-temperature thermochronology and for interpretation of (U–Th)/He data. Terra Nova 27:258–269CrossRefGoogle Scholar
  29. Davis DW, Williams IS, Krogh TE (2003) Historical development of zircon geochronology. Rev Mineral Geochem 53:145–181CrossRefGoogle Scholar
  30. de Silva SL (1989) Altiplano-Puna volcanic complex of the central Andes. Geology 17:1102–1106CrossRefGoogle Scholar
  31. Deering CD, Bachmann O, Vogel TA (2011) The Ammonia Tanks Tuff: erupting a melt-rich rhyolite cap and its remobilized crystal cumulate. Earth Planet Sci Lett 310(3–4):518–525CrossRefGoogle Scholar
  32. Dunkl I, Árkai P, Balogh K, Csontos L, Nagy G (1994) Modelling the thermal history using fission track data—exhumation of Bükk Mountains, Inner Western Carpathians (in Hungarian with English abstract). Földtani Közlöny 124:1–24Google Scholar
  33. Ellis BS, Wolff JA (2012) Complex storage of rhyolite in the central Snake River Plain. J Volcanol Geoth Res 211–212:1–11CrossRefGoogle Scholar
  34. Evans NJ, Byrne JP, Keegan JT, Dotter LE (2005) Determination of Uranium and Thorium in zircon, apatite, and fluorite: application to laser (U–Th)/He thermochronology. J Anal Chem 60(12):1159–1165CrossRefGoogle Scholar
  35. Farley KA (2002) (U–Th)/He dating: techniques, calibrations, and applications. Rev Mineral Geochem 47(1):819–844CrossRefGoogle Scholar
  36. Farley KA, Wolf RA, Silver LT (1996) The effects of long alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta 60(21):4223–4229CrossRefGoogle Scholar
  37. Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154(4):429–437CrossRefGoogle Scholar
  38. Frazer RE, Coleman DS, Mills RD (2014) Zircon U-Pb geochronology of the Mount Givens Granodiorite: implications for the genesis of large volumes of eruptible magma. J Geophys Res Solid Earth 119(4):2013JB010716Google Scholar
  39. Gebauer S, Schmitt A, Pappalardo L, Stockli D, Lovera O (2014) Crystallization and eruption ages of Breccia Museo (Campi Flegrei caldera, Italy) plutonic clasts and their relation to the Campanian ignimbrite. Contrib Mineral Petrol 167(1):1–18Google Scholar
  40. Gee JS, Kent DV (2007) 5.12—Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. In: Schubert G (ed) Treatise on geophysics. Elsevier, Amsterdam, pp 455–507CrossRefGoogle Scholar
  41. Gehrels GE, Valencia VA, Ruiz J (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma-mass spectrometry. Geochem Geophys Geosyst 9(3):Q03017CrossRefGoogle Scholar
  42. Gelman SE, Gutiérrez FJ, Bachmann O (2013) On the longevity of large upper crustal silicic magma reservoirs. Geology 41:759–762CrossRefGoogle Scholar
  43. Ghiorso M, Gualda GR (2013) A method for estimating the activity of titania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron–titanium oxides. Contrib Mineral Petrol 165(1):73–81CrossRefGoogle Scholar
  44. Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14:4–11CrossRefGoogle Scholar
  45. Glazner AF, Coleman DS, Bartley JM (2008) The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology 36(2):183–186CrossRefGoogle Scholar
  46. Glazner A, Coleman D, Mills R (2015) The volcanic–plutonic connection. Springer, Berlin, Heidelberg, pp 1–22Google Scholar
  47. Gualda GAR, Pamukcu AS, Ghiorso MS, Anderson AT Jr, Sutton SR, Rivers ML (2012) Timescales of quartz crystallization and the Longevity of the Bishop giant magma body. PLoS ONE 7(5):e37492. doi: 10.1371/journal.pone.0037492 CrossRefGoogle Scholar
  48. Guenthner WR, Reiners PW, Ketcham RA, Nasdala L, Giester G (2013) Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U–Th)/He thermochronology. Am J Sci 313(3):145–198CrossRefGoogle Scholar
  49. Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BWD (2008) SILLS: a MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineral Assoc Canada Short Course 40:328–333Google Scholar
  50. Guillong M, von Quadt A, Sakata S, Peytcheva I, Bachmann O (2014) LA-ICP-MS Pb–U dating of young zircons from the Kos-Nisyros volcanic centre, SE Aegean arc. J Anal At Spectrom 29(6):963–970CrossRefGoogle Scholar
  51. Hámor G, Pogácsás G, Jámbor Á (2001) Paleogeographic/structural evolutionary stages and the related volcanism of the Carpathian-Pannonian Region. Acta Geol Hung 44:193–222Google Scholar
  52. Harangi S, Lenkey L (2007) Genesis of the Neogene to Quaternary volcanism in the Carpathian-Pannonian region: role of subduction, extension, and mantle plume. Geol Soc Am Spec Pap 418:67–92Google Scholar
  53. Harangi S, Lukács R (2009) On the age of the Harsány ignimbrite, Bükkalja volcanic field, Northern Hungary—a discussion. Cent Eur Geol 52(1):43–50CrossRefGoogle Scholar
  54. Harangi S, Mason PRD, Lukács R (2005) Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: in situ trace element data of glass shards and mineral chemical constraints. J Volcanol Geoth Res 143(4):237–257CrossRefGoogle Scholar
  55. Harangi S, Lukács R, Schmitt AK, Dunkl I, Molnár K, Kiss B, Seghedi I, Novothny Á, Molnár M (2015) Constraints on the timing of Quaternary volcanism and duration of magma residence at Ciomadul volcano, east–central Europe, from combined U–Th/He and U–Th zircon geochronology. J Volcanol Geoth Res 301:66–80CrossRefGoogle Scholar
  56. Hildreth W (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J Volcanol Geoth Res 136(3–4):169–198CrossRefGoogle Scholar
  57. Hildreth W, Wilson CJN (2007) Compositional zoning of the bishop tuff. J Petrol 48(5):951–999CrossRefGoogle Scholar
  58. Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226(1–4):333–357CrossRefGoogle Scholar
  59. Horváth F, Royden LH (1981) Mechanism for formation of the intra-Carpathian basins: a review. Earth Evol Sci 1:307–316Google Scholar
  60. Horváth F, Bada G, Szafián P, Tari G, Ádám A, Cloetingh S (2006) Formation and deformation of the Pannonian Basin: constraints from observational data. Geol Soc Lond Mem 32(1):191–206CrossRefGoogle Scholar
  61. Horváth F, Musitz B, Balázs A, Végh A, Uhrin A, Nádor A, Koroknai B, Pap N, Tóth T, Wórum G (2015) Evolution of the Pannonian basin and its geothermal resources. Geothermics 53:328–352CrossRefGoogle Scholar
  62. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53(1):27–62CrossRefGoogle Scholar
  63. Hoskin PWO, Kinny PD, Wyborn D, Chappell BW (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach. J Petrol 41(9):1365–1396CrossRefGoogle Scholar
  64. Huber C, Bachmann O, Dufek J (2010) The limitations of melting on the reactivation of silicic mushes. J Volcanol Geoth Res 195(2–4):97–105CrossRefGoogle Scholar
  65. Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29(3):599–624CrossRefGoogle Scholar
  66. Hurai V, Danišík M, Huraiová M, Paquette J-L, Ádám A (2013) Combined U/Pb and (U–Th)/He geochronometry of basalt maars in Western Carpathians: implications for age of intraplate volcanism and origin of zircon metasomatism. Contrib Mineral Petrol 166(4):1235–1251CrossRefGoogle Scholar
  67. Iwano H, Orihashi Y, Hirata T, Ogasawara M, Danhara T, Horie K, Hasebe N, Sueoka S, Tamura A, Hayasaka Y, Katsube A, Ito H, Tani K, Kimura J-I, Chang Q, Kouchi Y, Haruta Y, Yamamoto K (2013) An inter-laboratory evaluation of OD-3 zircon for use as a secondary U–Pb dating standard. Island Arc 22(3):382–394CrossRefGoogle Scholar
  68. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211(1–2):47–69CrossRefGoogle Scholar
  69. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4(5):1889–1906CrossRefGoogle Scholar
  70. Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, BerlinCrossRefGoogle Scholar
  71. Klemetti EW, Clynne MA (2014) Localized rejuvenation of a crystal mush recorded in zircon temporal and compositional variation at the Lassen Volcanic Center, northern California. PLoS One 9(12):e113157CrossRefGoogle Scholar
  72. Klemetti EW, Deering CD, Cooper KM, Roeske SM (2011) Magmatic perturbations in the Okataina Volcanic Complex, New Zealand at thousand-year timescales recorded in single zircon crystals. Earth Planet Sci Lett 305(1):185–194CrossRefGoogle Scholar
  73. Košler J, Sylvester PJ (2003) Present trends and the future of zircon in geochronology: laser ablation ICPMS. Rev Mineral Geochem 53(1):243–275CrossRefGoogle Scholar
  74. Koyaguchi T, Kaneko K (1999) A two-stage thermal evolution model of magmas in continental crust. J Petrol 40:241–254CrossRefGoogle Scholar
  75. Lenkey L, Dövényi P, Horváth F, Cloetingh S (2002) Geothermics of the Pannonian Basin and its bearing on the neotectonics. EGU Stephan Mueller Special Publications Series, vol 3, pp 29–34Google Scholar
  76. Less Gy, Kovács S, Pelikán P, Pentelényi L, Sásdi L (2005a) Geology of the Bükk Mountains. Magyar Állami Földtani Intézet, BudapestGoogle Scholar
  77. Less Gy, Gulácsi Z, Kovács S, Pelikán P, Pentelényi L, Rezessy A, Sásdi L (2005b) Geological map of the Bükk Mountains 1: 50 000. Magyar Állami Földtani Intézet, BudapestGoogle Scholar
  78. Lipman PW (2007) Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain volcanic field. Geosphere 3(1):42–70CrossRefGoogle Scholar
  79. Lipman PW, Bachmann O (2015) Ignimbrites to batholiths: integrating perspectives from geological, geophysical, and geochronological data. Geosphere 11(3):705–743CrossRefGoogle Scholar
  80. Lipman PW, Glazner AF (1991) Introduction to Middle Tertiary Cordilleran volcanism: magma sources and relations to regional tectonics. J Geophys Res 96:13193–13199CrossRefGoogle Scholar
  81. Lipman PW, Prostka HJ, Christiansen RL (1971) Evolving subduction zones in the Western United States, as interpreted from igneous rocks. Science 174:821–825CrossRefGoogle Scholar
  82. Ludwig KR (2012) Isoplot, A geochronological toolkit for Microsoft excel. Berkeley Geochronology Center, Special Publication 5Google Scholar
  83. Lukács R, Harangi S, Ntaflos T, Mason PRD (2005) Silicate melt inclusions in the phenocrysts of the Szomolya Ignimbrite, Bükkalja Volcanic Field (Northern Hungary): implications for magma chamber processes. Chem Geol 223(1–3):46–67CrossRefGoogle Scholar
  84. Lukács R, Harangi S, Ntaflos T, Koller F, Pécskay Z (2007) A Bükkalján megjelenő felső riolittufaszint vizsgálati eredményei: a harsányi ignimbrit egység. Földtani Közlöny 137(4):487–514Google Scholar
  85. Lukács R, Harangi S, Mason PRD, Ntaflos T (2009) Bimodal pumice populations in the 13.5 Ma Harsány ignimbrite, Bükkalja Volcanic Field, Northern Hungary: syn-eruptive mingling of distinct rhyolitic magma batches? Central Eur Geol 52(1):51–72CrossRefGoogle Scholar
  86. Lukács R, Harangi S, Radócz G, Kádár M, Pécskay Z, Ntaflos T (2010) A Nyékládháza-1, Miskolc-7 és Miskolc-8 sz. fúrások miocén vulkáni kőzetei és párhuzamosításuk a Bükkalja vulkáni képződményeivel. Földt Közlöny 140(1):31–48Google Scholar
  87. Marillo-Sialer E, Woodhead J, Hergt J, Greig A, Guillong M, Gleadow A, Evans N, Paton C (2014) The zircon ‘matrix effect’: evidence for an ablation rate control on the accuracy of U–Pb age determinations by LA-ICP-MS. J Anal At Spectrom 29(6):981–989CrossRefGoogle Scholar
  88. Márton E, Fodor L (1995) Combination of palaeomagnetic and stress data—a case study from North Hungary. Tectonophysics 242(1–2):99–114CrossRefGoogle Scholar
  89. Márton E, Pécskay Z (1998) Complex evaluation of paleomagnetic and K/Ar isotope data of the Miocene ignimbritic volcanics in the Bükk Foreland, Hungary. Acta Geol Hung 41:467–476Google Scholar
  90. Márton E, Zelenka T, Márton P (2007) Paleomagnetic correlation of Miocene pyroclastics of the Bükk Mts. and their forelands. Central Eur Geol 50(1):47–57CrossRefGoogle Scholar
  91. Mattinson JM (2005) Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220(1–2):47–66CrossRefGoogle Scholar
  92. Memeti V, Paterson S, Matzel J, Mundil R, Okaya D (2010) Magmatic lobes as “snapshots” of magma chamber growth and evolution in large, composite batholiths: an example from the Tuolumne intrusion, Sierra Nevada, California. Geol Soc Am Bull 122(11–12):1912–1931CrossRefGoogle Scholar
  93. Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanol Geoth Res 167(1–4):282–299CrossRefGoogle Scholar
  94. Mills RD (2012) Re-evaluating pluton/volcano connections and igneous textures in light of incremental magma emplacement. PhD Thesis Chapel Hill. North Carolina, University of North CarolinaGoogle Scholar
  95. Nardi LVS, Formoso MLL, Müller IF, Fontana E, Jarvis K, Lamarão C (2013) Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: uses for provenance and mineral exploration purposes. Chemical Geology 335:1–7CrossRefGoogle Scholar
  96. Nemchin AA, Horstwood MSA, Whitehouse MJ (2013) High-spatial-resolution geochronology. Elements 9(1):31–37CrossRefGoogle Scholar
  97. Paquette J-L, Le Pennec J-L (2012) 3.8 Ga zircons sampled by Neogene ignimbrite eruptions in Central Anatolia. Geology 40(3):239–242CrossRefGoogle Scholar
  98. Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst 11(3):Q0AA06CrossRefGoogle Scholar
  99. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26(12):2508–2518CrossRefGoogle Scholar
  100. Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konecny V, Zelenka T, Kovac M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetkovic V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57:511–530Google Scholar
  101. Petrik A, Beke B, Fodor L (2014) Combined analysis of faults and deformation bands reveals the Cenozoic structural evolution of the southern Bükk foreland (Hungary). Tectonophysics 633:43–62CrossRefGoogle Scholar
  102. Petrik A, Beke B, Fodor L, Lukács R (2015) Cenozoic structural evolution of the southwestern Bükk Mts. and the southern part of the Darnó Deformation Belt (NE Hungary). Geol Carp (in press)Google Scholar
  103. Petrus JA, Kamber BS (2012) VizualAge: a novel approach to laser ablation ICP-MS U–Pb geochronology data reduction. Geostand Geoanal Res 36(3):247–270CrossRefGoogle Scholar
  104. Reid MR, Coath CD (2000) In situ U–Pb ages of zircons from the Bishop Tuff: no evidence for long crystal residence times. Geology 28(5):443–446CrossRefGoogle Scholar
  105. Reid M, Vazquez J, Schmitt A (2011) Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer. Contrib Mineral Petrol 161(2):293–311CrossRefGoogle Scholar
  106. Reiners PW (2005) Zircon (U–Th)/He thermochronometry. Mineral Soc Am Rev Mineral Geochem 58:151–179CrossRefGoogle Scholar
  107. Reiners PW, Farley KA, Hickes HJ (2002) He diffusion and (U–Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics 349(1–4):297–308CrossRefGoogle Scholar
  108. Reiners PW, Spell TL, Nicolescu S, Zanetti KA (2004) Zircon (U–Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Acta 68(8):1857–1887CrossRefGoogle Scholar
  109. Ryerson FJ, Watson EB (1987) Rutile saturation in magmas: implications for Ti–Nb–Ta depletion in orogenic rock series. Earth Planet Sci Lett 86:225–239CrossRefGoogle Scholar
  110. Sambridge MS, Compston W (1994) Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth Planet Sci Lett 128(3–4):373–390CrossRefGoogle Scholar
  111. Schaltegger U, Brack P, Ovtcharova M, Peytcheva I, Schoene B, Stracke A, Marocchi M, Bargossi GM (2009) Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth Planet Sci Lett 286(1–2):208–218CrossRefGoogle Scholar
  112. Scharer U (1984) The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204CrossRefGoogle Scholar
  113. Schmitt AK, Stockli DF, Hausback BP (2006) Eruption and magma crystallization ages of Las Tres Vírgenes (Baja California) constrained by combined 230Th/238U and (U–Th)/He dating of zircon. J Volcanol Geoth Res 158(3–4):281–295CrossRefGoogle Scholar
  114. Schmitt AK, Stockli DF, Lindsay JM, Robertson R, Lovera OM, Kislitsyn R (2010) Episodic growth and homogenization of plutonic roots in arc volcanoes from combined U–Th and (U–Th)/He zircon dating. Earth Planet Sci Lett 295(1–2):91–103CrossRefGoogle Scholar
  115. Schmitt A, Danišík M, Evans N, Siebel W, Kiemele E, Aydin F, Harvey J (2011) Acigöl rhyolite field, Central Anatolia (part 1): high-resolution dating of eruption episodes and zircon growth rates. Contrib Mineral Petrol 162(6):1215–1231CrossRefGoogle Scholar
  116. Schoene B, Schaltegger U, Brack P, Latkoczy C, Stracke A, Günther D (2012) Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth Planet Sci Lett 355–356:162–173CrossRefGoogle Scholar
  117. Shane P, Nairn IA, Smith VC (2005) Magma mingling in the ∼50 ka Rotoiti eruption from Okataina Volcanic Centre: implications for geochemical diversity and chronology of large volume rhyolites. J Volcanol Geoth Res 139(3–4):295–313CrossRefGoogle Scholar
  118. Shane P, Martin SB, Smith VC, Beggs KF, Darragh MB, Cole JW, Nairn IA (2007) Multiple rhyolite magmas and basalt injection in the 17.7 ka Rerewhakaaitu eruption episode from Tarawera volcanic complex, New Zealand. J Volcanol Geoth Res 164(1–2):1–26CrossRefGoogle Scholar
  119. Shane P, Nairn IA, Smith VC, Darragh M, Beggs K, Cole JW (2008) Silicic recharge of multiple rhyolite magmas by basaltic intrusion during the 22.6 ka Okareka Eruption Episode, New Zealand. Lithos 103(3):527–549CrossRefGoogle Scholar
  120. Simon JI, Renne PR, Mundil R (2008) Implications of pre-eruptive magmatic histories of zircons for U–Pb geochronology of silicic extrusions. Earth Planet Sci Lett 266(1–2):182–194CrossRefGoogle Scholar
  121. Simon J, Weis D, DePaolo D, Renne P, Mundil R, Schmitt A (2014) Assimilation of preexisting Pleistocene intrusions at Long Valley by periodic magma recharge accelerates rhyolite generation: rethinking the remelting model. Contrib Mineral Petrol 167(1):1–34Google Scholar
  122. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249(1–2):1–35CrossRefGoogle Scholar
  123. Smith VC, Shane P, Nairn IA (2004) Reactivation of a rhyolitic magma body by new rhyolitic intrusion before the 15.8 ka Rotorua eruptive episode: implications for magma storage in the Okataina Volcanic Centre, New Zealand. J Geol Soc 161(5):757–772CrossRefGoogle Scholar
  124. Sparks RSJ, Huppert HE, Wilson CJN (1990) Comment on “Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: the isotopic record in precaldera lavas of Glass Mountain” by A.N. Halliday, G.A. Mahood, P. Holden, J.M. Metz, T.J. Dempster and J.P. Davidson. Earth Planet Sci Lett 99(4):387–389CrossRefGoogle Scholar
  125. Storm S, Schmitt A, Shane P, Lindsay J (2014) Zircon trace element chemistry at sub-micrometer resolution for Tarawera volcano, New Zealand, and implications for rhyolite magma evolution. Contrib Miner Petrol 167:1000CrossRefGoogle Scholar
  126. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds), Magmatism in the oceanic basins, Geological Society of Special Publication No. 42, pp 313–345Google Scholar
  127. Szabó C, Harangi S, Csontos L (1992) Review of Neogene and Quaternary volcanism of the Carpathian-Pannonian region. Tectonophysics 208(1–3):243–256CrossRefGoogle Scholar
  128. Szakács A, Zelenka T, Márton E, Pécskay Z, Póka T, Seghedi I (1998) Miocene acidic explosive volcanism in the Bükk Foreland, Hungary: identifying eruptive sequences and searching for source locations. Acta Geol Hung 41:413–435Google Scholar
  129. Széky-Fux V, Kozák M, Püspöki Z (2007) Covered Neogene volcanism of East Hungary. Acta Geographica ac Geologica et Meteorologica Debrecina, Geology, Geomorphology, Physical Geography Series 2, pp 79–104Google Scholar
  130. Tagami T, Farley KA, Stockli DF (2003) (U–Th)/He geochronology of single zircon grains of known Tertiary eruption age. Earth Planet Sci Lett 207(1–4):57–67CrossRefGoogle Scholar
  131. Tari G (1988) Strike-slip origin of the Vatta-Maklár Trough, northeastern Hungary. Acta Geol Hung 31(1–2):101–109Google Scholar
  132. Tari G, Dövényi P, Horváth F, Dunkl I, Lenkey L, Stefanescu M, Szafián P, Tóth T (1999) Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. In Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean Basins: tertiary extension within the Alpine orogen. Geological Society, London, Special Publication 156, pp 215–250Google Scholar
  133. Vazquez J, Reid M (2002) Time scales of magma storage and differentiation of voluminous high-silica rhyolites at Yellowstone caldera, Wyoming. Contrib Mineral Petrol 144(3):274–285CrossRefGoogle Scholar
  134. von Quadt A, Gallhofer D, Guillong M, Peytcheva I, Waelle M, Sakata S (2014) U–Pb dating of CA/non-CA treated zircons obtained by LA-ICP-MS and CA-TIMS techniques: impact for their geological interpretation. J Anal At Spectrom 29(9):1618–1629CrossRefGoogle Scholar
  135. Walker BA Jr, Miller CF, Lowery Claiborne L, Wooden JL, Miller JS (2007) Geology and geochronology of the Spirit Mountain batholith, southern Nevada: implications for timescales and physical processes of batholith construction. J Volcanol Geoth Res 167(1–4):239–262CrossRefGoogle Scholar
  136. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64(2):295–304CrossRefGoogle Scholar
  137. Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844CrossRefGoogle Scholar
  138. Wiedenbeck M, AllÉ P, Corfu F, Griffin WL, Meier M, Oberli F, Quadt AV, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19(1):1–23CrossRefGoogle Scholar
  139. Williams IS (1998) U–Th–Pb geochronology by ion microprobe. Rev. Econ. Geol. 7:1–35CrossRefGoogle Scholar
  140. Wilson CJN, Charlier BLA (2009) Rapid rates of magma generation at contemporaneous magma systems, Taupo Volcano, New Zealand: insights from U–Th model-age spectra in zircons. J Petrol 50(5):875–907CrossRefGoogle Scholar
  141. Wotzlaw J-F, Schaltegger U, Frick DA, Dungan MA, Gerdes A, Günther D (2013) Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption. Geology 41(8):867–870CrossRefGoogle Scholar
  142. Wotzlaw J-F, Bindeman IN, Watts KE, Schmitt AK, Caricchi L, Schaltegger U (2014) Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes. Geology 42(9):807–810CrossRefGoogle Scholar
  143. Wotzlaw J-F, Bindeman IN, Stern RA, D’Abzac F-X, Schaltegger U (2015) Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. Sci Rep 5:14026CrossRefGoogle Scholar
  144. Zelenka T, Póka T, Márton E, Pécskay Z (2004) A Tari Dácittufa Formáció típuszelvényének felülvizsgálata. MÁFI Évi Jelentés 2004-ről, pp 73–84Google Scholar
  145. Zimmerer MJ, McIntosh WC (2012) The geochronology of volcanic and plutonic rocks at the Questa caldera: constraints on the origin of caldera-related silicic magmas. Geol Soc Am Bull 124(7–8):1394–1408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Réka Lukács
    • 1
    • 2
    Email author
  • Szabolcs Harangi
    • 1
    • 3
  • Olivier Bachmann
    • 4
  • Marcel Guillong
    • 4
  • Martin Danišík
    • 5
  • Yannick Buret
    • 4
  • Albrecht von Quadt
    • 4
  • István Dunkl
    • 6
  • László Fodor
    • 7
  • Jakub Sliwinski
    • 4
  • Ildikó Soós
    • 1
  • János Szepesi
    • 1
  1. 1.MTA-ELTE Volcanology Research GroupBudapestHungary
  2. 2.Department of Mineralogy, Geochemistry and PetrologyUniversity of SzegedSzegedHungary
  3. 3.Department of Petrology and GeochemistryEötvös Loránd UniversityBudapestHungary
  4. 4.Institute of Geochemistry and Petrology, Department of Earth SciencesETH ZürichZurichSwitzerland
  5. 5.TIGeR/John de Laeter Centre for Isotope Research, Applied GeologyCurtin University of TechnologyPerthAustralia
  6. 6.Sedimentology and Environmental Geology, Geoscience CenterUniversity of GöttingenGöttingenGermany
  7. 7.MTA-ELTE Geological, Geophysical and Space Science Research Group of the Hungarian Academy of SciencesEötvös UniversityBudapestHungary

Personalised recommendations